17,982 research outputs found

    GNeSF: Generalizable Neural Semantic Fields

    Full text link
    3D scene segmentation based on neural implicit representation has emerged recently with the advantage of training only on 2D supervision. However, existing approaches still requires expensive per-scene optimization that prohibits generalization to novel scenes during inference. To circumvent this problem, we introduce a generalizable 3D segmentation framework based on implicit representation. Specifically, our framework takes in multi-view image features and semantic maps as the inputs instead of only spatial information to avoid overfitting to scene-specific geometric and semantic information. We propose a novel soft voting mechanism to aggregate the 2D semantic information from different views for each 3D point. In addition to the image features, view difference information is also encoded in our framework to predict the voting scores. Intuitively, this allows the semantic information from nearby views to contribute more compared to distant ones. Furthermore, a visibility module is also designed to detect and filter out detrimental information from occluded views. Due to the generalizability of our proposed method, we can synthesize semantic maps or conduct 3D semantic segmentation for novel scenes with solely 2D semantic supervision. Experimental results show that our approach achieves comparable performance with scene-specific approaches. More importantly, our approach can even outperform existing strong supervision-based approaches with only 2D annotations. Our source code is available at: https://github.com/HLinChen/GNeSF.Comment: NeurIPS 202

    Learning to reconstruct and understand indoor scenes from sparse views

    Get PDF
    This paper proposes a new method for simultaneous 3D reconstruction and semantic segmentation for indoor scenes. Unlike existing methods that require recording a video using a color camera and/or a depth camera, our method only needs a small number of (e.g., 3~5) color images from uncalibrated sparse views, which significantly simplifies data acquisition and broadens applicable scenarios. To achieve promising 3D reconstruction from sparse views with limited overlap, our method first recovers the depth map and semantic information for each view, and then fuses the depth maps into a 3D scene. To this end, we design an iterative deep architecture, named IterNet, to estimate the depth map and semantic segmentation alternately. To obtain accurate alignment between views with limited overlap, we further propose a joint global and local registration method to reconstruct a 3D scene with semantic information. We also make available a new indoor synthetic dataset, containing photorealistic high-resolution RGB images, accurate depth maps and pixel-level semantic labels for thousands of complex layouts. Experimental results on public datasets and our dataset demonstrate that our method achieves more accurate depth estimation, smaller semantic segmentation errors, and better 3D reconstruction results over state-of-the-art methods

    Implicit Ray-Transformers for Multi-view Remote Sensing Image Segmentation

    Full text link
    The mainstream CNN-based remote sensing (RS) image semantic segmentation approaches typically rely on massive labeled training data. Such a paradigm struggles with the problem of RS multi-view scene segmentation with limited labeled views due to the lack of considering 3D information within the scene. In this paper, we propose ''Implicit Ray-Transformer (IRT)'' based on Implicit Neural Representation (INR), for RS scene semantic segmentation with sparse labels (such as 4-6 labels per 100 images). We explore a new way of introducing multi-view 3D structure priors to the task for accurate and view-consistent semantic segmentation. The proposed method includes a two-stage learning process. In the first stage, we optimize a neural field to encode the color and 3D structure of the remote sensing scene based on multi-view images. In the second stage, we design a Ray Transformer to leverage the relations between the neural field 3D features and 2D texture features for learning better semantic representations. Different from previous methods that only consider 3D prior or 2D features, we incorporate additional 2D texture information and 3D prior by broadcasting CNN features to different point features along the sampled ray. To verify the effectiveness of the proposed method, we construct a challenging dataset containing six synthetic sub-datasets collected from the Carla platform and three real sub-datasets from Google Maps. Experiments show that the proposed method outperforms the CNN-based methods and the state-of-the-art INR-based segmentation methods in quantitative and qualitative metrics

    Temporal Bird’s Eye View for 3D Semantic Segmentation

    Get PDF
    Due to the growing importance of autonomous robots and vehicles, 3D semantic segmentation, a key task of 3D scene understanding, has become more and more important. Despite its sequential nature in real-time scenarios, 3D semantic segmentation is often approached as single frame problem. However, temporal dependencies and information offer a huge potential to improve the predictions. Therefore, we propose a recurrent temporal architecture for 3D semantic segmentation, which exploits temporal information at the input and feature stage, to maximize the temporal benefits. Aggregated point clouds in bird’s eye view increase the information provided to the backbone and temporally fused feature maps exploit temporal dependencies on feature level. The experiments conducted on a challenging and large-scale outdoor dataset show considerable improvements compared to a single frame baseline. The temporal information improve the results for every individual class

    Open-Fusion: Real-time Open-Vocabulary 3D Mapping and Queryable Scene Representation

    Full text link
    Precise 3D environmental mapping is pivotal in robotics. Existing methods often rely on predefined concepts during training or are time-intensive when generating semantic maps. This paper presents Open-Fusion, a groundbreaking approach for real-time open-vocabulary 3D mapping and queryable scene representation using RGB-D data. Open-Fusion harnesses the power of a pre-trained vision-language foundation model (VLFM) for open-set semantic comprehension and employs the Truncated Signed Distance Function (TSDF) for swift 3D scene reconstruction. By leveraging the VLFM, we extract region-based embeddings and their associated confidence maps. These are then integrated with 3D knowledge from TSDF using an enhanced Hungarian-based feature-matching mechanism. Notably, Open-Fusion delivers outstanding annotation-free 3D segmentation for open-vocabulary without necessitating additional 3D training. Benchmark tests on the ScanNet dataset against leading zero-shot methods highlight Open-Fusion's superiority. Furthermore, it seamlessly combines the strengths of region-based VLFM and TSDF, facilitating real-time 3D scene comprehension that includes object concepts and open-world semantics. We encourage the readers to view the demos on our project page: https://uark-aicv.github.io/OpenFusio

    Lifting GIS Maps into Strong Geometric Context for Scene Understanding

    Full text link
    Contextual information can have a substantial impact on the performance of visual tasks such as semantic segmentation, object detection, and geometric estimation. Data stored in Geographic Information Systems (GIS) offers a rich source of contextual information that has been largely untapped by computer vision. We propose to leverage such information for scene understanding by combining GIS resources with large sets of unorganized photographs using Structure from Motion (SfM) techniques. We present a pipeline to quickly generate strong 3D geometric priors from 2D GIS data using SfM models aligned with minimal user input. Given an image resectioned against this model, we generate robust predictions of depth, surface normals, and semantic labels. We show that the precision of the predicted geometry is substantially more accurate other single-image depth estimation methods. We then demonstrate the utility of these contextual constraints for re-scoring pedestrian detections, and use these GIS contextual features alongside object detection score maps to improve a CRF-based semantic segmentation framework, boosting accuracy over baseline models
    • …
    corecore