
University of Calgary

PRISM Repository https://prism.ucalgary.ca

The Vault Open Theses and Dissertations

2023-10-04

Shaped-based IMU/Camera Tightly

Coupled Object-level SLAM using

Rao-Blackwellized Particle Filtering

Ilyar Asl Sabbaghian Hokmabadi

Asl Sabbaghian Hokmabadi, I. (2023). Shaped-based IMU/camera tightly coupled object-level

SLAM using Rao-Blackwellized particle filtering (Doctoral thesis, University of Calgary, Calgary,

Canada). Retrieved from https://prism.ucalgary.ca.

https://hdl.handle.net/1880/117351

Downloaded from PRISM Repository, University of Calgary

UNIVERSITY OF CALGARY

Shaped-based IMU/Camera Tightly Coupled Object-level SLAM using Rao-Blackwellized Particle

Filtering

by

Ilyar Asl Sabbaghian Hokmabadi

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

GRADUATE PROGRAM IN GEOMATICS ENGINEERING

CALGARY, ALBERTA

OCTOBER, 2023

© Ilyar Asl Sabbaghian Hokmabadi 2023

ii

Abstract

Simultaneous Localization and Mapping (SLAM) is a decades-old problem. The classical solution

to this problem utilizes entities such as feature points that cannot facilitate the interactions between a robot

and its environment (e.g., grabbing objects). Recent advances in deep learning have paved the way to

accurately detect objects in the image under various illumination conditions and occlusions. This led to

the emergence of object-level solutions to the SLAM problem.

Current object-level methods depend on an initial solution using classical approaches and assume

that errors are Gaussian. This research develops a standalone solution to object-level SLAM that integrates

the data from a monocular camera and an IMU (available in low-end devices) using Rao Blackwellized

Particle Filter (RBPF). RBPF does not assume Gaussian distribution for the error; thus, it can handle a

variety of scenarios (such as when a symmetrical object with pose ambiguities is encountered). The

developed method utilizes shape instead of texture; therefore, texture-less objects can be incorporated into

the solution. In the particle weighing process, a new method is developed that utilizes the Intersection

over the Union (IoU) area of the observed and projected boundaries of the object that does not require

point-to-point correspondence. Thus, it is not prone to false data correspondences. Landmark initialization

is another important challenge for object-level SLAM. In the state-of-the-art delayed initialization, the

trajectory estimation only relies on the motion model provided by IMU mechanization (during the

initialization), leading to large errors. In this thesis, two novel undelayed initializations are developed.

One relies only on a monocular camera and IMU, and the other utilizes an ultrasonic rangefinder as well.

The developed object-level SLAM is tested using wheeled robots and handheld devices, and an

error (in the position) of 4.1 to 13.1 cm (0.005 to 0.028 of the total path length) has been obtained through

extensive experiments using only a single object. These experiments are conducted in different indoor

iii

environments under different conditions (e.g. illumination). Further, it is shown that undelayed

initialization using an ultrasonic sensor can reduce the algorithm's runtime by half.

iv

Acknowledgements

This thesis is the fruit of many discussions with many people. While it is very difficult to quantify

the individual contributions to developed ideas in this thesis, I would like to acknowledge the people who

had the most significant impact on shaping my journey during this research.

I would like to express my thanks, first and foremost, to my supervisor, Dr. El-Sheimy. Without

his guidance throughout this time, I would never be able to accomplish what I had in this thesis. A

paragraph or two cannot suffice to contain how much I am indebted to his patience with me through this

time.

Next, I would like to thank my cousin, Sina Taghvakish. During my Ph.D. and especially during

the pandemic era, I had many conservations with him regarding my thesis. It was through these iterative

rounds of discussion that some of the trajectories I took in this research became clear to me. I would only

hope one day I will be able to return the favour he has provided me, if not in whole but in parts.

I want to thank my dear Dulcie Foofat. Her company was perhaps not the most technical, but it

helped me grow as a person during the last three years. She also helped me a lot in editing this thesis.

Perhaps most importantly, she helped me understand that I should be able to explain my ideas in simple

terms to the general audience, no matter how difficult they might be.

I would like to thank my friend Puya Latafat. He has extended his kind helping hand many times

during this period. I want to thank him for answering all my questions about writing the thesis, copyright

and other stuff. Alas, I am also regretful for not listening to him in some respects, which I should have.

I would like to thank the staff in the library of the University of Calgary. Throughout time, winter

or summer, night or day, I have been a resident of their place. I only hope that this place stays as helpful

as it is now for the students in the future with their research.

v

I would like to thank all my other friends in MMSS, including my dear colleague, friend and co-

author Mengchi Ai.

vi

Dedication

“I dedicate this dissertation to friends and family.”

vii

Table of Contents

Abstract ... ii

Acknowledgements .. iv

Dedication .. vi

Table of Contents .. vii

List of Tables .. xii

List of Figures and Illustrations .. xv

List of Abberivationsl .. xxi

Chapter 1: Introduction ... 1

1.1 Object-level Simultaneous Localization and Mapping (SLAM) .. 1

1.2 Current Gap and Research Motivations (Overview) .. 3

1.2.1 Object-level Mapping and Localization Frameworks.. 4

1.2.2 Object Segmentation/detection .. 6

1.2.3 Object Representation .. 6

1.2.4 Object Pose Estimation .. 7

1.3 Data Fusion Towards Object-level SLAM ... 8

1.4 Summary of the Objectives ... 11

1.5 Summary of the Contributions .. 13

1.5.1 Major Contributions ... 13

1.5.2.Minor Contributions... 14

viii

1.6 Chapter Organization .. 15

Chapter 2: A Review of the State of the Object-level SLAM .. 18

2.1 Overview ... 18

2.2 Object Detection/Segmentation .. 18

2.3 Object Representation ... 24

2.4 Object Pose Estimation ... 27

2.5 Object-level Localization and Mapping Framework .. 28

2.6 Data Fusion: Towards Motion Prediction and Object Initialization 34

2.7 Chapter Summary ... 38

Chapter 3: Tightly/Loosely Coupled Object-level RBPF-SLAM .. 43

3.1 Overview ... 43

3.2 Object-level RBPF-SLAM.. 44

3.3 Loosely Coupled IMU/Monocular Camera Object-level RBPF SLAM............................. 47

3.4 Tightly Coupled IMU/Monocular Camera Object-level RBPF SLAM 54

3.5 Wheel Odometry/Monocular Camera Object-level SLAM .. 58

3.6 Object-level RBPF-SLAM with Ultrasonic Rangefinder ... 63

3.7 Challenges Related to the Observation Likelihood .. 66

3.8 Chapter Summary .. 70

Chapter 4: Object Segmentation, Representation, and Pose Estimation .. 71

4.1 Overview ... 71

ix

4.2 Object Segmentation Using Synthesized Images ... 73

4.3 Object Representation Using Shape-Prior Set .. 76

4.3.1 Developed Shape-prior Set .. 77

4.3.2 B-splines .. 78

4.4 Finding Best-Matching Shapes (coarse pose estimation) ... 82

4.5 Pose Estimation of Symmetrical Objects .. 86

4.6 Pose Refinement ... 87

4.7 Chapter Summary ... 90

Chapter 5: Extrinsic(Boresight and Lever Arm) Calibration of Sensors .. 91

5.1 Overview ... 91

5.2 Floor-Segmentation Using Deep Learning ... 92

5.3 IMU/Monocular Camera Boresight Calibration ... 96

5.4 Monocular Camera andUltrasonic Sensor Boresight and Lever Arm Calibration 101

5.5 Summary of Chapter ... 108

Chapter 6: Experimental Setup ... 110

6.1 Overview ... 110

6.2 The Designed Differential-drive Robot .. 111

6.3 The Designed Handheld Device ... 116

6.4 Infrared-based Bearing-only Beacons... 118

6.5 Ground Truth for Boresight Calibration ... 122

x

6.6 Reference Solution for Pose Estimation ... 124

6.7 Camera Calibration ... 128

6.8 Deep Neural Network Training .. 130

Chapter 7: Results ... 132

7.1 Overview ... 132

7.2 Precision and Recall of the Object Segmentation ... 133

7.3 Qualitative and Quantitative Analysis of Coarse Pose Estimation 137

7.4 Quantitative and Qualitative Analysis of Refined Pose Estimation 141

7.5 Assessment of the Object-level Solution Using the Differential-drive Robot (single object)

... 145

7.6 Assessment of the Object-level Solution Using the Handheld Device (for a single object)

... 160

7.7 Assessment of the Tightly Coupled Object-Level SLAM with Ultrasonic Rangefinder . 169

7.8 Assessment of the Tightly Coupled Object-level SLAM (for multiple objects) 171

7.9 Boresight Calibration of Monocular Camera and IMU .. 173

7.10 Extrinsic Calibration of a Monocular Camera and an Ultrasonic Rangefinder 180

Chapter 8: Summary and Future Work ... 183

8.1 Overview of the Developed Object-level SLAM ... 183

8.2 Summary of the Main Results (Object-level Framework) .. 184

8.3 Summary of the Results of Object-segmentation, Representation and Pose Estimation. . 188

xi

8.4 Summary of the Results of Extrinsic Calibration ... 190

8.5 Future Work .. 191

References ...

