5 research outputs found

    Performance Analysis between Basic Block Matching and Dynamic Programming of Stereo Matching Algorithm

    Get PDF
    One of the most important key steps of stereo vision algorithms is the disparity map implementation, where it generally utilized to decorrelate data and recover 3D scene framework of stereo image pairs. However, less accuracy of attaining the disparity map is one of the challenging problems on stereo vision approach. Thus, various methods of stereo matching algorithms have been developed and widely investigated for implementing the disparity map of stereo image pairs including the Dynamic Programming (DP) and the Basic Block Matching (BBM) methods. This paper mainly presents an evaluation between the Dynamic Programming (DP) and the Basic Block Matching (BBM) methods of stereo matching algorithms in term of disparity map accuracy, noise enhancement, and smoothness. Where the Basic Block Matching (BBM) is using the Sum of Absolute Difference (SAD) method in this research as a basic algorithm to determine the correspondence points between the target and reference images. In contrast, Dynamic Programming (DP) has been used as a global optimization approach. Besides, there will be a performance analysis including graphs results from both methods presented in this paper, which can show that both methods can be used on many stereo vision applications

    3D Reconstruction by Fusioning Shadow and Silhouette Information

    No full text

    Shaped-based IMU/Camera Tightly Coupled Object-level SLAM using Rao-Blackwellized Particle Filtering

    Get PDF
    Simultaneous Localization and Mapping (SLAM) is a decades-old problem. The classical solution to this problem utilizes entities such as feature points that cannot facilitate the interactions between a robot and its environment (e.g., grabbing objects). Recent advances in deep learning have paved the way to accurately detect objects in the image under various illumination conditions and occlusions. This led to the emergence of object-level solutions to the SLAM problem. Current object-level methods depend on an initial solution using classical approaches and assume that errors are Gaussian. This research develops a standalone solution to object-level SLAM that integrates the data from a monocular camera and an IMU (available in low-end devices) using Rao Blackwellized Particle Filter (RBPF). RBPF does not assume Gaussian distribution for the error; thus, it can handle a variety of scenarios (such as when a symmetrical object with pose ambiguities is encountered). The developed method utilizes shape instead of texture; therefore, texture-less objects can be incorporated into the solution. In the particle weighing process, a new method is developed that utilizes the Intersection over the Union (IoU) area of the observed and projected boundaries of the object that does not require point-to-point correspondence. Thus, it is not prone to false data correspondences. Landmark initialization is another important challenge for object-level SLAM. In the state-of-the-art delayed initialization, the trajectory estimation only relies on the motion model provided by IMU mechanization (during the initialization), leading to large errors. In this thesis, two novel undelayed initializations are developed. One relies only on a monocular camera and IMU, and the other utilizes an ultrasonic rangefinder as well. The developed object-level SLAM is tested using wheeled robots and handheld devices, and an error (in the position) of 4.1 to 13.1 cm (0.005 to 0.028 of the total path length) has been obtained through extensive experiments using only a single object. These experiments are conducted in different indoor environments under different conditions (e.g. illumination). Further, it is shown that undelayed initialization using an ultrasonic sensor can reduce the algorithm's runtime by half
    corecore