4 research outputs found

    White Matter, Gray Matter and Cerebrospinal Fluid Segmentation from Brain 3D MRI Using B-UNET

    Get PDF
    The accurate segmentation of brain tissues in Magnetic Resonance (MR) images is an important step for detection and treatment planning of brain diseases. Among other brain tissues, Gray Matter, White Matter and Cerebrospinal Fluid are commonly segmented for Alzheimer diagnosis purpose. Therefore, different algorithms for segmenting these tissues in MR image scans have been proposed over the years. Nowadays, with the trend of deep learning, many methods are trained to learn important features and extract information from the data leading to very promising segmentation results. In this work, we propose an effective approach to segment three tissues in 3D Brain MR images based on B-UNET. The method is implemented by using the Bitplane method in each convolution of the UNET model. We evaluated the proposed method using two public databases with very promising results. (c) Springer Nature Switzerland AG 2019

    A Probabilistic Adaptive Cerebral Cortex Segmentation Algorithm for Magnetic Resonance Human Head Scan Images

    Get PDF
    The total efficiency of Magnetic Resonance Imaging (MRI) results in the need for human involvement in order to appropriately detect information contained in the image. Currently, there has been a surge in interest in automated algorithms that can more precisely divide medical image structures into substructures than prior attempts. Instant segregation of cerebral cortex width from MRI scanned images is difficult due to noise, Intensity Non-Uniformity (INU), Partial Volume Effects (PVE), MRI's low resolution, and the very complicated architecture of the cortical folds. In this paper, a Probabilistic Adaptive Cerebral Cortex Segmentation (PACCS) approach is proposed for segmenting brain areas of T1 weighted MRI of human head images. Skull Stripping (SS), Brain Hemisphere Segmentation (BHS) and CCS are the three primary processes in the suggested technique. In step 1, Non-Brain Cells (NBC) is eliminated by a Contour-Based Two-Stage Brain Extraction Method (CTS-BEM). Step 2 details a basic BHS technique for Curve Fitting (CF) detection in MRI human head images. The left and right hemispheres are divided using the discovered Mid-Sagittal Plane (MSP). At last, to enhance a probabilistic CCS structure with adjustments such as prior facts change to remove segmentation bias; the creation of express direct extent training; and a segmentation version based on a regionally various Gaussian Mixture Model- Hidden Markov Random Field – Expectation Maximization (GMM-HMRF-EM). The underlying partial extent categorization and its interplay with found image intensities are represented as a spatially correlated HMRF within the GMM-HMRF-EM method. The proposed GMM-HMRF method estimates HMRF parameters using the EM technique. Finally, the outcomes of segmentation are evaluated in terms of precision, recall, specificity, Jaccard Similarity (JS), and Dice Similarity (DS). The proposed method works better and more consistently than the present locally Varying MRF (LV-MRF), according to the experimental findings obtained by using the suggested GMM-HMRF-EM methodology to 18 individuals' brain images

    The development and application of structural priors for diffuse optical imaging in infants from newborn to two years of age

    Get PDF
    This thesis describes the development and application of age-appropriate structural priors to improve the localisation accuracy of diffuse optical tomography (DOT) approaches in infants aged from birth to two years of age. Knowledge of the target cranial anatomy, known as a structural prior, is required to produce three-dimensional images localising concentration changes to the cortex. A structural prior would ideally be subject-specific, i.e. derived from structural magnetic resonance imaging (MRI) data from each specific subject. Requiring a structural scan from every infant participant, however, is not feasible and undermines many of the benefits of DOT. A review was conducted to catalogue available infant structural MRI data, and selected data was then used to produce structural priors for infants aged 1- to 24-months. Conventional analyses using functional near-infrared spectroscopy (fNIRS) implicitly assume that head size and array position are constant across infants. Using DOT, the validity of assuming these parameters constant in a longitudinal infant cohort was investigated. The results show that this assumption is reasonable at the group-level in infants aged 5- to 12-months but becomes less valid for smaller group sizes. A DOT approach was determined to illicit more subtle effects of activation, particularly for smaller group sizes and expected responses. Using state-of-the-art MRI data from the Developing Human Connectome Project, a database of structural priors of the neonatal head was produced for infants aged pre-term to term-equivalent age. A leave-one-out approach was used to determine how best to find a match between a given infant and a model from the database, and how best to spatially register the model to minimise the anatomical and localisation errors relative to subject-specific anatomy. Model selection based on the 10/20 scalp positions was determined to be the best method (of those based on external features of the head) to minimise these errors
    corecore