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Abstract

Due to the growing importance of autonomous robots and vehicles, 3D semantic
segmentation, a key task of 3D scene understanding, has become more and
more important. Despite its sequential nature in real-time scenarios, 3D
semantic segmentation is often approached as single frame problem. However,
temporal dependencies and information offer a huge potential to improve the
predictions. Therefore, we propose a recurrent temporal architecture for 3D
semantic segmentation, which exploits temporal information at the input and
feature stage, to maximize the temporal benefits. Aggregated point clouds
in bird’s eye view increase the information provided to the backbone and
temporally fused feature maps exploit temporal dependencies on feature level.
The experiments conducted on a challenging and large-scale outdoor dataset
show considerable improvements compared to a single frame baseline. The
temporal information improve the results for every individual class.

1 Introduction

Living in a 3D world, one of the key challenges for autonomous robots is the
understanding and interpretation of their 3D environment. While point clouds
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(a) Single frame. (b) Five aggregated frames. (c) Ten aggregated frames.

Figure 1.1: Potential of aggregating consecutive frames in bird’s eye view (BEV), visualized by the
semantic segmentation at the top and the input point cloud colored by height at the bottom. While
the single frame BEV (a) is relatively sparse, the aggregation of five (b) or ten previous frames (c) is
much denser in the occupied areas and therefore adds a lot of information. This can not only be
exploited for the shown input data but also for feature maps of the backbone.

already provide valuable geometric information, 3D semantic segmentation
adds a class label to every individual point and therefore additional semantic
information, which is often seen as key enabler for 3D scene understanding.
To tackle semantic segmentation of 3D point clouds, a proper representation or
architecture is required to solve this task with established deep learning based
approaches. While point-based approaches [21, 27] directly process raw point
clouds, they deploy special architectures and convolution operations to deal with
the unstructured data. To enable conventional convolutions and architectures,
projection-based methods [20, 34] transform the point clouds into a regular
space, e.g. grid.
An important property of real-time environment perception is the sequential
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nature of the recorded sensor data. Temporal relations and information offer a
huge potential to improve 3D semantic segmentation. As the environment does
not change drastically during the recording of two consecutive frames, previous
frames contain valuable information also for the current frame, see Fig. 1.1. The
amount of information naturally diminishes with the temporal distance. For
real-time applications, only past frames can be exploited whereas accessing
future frames is not possible.
In this work, we present an efficient temporal semantic segmentation approach
building upon bird’s eye view (BEV) representation and exploiting temporal
information at two stages. At the input stage, the point cloud of the current frame
and the aggregated past point clouds are fused to increase the point cloud density
and therefore input information. At feature stage, features of the current frame
are fused with features from a temporal memory, which contains aggregated
past information, following the idea of [10]. A feature alignment step in BEV
space allows the reuse of computations from previous frames in both stages,
which enables an efficient recurrent architecture. The benefits of the temporal
fusion are twofold, it improves existing features by fusion, based on aggregated
past information and additionally increases the density of the BEV.
To summarize our contributions, we propose:

• A temporal input memory, which efficiently aggregates input point clouds
in BEV over time to increase information provided to the backbone.

• A temporal feature memory, which efficiently aggregates feature maps
computed by the backbone, to provide aggregated information of the
current frame and past frames to the semantic head, to further improve
the predicted 3D semantic segmentation.