Appendices ..

Appendix A: Discretization of State-space Equations ..

Appendix B: Infrared Beacons..

B.1 Overview of the Beacon System ..

B.2 Methodology ..

xii

List of Tables

Table 2.1: Summary of the methods that can be used for object detection and segmentation. 22

Table 2.2: Summary of different methods of generating training data for deep learning networks. 23

Table 2.3: This table summarizes the advantages and disadvantages of object representation methods. 26

Table 2.4: Summary of the components and the framework used in different state-of-the-art object-level

solutions. ... 31

Table 2.5: Details of different state-of-the-art object-level solutions. .. 32

Table 4.1: Domain randomization parameters .. 74

Table 6.1: The specifications of the sensors and calibrations used in the differential wheel robot. 114

Table 6.2: The specifications of the sensors and calibrations used in the handheld device. 117

Table 6.3: The lowest error is achieved when the geometry is more isotropic in all directions

(approximately 3 cm). However, the error increases to 11 cm for all the tests. 121

Table 6.4 Summary of the estimated intrinsic camera calibration parameters 130

Table 6.5. Summary of the hyperparameters used to train DNN... 131

Table 7.1: The precision of DNNs using different numbers of training images, image resolution and

more. ... 136

Table 7.2: The orientation and translation errors of the developed pose estimation. 138

Table 7.3: Orientation error between the developed and Zhang’s pose estimation. 139

Table 7.4: Reprojection error of the developed pose refinement. ... 143

Table 7.5: IoU after pose refinement. ... 145

Table 7.6: Orientation correction after pose refinement. .. 145

Table 7.7: The error in the position of the tightly and loosely coupled solutions 148

xiii

Table 7.8: The error ratio in the position to the path length of the tightly and loosely coupled solutions.

... 148

Table 7.9: IoU of the back-projected 3D CAD model and the segmented object. 149

Table 7.10: failure-rate (the smaller, the better) ... 149

Table 7.11: This table illustrates the mean, IoU elapsed time for the experiments for different numbers

of particles. .. 151

Table 7.12: Error in the estimated position of the tightly and loosely coupled methods 155

Table 7.13: IoU (no units) of the tightly/loosely coupled methods .. 156

Table 7.14: The failure rate (no units)of the tightly/loosely coupled methods 156

Table 7.15: The results for different numbers of particles .. 159

Table 7.16: The error (cm) in the estimated position of the tightly and loosely coupled using the

handheld device .. 162

Table 7.17: The error (ratio) in the estimated position of the tightly and loosely coupled using the

handheld device .. 162

Table 7.18: The error (cm) in the estimated position of tightly coupled using the handheld device 163

Table 7.19: The error (ratio) in the estimated position of tightly coupled using the handheld device ... 163

Table 7.20: The IoU and the failure rate of tightly and loosely coupled using the handheld device 164

Table 7.21: Summary of the performance of the tightly coupled method using different numbers of

particles. .. 168

Table 7.22: Comparison of the tightly coupled method with (w) and without (w/o) ultrasonic

rangefinder. ... 171

Table 7.23: The results are obtained using two objects. Based on this table, no significant improvement

or degradation of the accuracy is observed using two objects. ... 173

xiv

Table 7.24: The success rate of stages 1 and 2 and the accuracy of VVP detection 175

Table 7.25: The error in the orientation angles for the boresight calibration of IMU and camera

(handheld device) .. 176

Table 7.26: The obtained errors in the estimated orientation parameters using only a subset of the

images. .. 177

Table 7.27: The error of the orientation angles for the boresight calibration of IMU and camera

(smartphone) ... 179

Table 7.28: The error in the orientation angles of the boresight calibration of the ultrasonic rangefinder

and camera .. 181

xv

List of Figures and Illustrations

Figure 1.1: In this figure, two platforms that should solve the SLAM problem are shown. Figure A

shows a handheld portable mapping device courtesy of (CSIRO research group, January 2013, Zebedee

Fort Lytton, accessed May 2023). Figure B shows a robot designed to map indoor environments (image

reference: (Chen et al. 2020)). .. 2

Figure 1.2: Solutions to the SLAM can be categorized into three major groups: Figure A shows sparse-

SLAM (image reference:(Mur-Artal & Tardós, 2017)) where features (shown in green) are identified

sparsely. Figure B shows dense SLAM (image reference: (Newcombe et al., 2011)) where the

environment is reconstructed densely. Figure C shows object level-SLAM (image reference: (Bowman

et al., 2017)) where building the map of the environment and estimating the robot’s trajectory is

achieved with the help of objects such as doors and chairs. ... 2

Figure 1.3: The initialization is a challenging task due to the scale’s ambiguity using a monocular

camera. .. 11

Figure 1.4: An overview of the developed tightly and loosely coupled object-level SLAM. 15

Figure 2.1: Illustration of implicit and explicit shape representation. .. 26

Figure 2.2: Timeline of the DBN-based solutions to the SLAM problem.. 33

Figure 2.3: Schematic comparison of delayed and undelayed initializations. .. 37

Figure 2.4: Some samples taken from the shape-prior set for four objects .. 41

Figure 2.5: Samples of the developed contour-based pose estimation. This method can estimate

ambiguous poses. .. 42

Figure 3.1: Illustration of the Dynamic Bayesian Network of the SLAM problem 44

Figure 3.2: The flowchart of a RBPF algorithm. .. 46

Figure 3.3: Flowchart of the proposed IMU/monocular loosely-coupled object-level SLAM 48

xvi

Figure 3.4: Flowchart of IMU mechanization in an inertial frame ... 49

Figure 3.5: Illustration of the estimated and observed object pose error in loosely coupled object-level

SLAM. .. 54

Figure 3.6: Particles are weighted using the distance between the predicted and observed contour of the

object. .. 55

Figure 3.7: Flowchart of the proposed IMU/monocular tightly-coupled object-level SLAM 56

Figure 3.8: Flowchart of the process particle weighting in tightly-coupled object-level SLAM 58

Figure 3.9: Illustration for calculating velocities in the direction of motion of a fixed wheel 59

Figure 3.10: Illustration of the parameters of the fixed wheels of a different wheel robot. 61

Figure 3.11: Illustration of uncertainty region of the ultrasonic rangefinder reading 65

Figure 3.12: The flowchart of accepting/rejecting a distance measurement received from the ultrasonic

rangefinder .. 66

Figure 3.13: A comparison of possible likelihood and the proposal distribution 67

Figure 3.14. Illustration of Challenge I with the observation likelihood .. 67

Figure 3.15: Illustration of Challenge II and Challenge III with the observation likelihood 68

Figure 3.16: Illustration of Challenge IV with the observation likelihood ... 70

Figure 4.1: Overview of the chapter. The topics discussed in this chapter are shown in light and dark

blue. ... 72

Figure 4.2: Overview of the procedure to build synthetic images. ... 74

Figure 4.3 : U-Net architecture. .. 75

Figure 4.4: Examples of segmented object masks generated with the help of the trained DNN.............. 75

Figure 4.5: Shape-prior sets are generated using object-centric viewpoints. ... 77

xvii

Figure 4.6: B-spline basis of different order and knot multiplicity. The top row shows a B-spline basis of

order 4 and a knot multiplicity of 2. The bottom row shows the B-spline basis of order 4 and the knot

multiplicity of 3... 79

Figure 4.7: Illustration of the fitted B-spline. Figure (a) shows the B-spline fit to the object’s boundary

in the image. Figure (b) shows a closer look at the fitted boundary. .. 80

Figure 4.8: Illustration of matching a query shape to a shape-prior. .. 83

Figure 4.9: Pseudocode of the developed fast-matching algorithm. ... 85

Figure 4.10: Illustration of pose estimation of a symmetrical object. .. 86

Figure 4.11: A set of 2D-to-3D correspondences are required to solve a PnP problem. 87

