12,588 research outputs found

    Towards Automatic SAR-Optical Stereogrammetry over Urban Areas using Very High Resolution Imagery

    Full text link
    In this paper we discuss the potential and challenges regarding SAR-optical stereogrammetry for urban areas, using very-high-resolution (VHR) remote sensing imagery. Since we do this mainly from a geometrical point of view, we first analyze the height reconstruction accuracy to be expected for different stereogrammetric configurations. Then, we propose a strategy for simultaneous tie point matching and 3D reconstruction, which exploits an epipolar-like search window constraint. To drive the matching and ensure some robustness, we combine different established handcrafted similarity measures. For the experiments, we use real test data acquired by the Worldview-2, TerraSAR-X and MEMPHIS sensors. Our results show that SAR-optical stereogrammetry using VHR imagery is generally feasible with 3D positioning accuracies in the meter-domain, although the matching of these strongly hetereogeneous multi-sensor data remains very challenging. Keywords: Synthetic Aperture Radar (SAR), optical images, remote sensing, data fusion, stereogrammetr

    Integration of LIDAR and IFSAR for mapping

    Get PDF
    LiDAR and IfSAR data is now widely used for a number of applications, particularly those needing a digital elevation model. The data is often complementary to other data such as aerial imagery and high resolution satellite data. This paper will review the current data sources and the products and then look at the ways in which the data can be integrated for particular applications. The main platforms for LiDAR are either helicopter or fixed wing aircraft, often operating at low altitudes, a digital camera is frequently included on the platform, there is an interest in using other sensors such as 3 line cameras of hyperspectral scanners. IfSAR is used from satellite platforms, or from aircraft, the latter are more compatible with LiDAR for integration. The paper will examine the advantages and disadvantages of LiDAR and IfSAR for DEM generation and discuss the issues which still need to be dealt with. Examples of applications will be given and particularly those involving the integration of different types of data. Examples will be given from various sources and future trends examined

    Automated archiving of archaeological aerial images

    Get PDF
    The main purpose of any aerial photo archive is to allow quick access to images based on content and location. Therefore, next to a description of technical parameters and depicted content, georeferencing of every image is of vital importance. This can be done either by identifying the main photographed object (georeferencing of the image content) or by mapping the center point and/or the outline of the image footprint. The paper proposes a new image archiving workflow. The new pipeline is based on the parameters that are logged by a commercial, but cost-effective GNSS/IMU solution and processed with in-house-developed software. Together, these components allow one to automatically geolocate and rectify the (oblique) aerial images (by a simple planar rectification using the exterior orientation parameters) and to retrieve their footprints with reasonable accuracy, which is automatically stored as a vector file. The data of three test flights were used to determine the accuracy of the device, which turned out to be better than 1° for roll and pitch (mean between 0.0 and 0.21 with a standard deviation of 0.17–0.46) and better than 2.5° for yaw angles (mean between 0.0 and −0.14 with a standard deviation of 0.58–0.94). This turned out to be sufficient to enable a fast and almost automatic GIS-based archiving of all of the imagery

    A Comparison of Mobile Scanning to a Total Station Survey at the I-35 and IA 92 Interchange in Warren County, Iowa, August 15, 2012

    Get PDF
    The purpose of this project was to investigate the potential for collecting and using data from mobile terrestrial laser scanning (MTLS) technology that would reduce the need for traditional survey methods for the development of highway improvement projects at the Iowa Department of Transportation (Iowa DOT). The primary interest in investigating mobile scanning technology is to minimize the exposure of field surveyors to dangerous high volume traffic situations. Issues investigated were cost, timeframe, accuracy, contracting specifications, data capture extents, data extraction capabilities and data storage issues associated with mobile scanning. The project area selected for evaluation was the I-35/IA 92 interchange in Warren County, Iowa. This project covers approximately one mile of I-35, one mile of IA 92, 4 interchange ramps, and bridges within these limits. Delivered LAS and image files for this project totaled almost 31GB. There is nearly a 6-fold increase in the size of the scan data after post-processing. Camera data, when enabled, produced approximately 900MB of imagery data per mile using a 2- camera, 5 megapixel system. A comparison was done between 1823 points on the pavement that were surveyed by Iowa DOT staff using a total station and the same points generated through the MTLS process. The data acquired through the MTLS and data processing met the Iowa DOT specifications for engineering survey. A list of benefits and challenges is included in the detailed report. With the success of this project, it is anticipate[d] that additional projects will be scanned for the Iowa DOT for use in the development of highway improvement projects

    Estimation of forest variables using airborne laser scanning

    Get PDF
    Airborne laser scanning can provide three-dimensional measurements of the forest canopy with high efficiency and precision. There are presently a large number of airborne laser scanning instruments in operation. The aims of the studies reported in this thesis were, to develop and validate methods for estimation of forest variables using laser data, and to investigate the influence of laser system parameters on the estimates. All studies were carried out in hemi-boreal forest at a test area in southwestern Sweden (lat. 58°30’N, long. 13°40’ E). Forest variables were estimated using regression models. On plot level, the Root Mean Square Error (RMSE) for mean tree height estimations ranged between 6% and 11% of the average value for different datasets and methods. The RMSE for stem volume estimations ranged between 19% and 26% of the average value for different datasets and methods. On stand level (area 0.64 ha), the RMSE was 3% and 11% of the average value for mean tree height and stem volume estimations, respectively. A simulation model was used to investigate the effect of different scanning angles on laser measurement of tree height and canopy closure. The effect of different scanning angles was different within different simulated forest types, e.g., different tree species. High resolution laser data were used for detection of individual trees. In total, 71% of the field measurements were detected representing 91% of the total stem volume. Height and crown diameter of the detected trees could be estimated with a RMSE of 0.63 m and 0.61 m, respectively. The magnitude of the height estimation errors was similar to what is usually achieved using field inventory. Using different laser footprint diameters (0.26 to 3.68 m) gave similar estimation accuracies. The tree species Norway spruce (Picea abies L. Karst.) and Scots pine (Pinus sylvestris L.) were discriminated at individual tree level with an accuracy of 95%. The results in this thesis show that airborne laser scanners are useful as forest inventory tools. Forest variables can be estimated on tree level, plot level and stand level with similar accuracies as traditional field inventories

    AgriColMap: Aerial-Ground Collaborative 3D Mapping for Precision Farming

    Full text link
    The combination of aerial survey capabilities of Unmanned Aerial Vehicles with targeted intervention abilities of agricultural Unmanned Ground Vehicles can significantly improve the effectiveness of robotic systems applied to precision agriculture. In this context, building and updating a common map of the field is an essential but challenging task. The maps built using robots of different types show differences in size, resolution and scale, the associated geolocation data may be inaccurate and biased, while the repetitiveness of both visual appearance and geometric structures found within agricultural contexts render classical map merging techniques ineffective. In this paper we propose AgriColMap, a novel map registration pipeline that leverages a grid-based multimodal environment representation which includes a vegetation index map and a Digital Surface Model. We cast the data association problem between maps built from UAVs and UGVs as a multimodal, large displacement dense optical flow estimation. The dominant, coherent flows, selected using a voting scheme, are used as point-to-point correspondences to infer a preliminary non-rigid alignment between the maps. A final refinement is then performed, by exploiting only meaningful parts of the registered maps. We evaluate our system using real world data for 3 fields with different crop species. The results show that our method outperforms several state of the art map registration and matching techniques by a large margin, and has a higher tolerance to large initial misalignments. We release an implementation of the proposed approach along with the acquired datasets with this paper.Comment: Published in IEEE Robotics and Automation Letters, 201
    • …
    corecore