2 Related Work

2.1 3D Semantic Segmentation

As an integral part of 3D scene understanding, 3D semantic segmentation has
drawn a lot of attention over the past years. Enabled by the availability of a
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constantly increasing number of datasets [1, 3, 5, 29] considerable progress
has been achieved. In contrast to images, a preliminary consideration about
the representation is required, to tackle this task with Convolutional Neural
Networks (CNN). Almost all representations proposed so far can be assigned to
one of two main categories.
Point-based methods [14, 16, 21, 22, 27, 28] directly operate on the 3D point
clouds and rely on adapted convolution operations and special network architec-
tures. Projection-based methods transform the point clouds into a regular space,
which enables the application of conventional convolutions and architectures.
Based on the target space, these approaches can further be divided into subcate-
gories, like dense and sparse voxel grids [7, 23, 26], range images [9, 20, 30]
or bird’s eye view (BEV). Zhang et al. [33] build upon a 3D occupancy grid
but treat the z-axis as feature dimension and therefore work with a 2D BEV
representation as input. PolarNet [34] proposes a 2D polar BEV representation,
which is based on a learned PointNet [21] encoding of all points lying inside a
BEV cell. In the last stage of the network the 2D feature maps are expanded
to a 3D polar grid prediction. Motivated by the promising results of PolarNet
and the general potential of the BEV representation for temporal fusion, the
presented approach builds upon the polar BEV representation.

2.2 Temporal Point Cloud Fusion

The majority of the methods proposed so far treat semantic segmentation as
single frame task. Most of the approaches, which exploit temporal information
on feature level aim for 3D object detection [15, 17, 18, 24, 31], only a few
approaches for 3D semantic segmentation exist [6, 8, 10, 25].
Yin et al. [31] tackle temporal object detection in BEV representation with
an RNN-based architecture building upon an extended ConvGRU [2], called
attentive spatio-temporal GRU. It aggregates spatio-temporal information to
exploit temporal dependencies of the point cloud sequences. For the same task,
Huang et al. [15] exploit a sparse 3D voxel representation and propose a LSTM
to fuse sparse features from previous and the current frame. The object detection
head is then applied to the temporally fused features.
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For semantic segmentation, MinkowskiNet [8] uses the fourth dimension to
include previous frames and relies on sparse convolutions to handle the dom-
inating empty cells. One disadvantage is the dependence of the run-time on
the number of past frames considered. SpSequenceNet [25], which relies on
the backbone of [12], and a voxel-based representation, proposes a cross-frame
global attention layer, which highlights features of the current frame based on
past information. Cross-frame local interpolation targets the temporal combina-
tion of local information. However, this approach is only designed to exploit
the last frame. Li et al. [6] exploit temporal information in range image space
for moving object segmentation. Past distance information is transformed into
the current frame and residual images are computed using the difference of the
transformed past distance values and the current values. The residual images are
then used as additional input channels to a CNN. TemporalLidarSeg [10] builds
upon an RNN-based architecture and passes a recursively aggregated temporal
memory through time. An alignment step improves temporal consistency by
compensating the ego motion. The temporal information provided by the
memory considerably improves the semantic segmentation results.
Most of the listed approaches are not capable of exploiting information over
a larger number of past frames due to design [25] or increasing run-time [8,
31]. The presented approach however is able to exploit temporal information
of sequences of arbitrary length in constant time, comparable to TemporalLi-
darSeg [10]. However, instead of using range images like the latter, the presented
approach relies on the BEV representation, which offers additional possibilities
for temporal fusion.

3 Recurrent 3D Semantic Segmentation

The goal of the presented approach is the exploitation of temporal information
in BEV to improve 3D semantic segmentation. Therefore, the architecture is
designed to use past information at two stages, see Fig. 3.1. Starting at the input
stage, the BEV image fed to the backbone does not only contain the point cloud
of the current time step but also the aggregated point clouds of the previous
frames. The second temporal fusion stage is designed to fuse the feature maps
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Figure 3.1: Overview of the recurrent temporal architecture, unrolled for two time steps. Aggregated
input point clouds in BEV are fed to the backbone, which computes intermediate feature maps.
Based on these features a temporal memory containing the aggregated past information is updated.
The final semantic segmentation is computed from these temporally fused features.

computed by the BEV backbone. Therefore, they are used to update a temporal
memory, which contains the aggregated past feature maps. The temporally fused
and aggregated features are then expanded to a 3D polar grid and used for the
final semantic predictions. Both stages efficiently reuse computations from the
previous time steps.