Figure 4.12: Establishing 2D-to-2D correspondence using coarse pose estimation 89

Figure 4.13: The flowchart of the developed pose refinement ... 89

Figure 5.1: The floor(or road) segmentation in different environments with the help of the developed

approach. ... 94

Figure 5.2: Precision versus recall plot of the trained floor segmentation for different data sets 95

Figure 5.3: Gravity vectors in the indoor environment can be used to find the boresight calibration

parameters of an IMU and a camera. .. 97

Figure 5.4: The flowchart of the proposed boresight calibration method ... 98

Figure 5.5: Figure (a) illustrates the detection of HVP. Figure (b) shows line segments (shown in green)

that can correspond to vertical structures. ... 99

Figure 5.6: Figure (a) shows an image of the environment the robot builds the map. Figure (b) shows the

point cloud obtained using an ultrasonic rangefinder. Figure (c) shows the line-segment map. Figure (d)

shows the occupancy grid map. .. 103

Figure 5.7: Illustration of ray intersection with the floor segment ... 104

xviii

Figure 5.8: This figure shows the correspondence between the line segment detected using an ultrasonic

sensor and the back-projected pixels on the image. .. 106

Figure 5.9: Error functions with respect to the 𝜑 and 𝜅 parameters are non-convex, with only a local

convexity ... 107

Figure 5.10: The flowchart of the developed method. .. 108

Figure 6.1: The CAD model of the designed indoor robot. The designed platform includes many sensors,

such as an ultrasonic rangefinder (seen in the close view on the right), a monocular camera and an

infrared receiver. ... 112

Figure 6.2: The designed ultrasonic rangefinder and an example of a point cloud generated by this

platform. .. 113

Figure 6.3: In this figure, the communication between the processors and microcontrollers, as well as the

communication between the operator and robot, is shown. The robot also receives signals from the

beacons to measure the ground-truth position and orientation. .. 115

Figure 6.4: The designed handheld device includes an IMU, a monocular camera and an ultrasonic

rangefinder. ... 117

Figure 6.5: Overview of the architecture of the designed handheld device. ... 118

Figure 6.6: A depiction of the transmitter modules of the beacon-based positioning systems. 119

Figure 6.7: The procedure of estimating position using observed angles from the robot to each beacon

... 120

Figure 6.8: The estimated location and the observation likelihood of the robot using three beacons. The

geometry of the location of the beacons and the robot affects the uncertainty. 121

Figure 6.9: The uncertainty of the estimated positions is due to the geometry. 121

Figure 6.10: The devices were used to test the IMU/monocular camera boresight calibration.............. 122

xix

Figure 6.11: The process of estimating ground truth boresight calibration parameters. 124

Figure 6.12: The projection of the points in the world frame to the camera’s frame 126

Figure 6.13: The estimated poses of the camera ... 126

Figure 6.14: The 3D reconstruction of the object of the interest .. 128

Figure 7.1: Illustration of some of the environments for the experiments. ... 134

Figure 7.2: The precision versus recall plot of four DNNs with the best performance. 136

Figure 7.3: Orientation error for each image .. 138

Figure 7.4: Qualitative comparison of the developed and Zhang’s pose estimations. The developed

method is shown in (a), and Zhang’s method is shown in (b). .. 140

Figure 7.5: Qualitative assessment of the developed pose estimation technique. 140

Figure 7.6: Comparison of reprojection and IoU values. .. 142

Figure 7.7: Illustration of coarse and refined poses .. 142

Figure 7.8: Illustration of reprojection error for each image in four tests. ... 144

Figure 7.9: Particles and uncertainty ellipsoids of the tightly coupled solution. 152

Figure 7.10: Particles and uncertainty ellipsoids of the loosely coupled solution. 153

Figure 7.11: Comparison of a hypothetical set of particles and the fitted ellipses schematically 153

Figure 7.12: The best and the uncertainty estimates of the robot’s position using the beacons 154

Figure 7.13: Comparison of the estimated positions in the x and y directions. 156

Figure 7.14: Particles and uncertainty ellipsoid of the trajectory for tightly coupled method. 157

Figure 7.15: Particles and uncertainty ellipsoid of the trajectory for loosely coupled method. 158

Figure 7.16: IoU for a range of distortions added to the wheel odometry. ... 160

Figure 7.17: The estimated trajectory and the error ellipsoids of Test 21. ... 165

Figure 7.18: The estimated trajectory and the error ellipsoids for Test 24. .. 166

xx

Figure 7.19: The estimated trajectory and the error ellipsoids. .. 167

Figure 7.20: Precision(a) and recall (b) using different thresholds and beam angle values. 170

Figure 7.21: The four scenes where the boresight calibration is performed. .. 174

Figure 7.22: Boxplot of the measured error in each scene ... 177

Figure 7.23: The error in the orientation parameters using different numbers of the images. 178

Figure 7.24: The estimated parameters and their uncertainty for different numbers of images. 179

Figure 7.25: Qualitative analysis of the errors in the extrinsic calibration of the ultrasonic rangefinder

and the monocular camera. ... 182

Figure B.9.1: The 3D CAD model (left) and a picture of the robot(right). The receiver component is

shown inside the circle. ... 22

Figure B.9.2: The building components of the IBOB receiver. .. 23

Figure B.9.3: This flowchart shows how the receiver records a binary array corresponding to orientation

observations. ... 24

Figure B.9.4: Schematic of the observed angles and how it is related to the robot’s pose. 25

Figure B.9.5: This figure demonstrates the estimated 𝑒 for each cell in a map using observations from

two beacons. .. 27

Figure B.9.6: A comparison of the approximate observation likelihood (a) and the likelihood (b) 29

Figure B.9.7: This figure illustrates the estimated position of the robot using the developed likelihood 31

Figure B.9.8: A schematic illustrating the ambiguity of the robot’s position along the line connecting the

two beacons. .. 31

Figure B.9.9: This figure illustrates the position estimation using MLE with the help of a developed

function using three beacons. .. 32

xxi

List of Abbreviations

Abbreviation Definition

2D Two dimensional

3D Three dimensional

6DoF Six Degrees of Freedom

CAD Computer-Aided Design

cm Centimeter

CMOS Complementary Metal-Oxide Semiconductor

DBN Dynamic Bayesian Network

DL Deep Learning

DNN Deep Neural Network

EKF Extended Kalman Filter

EV Expected Value

FG Factor Graph

GBA Global Bundle Adjustment

GNSS Global Navigation Satellite Systems

HTTPS Hypertext Transfer Protocol Secure

HVP Horizontal Vanishing Point

Hz Hertz

IBOB Infrared Bearing-Only Beacons

IC Integrated Circuit

ICP Iterative Closest Point

IMU Inertial Measurement Unit

xxii

IoU Intersection over Union

IR Infrared

k Kilo

Kd-tree K-dimensional tree

KF Kalman Filter

LBA Local Bundle Adjustment

LED Light Emitting Diode

LiDAR Light Detection and Ranging

LoS Line of Sight

MAP Maximum A Posteriori

MEMS Micro-Electrical Mechanical System

ML Maximum Likelihood

MLE Maximum Likelihood Estimation

MW Manhattan World

MWC Manhattan World Constraint

NNS Nearest Neighbour Search

PF Particle Filter

R/G/B Red, Green, Blue

RANSAC Random Sampling Consensus

RBPF Rao-Blackwellized Particle Filter

RPV2 Raspberry Pi Camera Module V2

SDK Software Development Kit

SIFT Scale Invariant Feature Transformation

xxiii

SLAM Simultaneous Localization and Mapping

SVD Singular Value Decomposition

UART Universal Asynchronous Receiver Transmitter

UTC Coordinated Universal Time

VP Vanishing Point

VVP Vertical Vanishing Point

xxiv

List of Symbols

Symbol Definitions

𝑢 Odometry inputs

𝑥 Robot’s state (position, velocity and orientation)

𝑧 Observations

𝑚 Landmark state (position and orientation)

𝑎 Data association

𝑎̂ Data association (maximum likelihood estimate)

