16,122 research outputs found

    Human motion retrieval based on freehand sketch

    Get PDF
    In this paper, we present an integrated framework of human motion retrieval based on freehand sketch. With some simple rules, the user can acquire a desired motion by sketching several key postures. To retrieve efficiently and accurately by sketch, the 3D postures are projected onto several 2D planes. The limb direction feature is proposed to represent the input sketch and the projected-postures. Furthermore, a novel index structure based on k-d tree is constructed to index the motions in the database, which speeds up the retrieval process. With our posture-by-posture retrieval algorithm, a continuous motion can be got directly or generated by using a pre-computed graph structure. What's more, our system provides an intuitive user interface. The experimental results demonstrate the effectiveness of our method. © 2014 John Wiley & Sons, Ltd

    A semantic feature for human motion retrieval

    Get PDF
    With the explosive growth of motion capture data, it becomes very imperative in animation production to have an efficient search engine to retrieve motions from large motion repository. However, because of the high dimension of data space and complexity of matching methods, most of the existing approaches cannot return the result in real time. This paper proposes a high level semantic feature in a low dimensional space to represent the essential characteristic of different motion classes. On the basis of the statistic training of Gauss Mixture Model, this feature can effectively achieve motion matching on both global clip level and local frame level. Experiment results show that our approach can retrieve similar motions with rankings from large motion database in real-time and also can make motion annotation automatically on the fly. Copyright © 2013 John Wiley & Sons, Ltd

    GraphMatch: Efficient Large-Scale Graph Construction for Structure from Motion

    Full text link
    We present GraphMatch, an approximate yet efficient method for building the matching graph for large-scale structure-from-motion (SfM) pipelines. Unlike modern SfM pipelines that use vocabulary (Voc.) trees to quickly build the matching graph and avoid a costly brute-force search of matching image pairs, GraphMatch does not require an expensive offline pre-processing phase to construct a Voc. tree. Instead, GraphMatch leverages two priors that can predict which image pairs are likely to match, thereby making the matching process for SfM much more efficient. The first is a score computed from the distance between the Fisher vectors of any two images. The second prior is based on the graph distance between vertices in the underlying matching graph. GraphMatch combines these two priors into an iterative "sample-and-propagate" scheme similar to the PatchMatch algorithm. Its sampling stage uses Fisher similarity priors to guide the search for matching image pairs, while its propagation stage explores neighbors of matched pairs to find new ones with a high image similarity score. Our experiments show that GraphMatch finds the most image pairs as compared to competing, approximate methods while at the same time being the most efficient.Comment: Published at IEEE 3DV 201

    Video browsing interfaces and applications: a review

    Get PDF
    We present a comprehensive review of the state of the art in video browsing and retrieval systems, with special emphasis on interfaces and applications. There has been a significant increase in activity (e.g., storage, retrieval, and sharing) employing video data in the past decade, both for personal and professional use. The ever-growing amount of video content available for human consumption and the inherent characteristics of video data—which, if presented in its raw format, is rather unwieldy and costly—have become driving forces for the development of more effective solutions to present video contents and allow rich user interaction. As a result, there are many contemporary research efforts toward developing better video browsing solutions, which we summarize. We review more than 40 different video browsing and retrieval interfaces and classify them into three groups: applications that use video-player-like interaction, video retrieval applications, and browsing solutions based on video surrogates. For each category, we present a summary of existing work, highlight the technical aspects of each solution, and compare them against each other

    Real-time motion data annotation via action string

    Get PDF
    Even though there is an explosive growth of motion capture data, there is still a lack of efficient and reliable methods to automatically annotate all the motions in a database. Moreover, because of the popularity of mocap devices in home entertainment systems, real-time human motion annotation or recognition becomes more and more imperative. This paper presents a new motion annotation method that achieves both the aforementioned two targets at the same time. It uses a probabilistic pose feature based on the Gaussian Mixture Model to represent each pose. After training a clustered pose feature model, a motion clip could be represented as an action string. Then, a dynamic programming-based string matching method is introduced to compare the differences between action strings. Finally, in order to achieve the real-time target, we construct a hierarchical action string structure to quickly label each given action string. The experimental results demonstrate the efficacy and efficiency of our method
    corecore