Bird’s Eye View Backbone Like single frame approaches, the presented
architecture has a backbone responsible for computing feature maps of point
clouds represented as BEV images. The differences however are twofold. First,
while still taking only a single BEV image as input, it contains the aggregate point
clouds of the current frame as well as past frames. Secondly, the intermediate
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Figure 3.2: Backbone for computing feature maps for point clouds represented in BEV. The edges
are labeled with the channel size of the feature maps.

feature maps are computed for the temporal memory instead of the semantic
head, see Fig. 3.1.
In general, we build upon the ideas of PolarNet [34] but use a different backbone
and reduce the channels of the PointNet, which encodes the polar input, to 16,
24 and 32. The deployed backbone is based on deep layer aggregation [32] and
additionally motivated by LaserNet [19]. It is build of three feature extractors
(FE) with four, five and six residual blocks [13] and a downsampling ratio of
two. Feature aggregators (FA) apply a transposed convolution to upsample their
lower resolution input and concatenate both inputs, followed by two residual
blocks. The backbone architecture is depicted in Fig. 3.2.

Temporal BEV Alignment In order to realize the mentioned temporal aggre-
gation of BEV images containing input point clouds or deep features, a recursive
transformation of BEV images from the last to the current time step is required.
This allows to reuse already aggregated point clouds or computed features of
past frames, following the idea of [10]. The temporal alignment itself is required
because of the ego motion, which changes the sensor origin.
Generally, an important relation for 3D semantic segmentation based on BEV
images is the mapping from a 3D point p = (x, y, z)T to its corresponding 2D
BEV cell u = (u, v)T , which is described by

P : R3→ [1,H]× [1,W ] ⊂ N2 ⇒ P(p) =

⌊√
x2+y2

r̃

⌋
⌊

atan2(y,x)
α̃

⌋
 =

(
u

v

)
, (3.1)
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with the image resolution (r̃, α̃) and size H ×W . The z-coordinate does not
have any influence on this projection. For the transformation of a BEV image
from the last to the current time step, the cell centers and not the contained
points are considered. Therefore, the cartesian coordinates of every cell’s center
are required and computed following

C : [1,H]× [1,W ] ⊂ N2 → R3 ⇒

C(u) =

r̃ · (u+ 0.5) · cos((v + 0.5) · α̃)
r̃ · (u+ 0.5) · sin((v + 0.5) · α̃)

0

 =

xy
z

 = p.
(3.2)

The cartesian cell centers are then transformed from the last sensor pose Tt−1
to the current sensor pose Tt:

T : R4 → R4 ⇒ T (pt−1) = T −1
t · Tt−1 ·


xt−1
yt−1
zt−1

1

 =


txt−1
tyt−1
tzt−1

1

. (3.3)

The combination of these steps provides the position of the cells of the last BEV
in the BEV of the current time step:

A : [1,H]× [1,W ] ⊂ N2 → [1,H]× [1,W ] ⊂ N2 ⇒
A(ut−1) = (P ◦ T ◦ C) (ut−1) = ( tut−1,

tvt−1)T = tut−1 .
(3.4)

This temporal transformation can then be used to transform the content of the
BEV image at time t− 1 to the BEV image at time t.

Input Alignment and Fusion The temporal transformation presented in the
previous section is used for the first time at the input stage. The input memory
It−1 containing the aggregated point clouds until frame t− 1 is transformed
to the current time step t using the indices computed by Eq. 3.4. Cells of
the memory, which lie outside the current BEV after the transformation are
discarded. The transformed input memory is then fused with the input BEV
Bt, containing the current point cloud, see Fig. 3.1. The fusion is done by
channel-wise maximum, following the PointNet encoding, which performs a
channel-wise maximum over the feature vectors of all points lying inside one
cell.
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Feature Alignment and Fusion Following the same temporal transformation,
the temporal memory Ht−1 at feature level, which contains the aggregate output
features of the past frames up to t− 1, is transformed to the current frame. The
features Ft of the current input, computed by the backbone, are then used to
update the transformed temporal memory, following the residual update strategy
presented in [10].