𝑤 Particle weight

𝑅𝑒
𝑖 Rotation from the earth to the inertial frame

𝑅𝑏
𝑖 Rotation from the body to the inertial frame

𝛺𝑖𝑏
𝑖 Skew-symmetric matrix of angular rates in the inertial frame

𝜔 Angular rates

𝑓𝑏 Accelerometer readings in the body frame

𝑓𝑖 Accelerometer readings in the inertial frame

𝑣𝑘
𝑖 Velocity at epoch 𝑘 (in the inertial frame)

|𝜃| Magnitude of angular change

𝑟𝑘+1
𝑖 Position of the robot at epoch 𝑘 + 1 (in the inertial frame)

𝐻𝑏
𝑖 Homogenous transformation from the body to the inertial frame

𝐻𝑐
𝑖 Homogenous transformation from the camera to the inertial frame (predicted)

𝐻𝑖
𝑜 Homogenous transformation from the inertial to the object’s frame

𝐻𝑐
𝑜 Homogenous transformation from the camera to the object frame (predicted)

xxv

𝑒𝑘+1
[𝑛]

 Error in the position of particle 𝑛 at epoch 𝑘 + 1

𝛴∆𝑒 The covariance matrix of the errors (∆𝑒)

𝐼𝑜𝑈(𝑧̃𝑘+1
[𝑛]

, 𝑧𝑘+1) The intersection over the union of the observed and predicted contours

𝑃 The coordinate center of the robot’s body frame

𝑙 The vector from the coordinate center (𝑃) to the center of the wheel

𝜉𝑏 The robot’s state vector in the body frame

𝛼 The angle between vector 𝑙 and the 𝑥-axis of the robot’s body frame

𝛽 The angle between vector 𝑙 and the perpendicular vector to the axis of a wheel

𝐷 Wheel diameter

𝜑̇ The angular velocity of the wheel

𝐴𝑐 The state matrix

𝐵𝑐 The input matrix

𝜓 The beam angle of an ultrasonic sensor

𝑠 The radius of uncertainty region of an ultrasonic distance measurement

𝑐(.) B-spline curve

𝐵𝑛 B-spline basis

𝑐𝑛 Control points (of a B-spline curve)

𝑁𝐵 The number of basis (of a B-spline curve)

𝑄 B-spline coefficients

𝐵(𝑠) B-spline basis matrix

𝑞 Quadrants

𝑇𝐼𝑜𝑈 The sum of IoU of the shapes in the quadrant

xxvi

𝑞∗ The quadrant with the highest 𝑇𝐼𝑜𝑈

𝑆𝑟 Ranked shape list

𝑆𝑐 Tested shape list

𝜅 The curvature of a point

𝑝 Pixel coordinates

𝐾 Intrinsic calibration matrix

𝑣𝑗
𝑐 Vector corresponding to a vanishing point

𝐶𝑏 The covariance matrix of the accelerometer readings

𝐶𝑟 The covariance matrix of the rotation parameters

𝑃̂ Predicted position of a projected pixel

𝛾 Angle between a ray and 𝑧-axis of the map

𝛼 The distance from the camera’s center to a point on the floor

𝑅𝑐
𝑚 Rotation from camera to map frame

𝑃̃ The estimated position of the back-projected points in the world frame

𝑒(𝑃̃,P) The error between the projected and the predicted points

𝐹 Fundamental matrix

𝑘1, 𝑘2 The radial distortion coefficients

𝑜𝑥, 𝑜𝑦 The coordinates of the principal point of a camera

1

 Chapter 1: Introduction

1.1 Object-level Simultaneous Localization and Mapping (SLAM)

Localization and mapping are among the most important aspects of successful navigation and

mission planning for an autonomous agent. The known map of an environment helps an autonomous agent

localize itself, while conversely, the known trajectory of an autonomous agent helps to build the map of

an environment. Under certain circumstances, an agent’s location and the map of an environment are not

known simultaneously. This problem is known as Simultaneous Localization and Mapping (SLAM).

Solving the SLAM problem is very important in many areas, such as autonomous industry (Badue et al.,

2020), planetary exploration (Matthies et al., 2007) and search and rescue missions (Calais et al., 2007).

Figure 1.1 illustrates some of the devices and robots where it is important to address the SLAM problem.

In the past, geometrical entities such as points were often used to successfully estimate the

trajectory of an autonomous agent while simultaneously building sparse (Mur-Artal et al., 2015) or dense

maps (Newcombe et al., 2011). More recently, there has been ongoing research in object-level SLAM

(Nicholson et al., 2019; Qian et al., 2020). Figure 1.2 compares these three classes of solutions to address

SLAM problem. Object-level mapping can facilitate the tasks that require the interaction of a robot with

the environment. Such tasks can include picking up and placing objects from one location to another.

Object-level localization also has certain advantages over the classical sparse and dense SLAM methods.

For example, tracking a single object with 6 Degrees of Freedom (6DoF) is sufficient to localize a camera

(Salas-Moreno et al., 2013). Further objects are more distinctive than simpler geometrical abstractions

(Choudhary et al., 2014), which reduces the possibility of false data association. However, modelling,

identifying, and tracking arbitrary objects in the images requires more sophisticated techniques than

points, lines, and other simpler geometrical forms. Therefore, classical solutions to the SLAM problem

might be inadequate for the objects level SLAM.

2

Figure 1.1: In this figure, two platforms that should solve the SLAM problem are shown. Figure A shows a handheld portable

mapping device courtesy of (CSIRO research group, January 2013, Zebedee Fort Lytton, accessed May 2023). Figure B

shows a robot designed to map indoor environments (image reference: (Chen et al. 2020)).

Figure 1.2: Solutions to the SLAM can be categorized into three major groups: Figure A shows sparse-SLAM (image

reference:(Mur-Artal & Tardós, 2017)) where features (shown in green) are identified sparsely. Figure B shows dense SLAM

(image reference: (Newcombe et al., 2011)) where the environment is reconstructed densely. Figure C shows object level-

SLAM (image reference: (Bowman et al., 2017)) where building the map of the environment and estimating the robot’s

trajectory is achieved with the help of objects such as doors and chairs.

A B

A B

C

https://www.csiro.au/

3

1.2 Current Gap and Research Motivations (Overview)

A solution to object-level SLAM includes many components that are integrated into a mapping

and localization framework. Each component addresses one aspect of the problem of object-level SLAM.

In this section, some of the most important components are introduced:

1. Object detection/segmentation refers to an algorithm or a set of algorithms used to identify the

position of the objects in the image (or in a 3D scan). Object detection often refers to identifying

a bounding box around the object of interest, while object segmentation requires pixel-level

identification. Object segmentation/detection can be achieved using classical computer vision

algorithms such as template matching (Bolme et al., 2009) and more advanced and modern

approaches using Deep Learning (DL) (He et al., 2017). Object detection/segmentation must be

robust to the variations in the illumination conditions in the environment, the sensor’s viewpoint,

and the sensor’s intrinsic properties. Section 1.2.2 provides the current research gaps and

motivation for the developed DL-based object segmentation.

2. Object representation refers to the stored a-priori information of the object’s shape or

appearance, and it is important for other components of an object-level SLAM (e.g., pose

estimation). In the past, objects are represented using voxel grids (Gouiaa & Meunier, 2014), 3D

features clusters (Gálvez-López et al., 2016), and more. Object representation should capture the

object with sufficient details to be useful for object-level SLAM. Section 1.2.3 provides an

overview of the current research gaps and the developed class of object representation.

3. Object pose estimation refers to estimating the object’s orientation and translation in the camera’s

(or any other sensor’s) coordinate frame. The objects detected/segmented in the images must be

inserted into the map if they have been observed for the first time. The process is known as

initialization, and to achieve it, the object’s pose with respect to the camera should be estimated.

4

Therefore, pose estimation is another important component of an object-level SLAM. Pose

estimation should be robust to errors occurring in object segmentation. Section 1.2.4 introduces

the research motivations leading to the developed contour-based object-pose estimation.

4. Finally, the three abovementioned components should be integrated into an object-level

localization and mapping framework. In the past, mapping and localization were achieved using

multiple stages where often an initial solution is obtained with the help of Dynamic Bayes

Networks (DBN) (e.g., Extended Kalman Filtering (EKF)), and later, it is optimized as more

observations become available. Object-level mapping and localization framework refer to the

process of estimating the poses of the sensor and the objects in an environment. A solution should

be able to handle the situations where the errors cannot be approximated using Gaussian

distributions, and the observations model is non-linear. Section 1.2.1 explains the challenges these

approaches face and will briefly explain the developed solution.

