491 research outputs found

    2D and 3D surface image processing algorithms and their applications

    Get PDF
    This doctoral dissertation work aims to develop algorithms for 2D image segmentation application of solar filament disappearance detection, 3D mesh simplification, and 3D image warping in pre-surgery simulation. Filament area detection in solar images is an image segmentation problem. A thresholding and region growing combined method is proposed and applied in this application. Based on the filament area detection results, filament disappearances are reported in real time. The solar images in 1999 are processed with this proposed system and three statistical results of filaments are presented. 3D images can be obtained by passive and active range sensing. An image registration process finds the transformation between each pair of range views. To model an object, a common reference frame in which all views can be transformed must be defined. After the registration, the range views should be integrated into a non-redundant model. Optimization is necessary to obtain a complete 3D model. One single surface representation can better fit to the data. It may be further simplified for rendering, storing and transmitting efficiently, or the representation can be converted to some other formats. This work proposes an efficient algorithm for solving the mesh simplification problem, approximating an arbitrary mesh by a simplified mesh. The algorithm uses Root Mean Square distance error metric to decide the facet curvature. Two vertices of one edge and the surrounding vertices decide the average plane. The simplification results are excellent and the computation speed is fast. The algorithm is compared with six other major simplification algorithms. Image morphing is used for all methods that gradually and continuously deform a source image into a target image, while producing the in-between models. Image warping is a continuous deformation of a: graphical object. A morphing process is usually composed of warping and interpolation. This work develops a direct-manipulation-of-free-form-deformation-based method and application for pre-surgical planning. The developed user interface provides a friendly interactive tool in the plastic surgery. Nose augmentation surgery is presented as an example. Displacement vector and lattices resulting in different resolution are used to obtain various deformation results. During the deformation, the volume change of the model is also considered based on a simplified skin-muscle model

    Controlled metamorphosis between skeleton-driven animated polyhedral meshes of arbitrary topologies

    Get PDF
    Enabling animators to smoothly transform between animated meshes of differing topologies is a long-standing problem in geometric modelling and computer animation. In this paper, we propose a new hybrid approach built upon the advantages of scalar field-based models (often called implicit surfaces) which can easily change their topology by changing their defining scalar field. Given two meshes, animated by their rigging-skeletons, we associate each mesh with its own approximating implicit surface. This implicit surface moves synchronously with the mesh. The shape-metamorphosis process is performed in several steps: first, we collapse the two meshes to their corresponding approximating implicit surfaces, then we transform between the two implicit surfaces and finally we inverse transition from the resulting metamorphosed implicit surface to the target mesh. The examples presented in this paper demonstrating the results of the proposed technique were implemented using an in-house plug-in for Maya™. © 2013 The Authors Computer Graphics Forum © 2013 The Eurographics Association and John Wiley & Sons Ltd

    Three-dimensional metamorphosis: a survey

    Get PDF
    International audienceA metamorphosis or a (3D) morphing is the process of continuously transforming one object into another. 2D and 3D morphing are popular in computer animation, industrial design, and growth simulation. Since there is no intrinsic solution to the morphing problem, user interaction can be a key component of a morphing software. Many morphing techniques have been proposed in recent years for 2D and 3D objects. We present a survey of the various 3D approaches, giving special attention to the user interface. We show how the approaches are intimately related to the object representations. We conclude by sketching some morphing strategies for the future

    3D Alchemy: a guide to 3D realistic computer graphics

    Get PDF
    Last year, many films and commercials took advantage of computer technology to create astonishing 3D animations. Examples such as the Listerine commercial series, the NBA logo on TV, and the Chip & Pepper TV cartoon, featured unique and vibrant computer images. Among the various animations, some were made by high end computer systems, but some simply by personal computers. Small, fast, and more capable personal computers are now performing professional-level video production roles and, in fact, they are a staple of many feature film productions and broadcast television facilities

    Hybrid modelling of heterogeneous volumetric objects.

    Get PDF
    Heterogeneous multi-material volumetric modelling is an emerging and rapidly developing field. A Heterogeneous object is a volumetric object with interior structure where different physically-based attributes are defined. The attributes can be of different nature: material distributions, density, microstructures, optical properties and others. Heterogeneous objects are widely used where the presence of the interior structures is an important part of the model. Computer-aided design (CAD), additive manufacturing, physical simulations, visual effects, medical visualisation and computer art are examples of such applications. In particular, digital fabrication employing multi-material 3D printing techniques is becoming omnipresent. However, the specific methods and tools for representation, modelling, rendering, animation and fabrication of multi-material volumetric objects with attributes are only starting to emerge. The need for adequate unifying theoretical and practical framework has been obvious. Developing adequate representational schemes for heterogeneous objects is in the core of research in this area. The most widely used representations for defining heterogeneous objects are boundary representation, distance-based representations, function representation and voxels. These representations work well for modelling homogeneous (solid) objects but they all have significant drawbacks when dealing with heterogeneous objects. In particular, boundary representation, while maintaining its prevailing role in computer graphics and geometric modelling, is not inherently natural for dealing with heterogeneous objects especially in the con- text of additive manufacturing and 3D printing, where multi-material properties are paramount as well as in physical simulation where the exact representation rather than an approximate one can be important. In this thesis, we introduce and systematically describe a theoretical and practical framework for modelling volumetric heterogeneous objects on the basis of a novel unifying functionally-based hybrid representation called HFRep. It is based on the function representation (FRep) and several distance-based representations, namely signed distance fields (SDFs), adaptively sampled distance fields (ADFs) and interior distance fields (IDFs). It embraces advantages and circumvents disadvantages of the initial representations. A mathematically substantiated theoretical description of the HFRep with an emphasis on defining functions for HFRep objects’ geometry and attributes is provided. This mathematical framework serves as the basis for developing efficient algorithms for the generation of HFRep objects taking into account both their geometry and attributes. To make the proposed approach practical, a detailed description of efficient algorithmic procedures has been developed. This has required employing a number of novel techniques of different nature, separately and in combination. In particular, an extension of a fast iterative method (FIM) for numerical solving of the eikonal equation on hierarchical grids was developed. This allowed for efficient computation of smooth distance-based attributes. To prove the concept, the main elements of the framework have been implemented and used in several applications of different nature. It was experimentally shown that the developed methods and tools can be used for generating objects with complex interior structure, e.g. microstructures, and different attributes. A special consideration has been devoted to applications of dynamic nature. A novel concept of heterogeneous space-time blending (HSTB) method with an automatic control for metamorphosis of heterogeneous objects with textures, both in 2D and 3D, has been introduced, algorithmised and implemented. We have applied the HSTB in the context of ‘4D Cubism’ project. There are plans to use the developed methods and tools for many other applications
    corecore