4 Experiments

4.1 SemanticKITTI

The experiments for the presented approach are conducted on the large-scale
and challenging SemanticKITTI dataset [3, 11]. The single scan benchmark
provides point-wise annotations of 19 classes for 360◦-Velodyne-HDL-64E
scans. Over 43,000 scans are divided into 22 sequences of varying length and
recorded at 10 Hz. The first half of the sequences are provided with labels for
training and validation while the test split is defined by the second half, with no
labels published. We follow the official recommendation and use sequence 08
for validation and report the mean Intersection-over-Union (mIoU) as evaluation
metric.

4.2 Implementation Details

The approach is implemented in PyTorch and trained in mixed precision mode
on four Tesla V100 GPUs using distributed data parallel training.
Cross entropy and Lovász loss [4] are optimized equally weighted by Adam for
75k iterations. To prevent overfitting, weight decay of 0.0005 is applied as well
as extensive data augmentation. Before being projected, the point clouds are
randomly flipped along x- and y-axis with a probability of 0.5, randomly rotated
around the z-axis and randomly cropped to a 180◦ crop. Additionally, objects
of underrepresented classes, like bicycle or motorcycle, are randomly pasted
into the point clouds. These objects are extracted upfront from the training set
and placed on corresponding ground classes like road or sidewalk.
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Backbone TIM TFM mIoU (%)

X 58.0
X X 58.7
X X 64.5
X X X 64.7

Table 4.1: Improvements on the validation set achieved by the temporal input memory (TIM) and
the temporal feature memory (TFM), compared to the single frame backbone.

Initially, the backbone is trained on single frames with a batch size of 16 and
learning rate of 0.001, which decays by e−5·10−5·i. The BEV grid has a resolution
of [480, 360, 32]. Using the pretrained backbone, the overall architecture is
trained with the same batch size and learning rate and follows the temporal
training proposed by [10].

4.3 Temporal BEV Segmentation

In order to evaluate the benefits of the presented recurrent temporal approach,
the improvements achieved by the individual components are investigated, with
the results shown in Table 4.1. The BEV backbone, which is also considered as
baseline, achieves a mIoU of 58.0%. Temporal fusion at the input stage with the
presented temporal input memory (TIM) improves the results to 58.7%. The
fusion on feature stage has an even greater impact and considerably improves
the segmentation results to a mIoU of 64.5%. Noticeably, temporal fusion of
deep feature maps computed by a CNN backbone exploits temporal information
and dependencies more effective than an early fusion of the input point clouds.
Nevertheless, combining both stages achieves the best results and obtains an
overall improvement of +6.7% in terms of mIoU.
For a more detailed analysis, the results of the individual classes are investigated
and compared to the baseline, depicted in Table 4.2. Static classes are constantly
improved, like fence with +11.2%, and even classes with already high values
benefit from temporal information. In addition, dynamic classes are considerably
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Backbone 92.2 77.9 43.3 1.2 89.0 47.0 85.6 60.0 72.7 57.7 42.9
TemporalBEV 93.6 79.0 43.5 1.4 91.1 58.2 86.9 65.2 74.1 60.2 46.9

Table 4.2: Results for the individual classes on the validation set of SemanticKITTI. The temporal
approach outperforms the single frame backbone for every class. Values are given as IoU (%).

improved as well, especially motorcycle, other-vehicle, person and motorcyclist.
This requires a deeper investigation, because movement of dynamic objects
can cause alignment errors and complicates the correct temporal association.
However, only fast movement causes noticeable errors, so solely a few fast
moving dynamic objects do not benefit, the majority of the dynamic objects
significantly benefits from the temporal information.

5 Conclusion

In this work, we presented an efficient recurrent temporal architecture for
semantic segmentation of 3D point clouds relying on BEV representation.
Temporal information and dependencies are exploited twice, at the input as well
as feature stage. Point clouds of the last frames are aggregated to improve the
information provided to the backbone. The feature maps of the backbone are
then used to update a temporal feature memory, which contains the aggregated
and fused features from the current frame and the past. Based on these enhanced
features an improved semantic segmentation is predicted. The evaluation showed
a considerable improvement achieved by the usage of temporal information and
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as a result the presented approach outperforms the single frame baseline by a
large margin and also for every individual class.
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