Solutions to object-level SLAM can be obtained by fusing the observation from many different

sensors. Data fusion is the process of achieving such a collaborative solution. With the help of data fusion,

individual advantages of the sensors such as monocular cameras, Inertial Measurement Units (IMU) and

rangefinders can be utilized to improve the accuracy of the solution to object-level SLAM. Section 1.3

will provide the motivations and an overview of the developed solution for data fusion.

1.2.1 Object-level Mapping and Localization Frameworks

Classical solutions to SLAM have been addressed using many different methods. DBN is amongst

the most utilized solutions. A DBN includes two important stages: prediction and update. In the prediction

stage, the robot or handheld device’s pose is estimated with the help of a motion model. In the update

stage, the observation model is used to correct the predictions and obtain a final estimate of the robot’s

pose at a given epoch. This process of predicting and updating is repeated as new observations become

5

available. Unfortunately, most utilized DBNs, such as EKF, require the parameters to have a Gaussian

distribution. However, this restriction leads to challenges in object-level SLAM. For example, it is

common to encounter symmetrical objects (objects with the same silhouettes or appearance in the images

from different viewpoints) during the navigation. This leads to uncertainties in the object’s pose that

cannot be accurately approximated using a Gaussian distribution. Due to such a source of errors, it is more

suitable to use DBN methods such as Particle Filtering (PF), which does not assume Gaussian distribution.

In this thesis, a PF-based solution for object-level SLAM is developed that relies on the fusion of

IMU and monocular camera. This solution uses IMU mechanization to estimate the particle trajectories in

a short time. The particle weights are updated using images from a monocular camera. This developed

method uses a novel object initialization method. With the help of this initialization approach, objects are

inserted with a pose uncertainty in the map once they are observed. Such an undelayed initialization allows

updates (particle weighing and resampling) immediately. In contrast, the current state-of-the-art solutions

are based on delayed initialization, where objects are only inserted into a map after being observed in

many images. Such an approach can only rely on IMU mechanization during the initialization period and

thus can suffer from the accumulation of errors in trajectory estimation.

Two different fusion methods of tightly and loosely coupled are developed in this thesis. Both

approaches only rely on the shape of the object rather than texture (defined as variations in the colours or

intensity of the object in an image). Thus, objects without texture can also be integrated into the solution.

Developed tightly and loosely coupled methods have many significant differences. One such difference is

that while the loosely coupled method depends on the pose estimation component, the tightly coupled

method does not. The tightly coupled method is more advantageous since pose estimation can be erroneous

(e.g. if the object is severely occluded). Detailed literature on object-level SLAM is provided in Section

2.5. The developed tightly and loosely coupled object-level solution is explained in Chapter 3.

6

1.2.2 Object Segmentation/detection

Object segmentation/detection is an important step of many solutions to object-level SLAM. In

this thesis, it is the first step of pose estimation, initialization, and particle weighting processes. In the past,

objects were segmented/detected using different approaches. The objects are often detected using feature

points (Gálvez-López et al., 2016). However, detecting such features requires texture on the object’s

surface. Further, classical feature detectors exhibit low robustness to variations in the illumination

conditions and camera viewpoints changes (which can cause severe perspective distortions). The presence

of cluttered backgrounds and occlusions is yet another challenge that complicates the task of object

segmentation. Therefore, the segmentation should be robust to such distortions and sources of error.

Recent advances in DL have provided novel opportunities for many problems, including SLAM.

Unfortunately, training DL networks requires a massive amount of input data. In order to address the

challenges associated with the massive input data requirements (and manual output labelling), synthesized

data sets have been utilized in the past (Tremblay et al., 2018). This thesis uses a novel method based on

a hybrid technique (Georgakis et al. 2017) to synthesize a large set of training images and the output masks

in a short time. These synthesized images are used to train an object-segmentation DL network

successfully. Section 2.2 investigates classical and more modern DL-based object detection/segmentation

methods in detail. Further, different approaches for synthesizing training images are investigated in section

2.2. Section 4.2 will introduce the developed segmentation approach.

1.2.3 Object Representation

Geometrical entities such as points and lines have a simple parametric representation. Semantic

Objects, in general, need a much larger number of parameters to be defined. Objects in the past were

represented using simpler geometrical shapes (e.g., ellipsoids (Nicholson et al., 2019), cuboids (Yang &

Scherer, 2019)) or detailed 3D models (Gálvez-López et al., 2016; Salas-Moreno et al., 2013). The

7

object’s representation should account for possible sources of distortions in the appearance and the shape

of objects due to variations in the camera’s viewpoints and illumination conditions. Due to these

challenges, in this thesis, an object representation is developed that can be matched directly to the

segmented contour of an object in the image under the conditions mentioned above. In order to achieve

this, the object of interest is represented as a set of 2D contours denoted as the shape-prior set. Finally, a

fast-matching method is developed to find the closest shapes in the shape-prior set to the segmented object

in the image. Section 2.3 briefly reviews different approaches for object representation and the current

research gap. Section 4.3 will, in detail, explain the developed object representation using shape-prior sets.

1.2.4 Object Pose Estimation

Once the objects are segmented in the image and prior information about the shape is available

(object representation), the next step is to find the relative pose of the object with respect to the camera.

The capability of estimating the camera’s pose (and trajectory) using only one object is one of the

advantages of object-level SLAM over the classical sparse and dense SLAMs. The current pose-detection

methods can be categorized into two groups. The first approach jointly solves object segmentation and

pose estimation using an end-to-end Deep Neural Network (DNN). End-to-end deep pose estimation

requires large training image sets (Sundermeyer et al., 2018). In contrast to the end-to-end method, a

second paradigm is a two-step approach where in the first step, features are detected (using classical

computer-vision methods or DL), and in the second step, the pose is estimated with the help of these

features. In order to estimate the pose, a correspondence between the features in the image and the 3D

model of the object is established. The most ubiquitous technique for such pose estimation is the

Perspective-n-Points (PnP) algorithms which require the detection of salient features on the object. Such

feature detection relies on the existence of the texture on the object. Further, the detection and matching

are not completely robust to the influence of photometric and geometrical distortions (e.g., variations in

8

the scale). Finally, object segmentation usually does not directly provide features, and additional steps of

feature detection should be included.

In order to address the abovementioned issues, a novel course-to-fine pose estimation method

based on contours (and not the texture) is proposed in this thesis. The method relies on initially finding

the object’s pose by matching the contour of the segmented object to the shape-prior set. With the help of

the initial pose estimation and the 3D model of the object, a PnP algorithm is utilized to refine the pose.

Section 2.4 will introduce the state-of-the-art pose estimation algorithms and highlight the importance of

developing a contour-based pose estimation rather than a texture-based approach. Sections 4.3 and 4.4

will provide the details of this coarse-to-fine pose estimation.

1.3 Data Fusion Towards Object-level SLAM

SLAM has been addressed in the past using many sensors. Single-sensor solutions often focus on

reducing costs while trying to achieve a highly accurate solution. The multi-sensor solutions attempt to

leverage a wider array of sensors to improve the accuracy of the solution. Currently, many types of sensors

are utilized to solve the SLAM problem. Some of these sensors are designed only to sense manmade

signals. These include Global Navigation Satellite Systems (GNSS), Bluetooth, Wi-Fi, and infrared

receivers. On the other hand, sensors such as a monocular camera can detect manmade (a lamp light) and

natural signals (sunlight). In a different categorization, the utilized sensors in the navigation can also be

divided based on whether they are active or passive. Active sensing systems such as Light Detection and

Ranging (LiDAR) send and receive the returning signal from the environment. In contrast, passive sensors

such as an IMU detect the signals due to the motion of the robot (or a device) itself. These sensors are

passive because they do not send signals into the environment. Since most sensors are not suffering from

the same type of error, data fusion can help mitigate the individual errors of sensors and contribute to

increasing the overall accuracy and robustness of the solution to the SLAM.

