214,840 research outputs found

    Computer vision for 3d perception and applications

    Get PDF
    Effective 3D perception of an observed scene greatly enriches the knowledge about the surrounding environment and is crucial to effectively develop high-level applications for various purposes [...

    Gesture based human-computer interface for 3D design

    Get PDF
    modeling are amongst the most important fields of interest in current computer vision research. However, traditional hand recognition systems can only operate in constrained environments using coloured gloves or static backgrounds and do not allow for 3D object manipulation. The goal of this research is to develop real-time camera based solutions to control 3D modeling applications using natural hand gestures

    Spectral 3D Computer Vision -- A Review

    Full text link
    Spectral 3D computer vision examines both the geometric and spectral properties of objects. It provides a deeper understanding of an object's physical properties by providing information from narrow bands in various regions of the electromagnetic spectrum. Mapping the spectral information onto the 3D model reveals changes in the spectra-structure space or enhances 3D representations with properties such as reflectance, chromatic aberration, and varying defocus blur. This emerging paradigm advances traditional computer vision and opens new avenues of research in 3D structure, depth estimation, motion analysis, and more. It has found applications in areas such as smart agriculture, environment monitoring, building inspection, geological exploration, and digital cultural heritage records. This survey offers a comprehensive overview of spectral 3D computer vision, including a unified taxonomy of methods, key application areas, and future challenges and prospects

    IMAGE-BASED MODELING TECHNIQUES FOR ARCHITECTURAL HERITAGE 3D DIGITALIZATION: LIMITS AND POTENTIALITIES

    Get PDF
    3D reconstruction from images has undergone a revolution in the last few years. Computer vision techniques use photographs from data set collection to rapidly build detailed 3D models. The simultaneous applications of different algorithms (MVS), the different techniques of image matching, feature extracting and mesh optimization are inside an active field of research in computer vision. The results are promising: the obtained models are beginning to challenge the precision of laser-based reconstructions. Among all the possibilities we can mainly distinguish desktop and web-based packages. Those last ones offer the opportunity to exploit the power of cloud computing in order to carry out a semi-automatic data processing, thus allowing the user to fulfill other tasks on its computer; whereas desktop systems employ too much processing time and hard heavy approaches. Computer vision researchers have explored many applications to verify the visual accuracy of 3D model but the approaches to verify metric accuracy are few and no one is on Autodesk 123D Catch applied on Architectural Heritage Documentation. Our approach to this challenging problem is to compare the 3Dmodels by Autodesk 123D Catch and 3D models by terrestrial LIDAR considering different object size, from the detail (capitals, moldings, bases) to large scale buildings for practitioner purpose
    corecore