13,517 research outputs found

    Case Notes

    Get PDF

    Holonomy spin foam models: Asymptotic geometry of the partition function

    Full text link
    We study the asymptotic geometry of the spin foam partition function for a large class of models, including the models of Barrett and Crane, Engle, Pereira, Rovelli and Livine, and, Freidel and Krasnov. The asymptotics is taken with respect to the boundary spins only, no assumption of large spins is made in the interior. We give a sufficient criterion for the existence of the partition function. We find that geometric boundary data is suppressed unless its interior continuation satisfies certain accidental curvature constraints. This means in particular that most Regge manifolds are suppressed in the asymptotic regime. We discuss this explicitly for the case of the configurations arising in the 3-3 Pachner move. We identify the origin of these accidental curvature constraints as an incorrect twisting of the face amplitude upon introduction of the Immirzi parameter and propose a way to resolve this problem, albeit at the price of losing the connection to the SU(2) boundary Hilbert space. The key methodological innovation that enables these results is the introduction of the notion of wave front sets, and the adaptation of tools for their study from micro local analysis to the case of spin foam partition functions.Comment: 63 pages, 5 figures v2: Reference correcte

    The Evolution of Stop-motion Animation Technique Through 120 Years of Technological Innovations

    Get PDF
    Stop-motion animation history has been put on paper by several scholars and practitioners who tried to organize 120 years of technological innovations and material experiments dealing with a huge literature. Bruce Holman (1975), Neil Pettigrew (1999), Ken Priebe (2010), Stefano Bessoni (2014), and more recently Adrián Encinas Salamanca (2017), provided the most detailed even tough partial attempts of systematization, and designed historical reconstructions by considering specific periods of time, film lengths or the use of stop-motion as special effect rather than an animation technique. This article provides another partial historical reconstruction of the evolution of stop-motion and outlines the main events that occurred in the development of this technique, following criteria based on the innovations in the technology of materials and manufacturing processes that have influenced the fabrication of puppets until the present day. The systematization follows a chronological order and takes into account events that changed the technique of a puppets’ manufacturing process as a consequence of the use of either new fabrication processes or materials. Starting from the accident that made the French film-pioneer Georges Méliès discover the trick of the replacement technique at the end of the nineteenth century, the reconstruction goes through 120 years of experiments and films. “Build up” puppets fabricated by the Russian puppet animator Ladislaw Starevicz with insect exoskeletons, the use of clay puppets and the innovations introduced by LAIKA entertainment in the last decade such as Stereoscopic photography and the 3D computer printed replacement pieces, and then the increasing influence of digital technologies in the process of puppet fabrication are some of the main considered events. Technology transfers, new materials’ features, innovations in the way of animating puppets, are the main aspects through which this historical analysis approaches the previously mentioned events. This short analysis is supposed to remind and demonstrate that stop-motion animation is an interdisciplinary occasion of both artistic expression and technological experimentation, and that its evolution and aesthetic is related to cultural, geographical and technological issues. Lastly, if the technology of materials and processes is a constantly evolving field, what future can be expected for this cinematographic technique? The article ends with this open question and without providing an answer it implicitly states the role of stop-motion as a driving force for innovations that come from other fields and are incentivized by the needs of this specific sector

    Computational periscopy with an ordinary digital camera

    Full text link
    Computing the amounts of light arriving from different directions enables a diffusely reflecting surface to play the part of a mirror in a periscope—that is, perform non-line-of-sight imaging around an obstruction. Because computational periscopy has so far depended on light-travel distances being proportional to the times of flight, it has mostly been performed with expensive, specialized ultrafast optical systems^1,2,3,4,5,6,7,8,9,10,11,12. Here we introduce a two-dimensional computational periscopy technique that requires only a single photograph captured with an ordinary digital camera. Our technique recovers the position of an opaque object and the scene behind (but not completely obscured by) the object, when both the object and scene are outside the line of sight of the camera, without requiring controlled or time-varying illumination. Such recovery is based on the visible penumbra of the opaque object having a linear dependence on the hidden scene that can be modelled through ray optics. Non-line-of-sight imaging using inexpensive, ubiquitous equipment may have considerable value in monitoring hazardous environments, navigation and detecting hidden adversaries.We thank F. Durand, W. T. Freeman, Y. Ma, J. Rapp, J. H. Shapiro, A. Torralba, F. N. C. Wong and G. W. Wornell for discussions. This work was supported by the Defense Advanced Research Projects Agency (DARPA) REVEAL Program contract number HR0011-16-C-0030. (HR0011-16-C-0030 - Defense Advanced Research Projects Agency (DARPA) REVEAL Program)Accepted manuscrip
    • …
    corecore