9

Among many sensors used to address the SLAM, cameras are one of the most important sensors

in object segmentation since they capture rich radiometric information (e.g., colour). However, estimating

the trajectory of the device’s motion using only a camera is challenging. Therefore, it seems that the fusion

of a camera with a sensor capable of estimating the motion more accurately (in a short period of time),

such as an IMU or wheel odometer, would be advantageous. IMUs and cameras have been fused in the

past for the purpose of trajectory estimation (Mourikis & Roumeliotis, 2007). In the context of object-

level SLAM, a possible approach is to utilize IMU to predict the motion while utilizing segmented objects

in the images to update the estimation (e.g., weighting and resampling of the particles). The developed

IMU/ camera fusion in this thesis is based on such a paradigm (explained in Chapter 3).

A requirement for the developed fusion technique is to find the extrinsic calibration parameters

between the two sensors. Extrinsic calibration refers to estimating two sensors' relative orientation and

translation parameters. The estimation of the orientation parameters is known as boresight calibration, and

the estimation of the translation parameters is known as lever arm calibration. In this thesis, the extrinsic

calibration term refers to the scenario where both of these parameters are calibrated. The main challenge

with most of the extrinsic calibration methods proposed in the past is that they depend either on ground

control points (Pinto et al., 2002), accurate instruments such as a turntable (Lobo & Dias, 2007) or require

an initial solution (Furgale et al., 2013). Accessing such instruments or an initial solution might not be

possible in many scenarios. In this thesis, a novel extrinsic calibration method using DL-based floor

segmentation in the indoor environment is developed. The method offers similar accuracy to the state of

the art. A detailed review of the current methods for extrinsic calibration of IMU and camera is provided

in Section 2.6. The developed method is explained in Section 5.3.

A second challenge for camera-based SLAM is the problem of landmark initialization. As

mentioned, initialization is the process of inserting a landmark into the map. Due to the lack of scale in

10

the monocular camera observations, delayed initialization (Bailey, 2003; Davison et al., 2007) is used

(which requires observing objects from multiple viewpoints). In the undelayed initialization (Solà et al.

2005), landmarks are immediately inserted into the map. If the distance to the object is unknown, the

landmark must be initialized with larger uncertainty. See Figure 1.3, where this is explained schematically.

One possible solution to address scale ambiguity is to use stereo image-pair. However, stereo image pair

processing includes a number of steps with an overall high computational cost. These steps can include

rectification of the images, feature detection/matching, and disparity estimation. Most software-based

implementations of these processing steps are unsuitable for SLAM in real time (Lazaros et al., 2008). A

second solution to resolve the scale ambiguity is a data fusion of a camera with a rangefinder, which can

resolve the scale ambiguities related to the monocular camera and can help achieve undelayed

initialization with smaller uncertainty. A drawback of such solutions is that projection of the point cloud

(obtained by the rangefinder) onto the image often leads to a sparse set of points, where many pixels are

left without any assigned depth (especially for 2D LiDAR and ultrasonic rangefinders, where they can

provide only sparse point clouds). However, an important distinction between the classical and object-

level SLAM problem is that unlike primitive geometrical points or abstract feature points (ORB points

used in ORB-SLAM (Mur-Artal & Tardos, 2016)), objects are volumetric bodies and can occupy hundreds

of pixels in an image. Therefore, low angular resolution rangefinders can still provide distance to some

points on these objects. The approximate initialization obtained from these distance readings can be

refined in the process of PF-based SLAM as more information becomes available. This is explained in

detail in Section 3.6.

As with IMU/camera fusion, the extrinsic calibration parameters between an ultrasonic sensor and

a camera should be estimated. These values can be obtained using Computer-Aided Design (CAD)

models. However, better calibration is required in most scenarios. The developed method in this thesis

11

utilizes 2D line-segment maps built using an ultrasonic sensor (Abadi & El-Sheimy, 2022) and matches

them to pixels corresponding to the boundary of the floor and the walls in the environment. Similar to the

extrinsic calibration technique of IMU and monocular cameras, a DL-based floor segmentation approach

is used to find the floor segment boundary in the image. Details about this method are provided in Section

5.4.

Figure 1.3: The initialization is a challenging task due to the scale’s ambiguity using a monocular camera.

1.4 Summary of the Objectives

One of the key challenges of the state-of-the-art object-level solution to the SLAM is the

assumption that the uncertainties in the pose of the object and the camera can be represented using a

Gaussian distribution. The second challenge is that most object-level solutions do not take advantage of

an accurate motion estimation. Further, object-level solutions depend on the detection of salient feature

points on the object's surface; however, many objects lack such features. In order to address these

challenges and limitations, in this thesis, a novel object-level PF-based solution using IMU and monocular

camera fusion is developed. In the following, details of the objectives regarding the proposed solution are

explained:

1. This thesis develops and investigates a tightly and loosely coupled fusion of IMU/monocular

cameras. While in a tightly coupled solution, the particle’s weight is updated directly by evaluating

the observation likelihood, in the loosely coupled solution, the particle’s weight is updated after

12

the pose of the device is estimated independently using each sensor (IMU and camera). The two

implementations are compared to each other in terms of error in the trajectory estimation and the

algorithm’s runtime.

2. Standalone trajectory estimation using IMU mechanization can lead to a quick accumulation of

errors if no measurement updates are available from other sensors (such as a camera). In this thesis,

a novel undelayed initialization of the objects in the map is developed to address this problem. The

developed method estimates the object pose up to an unknown scale using a single image. The

initialized object can be subsequently used to provide updates to the particle filter. The advantage

of such an approach is investigated.

3. The uncertainty in the pose of an object in the initialization is very large. Such a larger uncertainty

requires a large number of particles. In order to reduce the computations, a possible solution is a

fusion with a rangefinder. In order to achieve this, a camera /ultrasonic sensor fusion is developed

in this thesis. Due to the low angular resolution of the ultrasonic sensor, the objective is to identify

if the observations are returned from the foreground (the object of interest) or from the background

(false positives). Further, improvement to the runtime and the accuracy of the solution with this

fusion should be investigated.

4. As most objects lack texture, relying on the shape for the process object-level solution is important.

In the thesis, the possibility of implementing an object-level SLAM using shape is investigated. In

particular, the objective is to assess the robustness and the accuracy of the shape-based pose

estimation under different conditions (such as illumination conditions and the distance of the

camera from the object).

5. Object segmentation is an important step in the developed particle filter-based method. Training a

DL-based segmentation requires a large image set. In this thesis, a hybrid method for synthesizing

13

images is utilized to produce a training set. The objective is to investigate the precision and recall

of this segmentation method.

1.5 Summary of the Contributions

1.5.1 Major Contributions

1. The developed shape-based tightly and loosely coupled solutions are tested under different

conditions (e.g., illumination of the scenes, severe presence of the occlusion). The results

indicate that the developed method exhibits robustness to many sources of distortions. The

tightly coupled solution can achieve an error of about 4.1 to 13.1 cm (0.005 to 0.028 of the

total path length), and the loosely coupled method can achieve an error of 11.5 to 170.9 cm

(0.024 to 0.426 of the total path length). Therefore, the tightly coupled method provides a more

accurate solution. However, the loosely coupled method achieved lower runtime. The number

of particles needed to obtain such accuracy is between 5,000 to 12,500 particles, and increasing

the number above these limits did not achieve higher accuracy.

2. It is shown that the undelayed initialization can provide an immediate update possibility in the

filtering process. Thus, this greatly reduces the possibility of error accumulation. Further, it is

concluded that the initial uncertainty can be reduced significantly after one or two observations.

3. Camera/ultrasonic sensor fusion demonstrates that the algorithm's runtime can be reduced

greatly (approximately 50%) with additional observation from an ultrasonic sensor. This is

because distance measurement leads to the elimination of many particles without a requirement

to evaluate the observation likelihood directly. Further, it is shown that it is possible to detect

if the distance measurement is returned from the object of interest with approximately 100%

precision and 80% recall. This is achieved without an extensive requirement for

hyperparameter tuning.

14

4. In order to estimate an object’s pose, a novel object representation and matching using a shape-

prior set is developed. The segmented object in the images is matched to the shape prior to

estimate the pose. This method can provide a list of possible poses for objects that are

symmetrical, and an average error of 9.96° to 10.31° is achieved for the pose estimation.

5. A novel DL-based object segmentation is developed. The training image set is built using a

hybrid approach with synthesized images, achieving a precision of 94% and recall of over 85%

in different indoor scenes.

1.5.2. Minor Contributions

1. The IMU/camera boresight calibration achieved an error of 3.49° using 141 images. This result

outperforms Kalibr, which is the standard benchmark IMU/Camera calibration in many

studies.

