2,592 research outputs found

    3D Visual Odometry for Road Vehicles

    Get PDF
    This paper describes a method for estimating the vehicle global position in a network of roads by means of visual odometry. To do so, the ego-motion of the vehicle relative to the road is computed using a stereo-vision system mounted next to the rear view mirror of the car. Feature points are matched between pairs of frames and linked into 3D trajectories. Vehicle motion is estimated using the non-linear, photogrametric approach based on RANSAC. This iterative technique enables the formulation of a robust method that can ignore large numbers of outliers as encountered in real traffic scenes. The resulting method is defined as visual odometry and can be used in conjunction with other sensors, such as GPS, to produce accurate estimates of the vehicle global position. The obvious application of the method is to provide on-board driver assistance in navigation tasks, or to provide a means for autonomously navigating a vehicle. The method has been tested in real traffic conditions without using prior knowledge about the scene nor the vehicle motion. We provide examples of estimated vehicle trajectories using the proposed method and discuss the key issues for further improvement

    Robust visual odometry using uncertainty models

    Get PDF
    In dense, urban environments, GPS by itself cannot be relied on to provide accurate positioning information. Signal reception issues (e.g. occlusion, multi-path effects) often prevent the GPS receiver from getting a positional lock, causing holes in the absolute positioning data. In order to keep assisting the driver, other sensors are required to track the vehicle motion during these periods of GPS disturbance. In this paper, we propose a novel method to use a single on-board consumer-grade camera to estimate the relative vehicle motion. The method is based on the tracking of ground plane features, taking into account the uncertainty on their backprojection as well as the uncertainty on the vehicle motion. A Hough-like parameter space vote is employed to extract motion parameters from the uncertainty models. The method is easy to calibrate and designed to be robust to outliers and bad feature quality. Preliminary testing shows good accuracy and reliability, with a positional estimate within 2 metres for a 400 metre elapsed distance. The effects of inaccurate calibration are examined using artificial datasets, suggesting a self-calibrating system may be possible in future work

    Driven to Distraction: Self-Supervised Distractor Learning for Robust Monocular Visual Odometry in Urban Environments

    Full text link
    We present a self-supervised approach to ignoring "distractors" in camera images for the purposes of robustly estimating vehicle motion in cluttered urban environments. We leverage offline multi-session mapping approaches to automatically generate a per-pixel ephemerality mask and depth map for each input image, which we use to train a deep convolutional network. At run-time we use the predicted ephemerality and depth as an input to a monocular visual odometry (VO) pipeline, using either sparse features or dense photometric matching. Our approach yields metric-scale VO using only a single camera and can recover the correct egomotion even when 90% of the image is obscured by dynamic, independently moving objects. We evaluate our robust VO methods on more than 400km of driving from the Oxford RobotCar Dataset and demonstrate reduced odometry drift and significantly improved egomotion estimation in the presence of large moving vehicles in urban traffic.Comment: International Conference on Robotics and Automation (ICRA), 2018. Video summary: http://youtu.be/ebIrBn_nc-

    Find your Way by Observing the Sun and Other Semantic Cues

    Full text link
    In this paper we present a robust, efficient and affordable approach to self-localization which does not require neither GPS nor knowledge about the appearance of the world. Towards this goal, we utilize freely available cartographic maps and derive a probabilistic model that exploits semantic cues in the form of sun direction, presence of an intersection, road type, speed limit as well as the ego-car trajectory in order to produce very reliable localization results. Our experimental evaluation shows that our approach can localize much faster (in terms of driving time) with less computation and more robustly than competing approaches, which ignore semantic information
    corecore