2. The ultrasonic/camera boresight calibration achieves an error of approximately 1°.

Figure 1.4 illustrates an overview of the developed system and its contributions. The green boxes

show the major components and the modules of the developed tightly coupled and loosely coupled

methods. The blue arrow indicates that pose estimation is required for the loosely coupled each time an

object is observed. For the tightly coupled method, however, pose estimation is only required once and in

the initialization of the object in the map. A summary of the information and the advantages of the

developed components are shown inside gray boxes. Finally, the extrinsic calibration (shown as the red

box) is often only required to be performed once before each experiment. The developed solution is

implemented on two systems. The first system is a handheld device that includes a monocular camera,

IMU, and ultrasonic rangefinder. The second platform is a wheeled robot designed for the indoor

environment. Instead of an IMU, this robot includes wheel odometry to predict the motion.

15

Figure 1.4: An overview of the developed tightly and loosely coupled object-level SLAM.

1.6 Chapter Organization

The remaining chapters of this dissertation are organized as follows. In Chapter 2, a literature

review is provided. The state-of-the-art solutions for the SLAM are reviewed in detail with a focus on the

individual components utilized in addressing the object segmentation, object representation, object-based

pose estimation, as well as the overall mapping and localization frameworks.

Chapters 3 to 5 are dedicated to introducing the methodology of developed object-level SLAM.

The framework of the developed PF-based solution using the fusion of IMU and monocular camera in two

loosely and tightly coupled fashions is explained in Chapter 3. Chapter 4 introduces the developed crucial

components to perform the object SLAM, including object segmentation and pose estimations. Chapter 5

explains the extrinsic calibration of the monocular camera and IMU, as well as the monocular camera and

• Coarse-to-fine pose estimation

• Contour-based

object pose

estimation

Object

segmentation

Object

representation

Mapping

Trajectory

estimation

Extrinsic

calibration
Observations

Wheel encoder, IMU,…

images

PF-SLAM

Motion model

Camera, ultrasonic,

IMU,…

• Novel IMU and monocular fusion

• Can handle symmetrical objects

• Based on object’ shape

• Undelayed initialization

• IMU mechanization

• Wheel odometry

• Shape based object representation

• Easy to be matched to images

• Robust to geometrical distortions

• Robust to photometric distortions

• Deep learning -based

• Synthetic training image set

• Utilizes indoor

manmade structure

for loosely coupled

16

ultrasonic rangefinder. The details of the experiments are provided in Chapter 6, which includes the

platforms used to perform the experiments and how ground-truth values for the parameters of interest are

estimated. Chapter 7 provides the results. The developed methods are assessed using many different

metrics. These include the pose estimation accuracy, the reprojection error, the algorithm’s runtime and

more. The results are all conducted using real datasets and in many indoor environments. Finally, Chapter

8 concludes this thesis and provides directions for future research work in this newly emerging study area.

List of publications:

• Abadi, Ilyar, and Naser El-Sheimy. "Manhattan World Constraint for Indoor Line-based Mapping

Using Ultrasonic Scans." In 2022 IEEE 12th International Conference on Indoor Positioning and

Indoor Navigation (IPIN), pp. 1-8. IEEE, 2022.

• Asl Sabbaghian Hokmabadi, I., and N. El-Sheimy. "Probabilistic Silhouette-Based Close-Range

Photogrammetry Using a Novel 3d Occupancy-Based Reconstruction." The International Archives of

the Photogrammetry, Remote Sensing and Spatial Information Sciences 43 (2022): 343-350.

• Hokmabadi, Ilyar Asl Sabbaghian, Mengchi Ai, Chrysostomos Minaretzis, Michael Sideris, and Naser

El-Sheimy. "Accurate and Scalable Contour-based Camera Pose Estimation Using Deep Learning

with Synthetic Data." In 2023 IEEE/ION Position, Location and Navigation Symposium (PLANS),

pp. 1385-1393. IEEE, 2023.

• Asl Sabbaghian Hokmabadi, Ilyar, Mengchi Ai, and Naser El-Sheimy. "Shaped-Based Tightly

Coupled IMU/Camera Object-Level SLAM." Sensors 23, no. 18 (2023): 7958.

• Hokmabadi, Ilyar Asl Sabbaghian, Mengchi Ai, Naser El-Sheimy. " Deep Learning based Online

Extrinsic Calibration of IMU and Monocular Camera Using Handheld Devices" IEEE Access, July

(2023).(Review Process)

17

• Hokmabadi, Ilyar Asl Sabbaghian, Mengchi Ai, Naser El-Sheimy. " Low-cost and Accurate Infrared-

based Angle of Arrival Beacons for Three Degrees of Freedom Mobile Robot Pose Estimation"

in IEEE Transactions on Instrumentation and Measurement, July. 2023. (Review Process)

• Hokmabadi, Ilyar Asl Sabbaghian, Mengchi Ai, Naser El-Sheimy. " Shaped-based Loosely-Coupled

IMU/Camera Object-level SLAM." July, Sensors (2023). (Review Process)

18

 Chapter 2: A Review of the State of the Object-level SLAM

2.1 Overview

This chapter includes the main literature review and investigates the state-of-the-art solutions for

object-level SLAM. These solutions can be categorized more specifically based on the type of method

used in object detection/segmentation, object representation and object pose estimation components. The

relevant literature is provided in Sections 2.2 to 2.4. Object-level solutions to SLAM problems in the past

can also be categorized based on the method used to integrate these three components into a mapping and

localization framework, which is covered in Section 2.5. In reviewing each topic, the focus was on the

literature that implements an object-level solution. However, influential research works in the study areas

of object segmentation, object representation, and object pose estimation are also reviewed at some level

to provide background and increase clarity.

Data fusion is the most important process in SLAM, and almost every solution with a high level

of accuracy utilizes more than one type of sensor. Individual sensors have many shortcomings. However,

through the process of data fusion, the complementary observations of the sensors mitigate the

disadvantages of each individual sensor. The sensors that are utilized to achieve an object-level solution

in this thesis are IMU, wheel odometer, camera, and low-cost 2D ultrasonic rangefinder. In order to

achieve this data fusion, extrinsic (boresight and lever arm) calibration of two sensors is performed.

Therefore, the state-of-the-art extrinsic calibration methods of an IMU and a camera and extrinsic

calibration of an ultrasonic rangefinder and a camera are reviewed in Section 2.6. Finally, Section 2.7

provides an overview of the proposed solutions to address the key research gaps.

2.2 Object Detection/Segmentation

Object detection and segmentation are important components in an object-level SLAM. Object

detection refers to the task of locating objects of interest in the images. The output of such detection is

19

usually a bounding box around the object. Object segmentation, however, identifies the pixels that belong

to the object. The output of object segmentation is often a binary mask where the foreground (object

pixels) is labelled as 1, and the background pixels are labelled as 0. Object detection and segmentation

methods can be classically categorized into template matching, feature detector/descriptors, and active

contours (Treiber, 2010). With the advances in DL, a rapidly growing number of object

detection/segmentation algorithms are also emerging and designated as the fourth category. In the

following, each of these four categories is reviewed in detail.

Template matching is a conceptually simple method of addressing object detection. A template

is often represented using a rectangle (Lewis, 2010) or an ellipse (Bolme et al., 2009), and it can be defined

by the user or be learned from a set of training data (Avidan, 2004; Bolme et al., 2010). Template matching

aims to minimize the distance (or maximize the similarity) defined between the template and the image.

A simple matching technique involves convolving (or correlating) the template with the image and finding

the region of the highest similarity (Felzenszwalb et al., 2009). However, this approach is computationally

inefficient since templates of different scales and orientations (and possible other transformations) must

be exhaustively matched to the image. An alternative approach to exhaustive matching is to use optical

flow (Oron et al., 2014). These techniques can track the templates frame-by-frame, where the initial

approximate location of the template is provided by the last frame.

Template matching is a computationally efficient method for the detection of planar objects (e.g.,

road layouts (Kyriacou et al., 2005) and simple box-shaped objects with planar surfaces (Jensfelt et al.,

2006). The disadvantage of the template matching method is that it includes background pixels. These

pixels can diverge the template from the object in the image (i.e., an increasing number of background

pixels enter the template area eventually) (Matthews et al., 2004).

20

While template matching methods represent an object using a bounded region, the

detector/descriptor paradigm uses salient feature points on the object’s surface. The detector/descriptor

paradigm is a three-step object detection process. In the first step, salient feature points (e.g., corner points

(Harris & Stephens, 1988) and Blobs (Lindeberg, 1993)) are detected in the image. In the second step, the

neighbouring pixel of the salient point is used to build a descriptor vector (a feature vector) (e.g., SIFT

(Lowe, 2004)). In the third step, global matching (Bentley & Friedman, 1979; Silpa-Anan & Hartley,

2008) or local tracking (Zhang et al., 2014) is used to establish data correspondence. An object can be

represented as a cluster of feature points (Castle et al., 2010; Civera et al., 2011; Gálvez-López et al.,

2016). This cluster of feature points and their associated feature descriptors can be stored in a database in

an offline phase. As new images are acquired (during navigation), the detected feature points can be

matched to the object database.

An important advantage of the detector/descriptor paradigm is that objects are represented as sets

of points; therefore, numerous geometrical constraints can be imposed to remove outlier data

correspondence (e.g., epipolar geometry). Further, objects can still be detected under partial occlusion

since some of the feature points are likely to be visible. The detector/descriptor paradigm’s drawback is

that objects should have texture on their surface.

Both template matching and detector/descriptor methods do not explicitly track the object’s

contour in the image. However, contours correspond to an object’s shape, one of its important distinctive

characteristics. In the past, object contours were detected and tracked using active contours (Cohen, 1991;

Terzopoulos & Szeliski, 1993; Caselles et al., 1997; Chan & Vese, 2001). An active contour is a parametric

curve that iteratively converges to the object’s boundary. This convergence is based on minimizing the

contour’s energy, defined as the summation of external and internal terms. The external term is derived

from the image (often the image’s gradient), and the internal term is derived from prior knowledge of the

21

object’s shape or appearance. Prior knowledge of the shape of an object is known as shape-priors and is

discussed in object representation in Section 2.3.

With the increasing processing and storing power of computers, a new class of machine learning

methods, namely DL, has emerged. Two strategies based on DL are useful for object-level SLAM. The

first strategy is based on object detection (Liu et al., 2016; Redmon et al., 2016). The output of this

approach is a bounding box around the object. The second strategy is object segmentation (Long et al.,

2015; Ronneberger et al., 2015). The segmentation designates the pixels belonging to the object in the

image and, therefore, is often more advantageous. It is also required to correspond the detected/segmented

objects in individual images with one another with the help of a tracking method. The most common

approach is tracking by detection, which refers to the process of detecting objects in each image

independently and subsequently matching these detections. As opposed to tracking by detection, in the

direct method, the object of interest (which is defined or designated in the first frame) is tracked by

maximizing the value of a similarity function between the tracked region and the image (Bertinetto et al.,

2016; Bhat et al., 2018; Li et al., 2018).

One of the most restrictive shortcomings of DL-based methods is the requirement for large training

data. This data set should include distortions due to geometrical and photometric variations. Furthermore,

partial visibility (due to occlusion) should also be considered in the training set. The exclusion of such

training data will severely reduce DL-based tracking accuracy (Emami et al., 2020).

Table 2.1 summarizes the advantages and disadvantages of the four categories used for object

detection/segmentation and tracking. These methods are also categorized based on how frequently they

have been utilized in object-level SLAM. Among these approaches, DL and detector/descriptor paradigms

are most utilized in object-level SLAM. More details will be provided in Section 2.4.

22

Table 2.1: Summary of the methods that can be used for object detection and segmentation.

Method

Information

Advantages Disadvantages Object-SLAM(Applied?)

Templated matching
• Conceptual simplicity

• Suitable for planer objects

• Computational cost

• Divergence due to background clutter
Limited

Detector/ Descriptors
• Robust to occlusions

• Robust to photometric distortions

• Unusable for texture-less objects.

• A very large number of features
Frequently

Active contours

• Robust to geometrical distortions

• Robust to photometric distortions

• Usable for texture-less objects.

• Computational cost

• Lacks robustness to occlusions

• Lacks robustness to background clutter

Limited

Deep learning

• Robust to occlusions

• Robust to geometrical distortions

• Robust to photometric distortions

• Usable for texture-less objects

• Large training data requirement Frequently

In order to address the challenges associated with the massive training data requirements (and

manual labelling) for DL, image-synthesizing was used in the past. Image-synthesizing can be divided

into three approaches. The first approach is based on complete simulation, where the photo-realistic

images are generated from a virtually designed indoor/outdoor environment (Tremblay et al., 2018;

Rasmussen et al., 2022). This procedure relies on advanced computer graphic techniques such as

raytracing, where generating a single high-resolution image might take up to minutes (Saleh et al., 2018).

The second image-synthesizing approach is based on domain adaptation using Generative

Adversarial Networks (GAN) (MacKay & Moh, 2021). Domain adaptation refers to a method that

transforms an input image from the source domain (the simulated environment) to the target domain (the

real environment). With the help of domain adaptation, millions of synthesized images can be generated.

Such images and their corresponding mask can be used to train a neural network to detect/segment objects

23

of interest. Similar to the first approach (complete simulation of the environment), the domain adaptation

often requires simulating the indoor/outdoor environment of the target domain.

The third image-synthesizing method is the hybrid technique. In this technique, only certain

aspects of the environment (such as illumination conditions and object’s 3D models) are simulated

(Dwibedi et al., 2017; Georgakis et al., 2017). The other aspects (such as the background clutter) are

captured using real images. The advantage of the hybrid approach is that it can provide a means to reduce

manual labour by only simulating some aspects of the images. Table 2.2 compares the labour required for

different techniques to generate training images. The labour intensity refers to human resources required

for preparing a training data set (e.g., labelling images). The labour intensity is broadly categorized into

very high, high, and low requirements. In this thesis, a hybrid approach is used to generate a set of training

images and output masks. This approach is briefly explained in Section 2.7

Table 2.2: Summary of different methods of generating training data for deep learning networks.

Method

Information

Task (labour intensity) Details

Real images
• Capture images in different scenarios (high)

• Label images (very high)

• Highest accuracy

• Wide area of applicability

Simulation
• Design the background environment (high)

• Build object’s 3D model (low)

• Medium to high accuracy

• Moderate area of applicability

GAN
• Capture target domain images(high)

• Build images in the source domain (high)

• High accuracy

• Moderate area of applicability

Hybrid
• Capture the background images (low)

• Build object 3D model(low)

• Medium to low accuracy

• Limited area of applicability

24

2.3 Object Representation

Object representation is the information about the shape and/or appearance of the object. This

information can be obtained prior to or during the process of mapping and localization. Object

representation is often used to estimate the pose of an object and thus is an important component for many

object-level SLAM solutions. Once the objects are segmented in the images, they should be matched to

object representation. The objects in the images often change in appearance and shape due to illumination

conditions and distortions such as the perspective projection of a camera. Therefore, matching segmented

objects to these representations can be a challenging task.

Object-level solutions to the SLAM problem in the past have often utilized salient points on the

surface of an object for the representation. This type of representation requires textures on the surface of

the object (Civera et al., 2011; Gálvez-López et al., 2016). However, most objects lack such textures. In

order to address this challenge, other methods in the past have been proposed that represent the objects

using simple geometrical shapes such as ellipsoids (Nicholson et al,. 2019; Ok et al., 2019) and cuboids

(Yang & Scherer, 2019). These approaches take advantage of the well-defined perspective projection of

these shapes. Therefore, it is possible to utilize simple observation models, as was the case for classical

point-based (Davison et al., 2007), line-based (Smith et al., 2006), or plane-based (Kaess, 2015) methods.

Unfortunately, representing every object using simple shapes such as ellipsoids might not be accurate. An

alternative object representation approach is to rely on detailed object models. Object-level SLAM

solutions that utilize such models can be categorized into two groups. In the first group, models are learned

during the navigation period (Prisacariu et al., 2013; Caccamo et al., 2017) (online modelling) while in

the second group, prior database of object models is used (Salas-Moreno et al., 2013; Joshi et al., 2018;

Parkhiya et al., 2018; Wang et al., 2021) (offline modelling).

25

The first group often utilizes image segmentation to detect plausible hypotheses of objects in

consecutive frames and eventually builds 3D models by tracking and evaluating hypotheses segments.

The computational complexity of image segmentation is one of the biggest challenges of these approaches.

In the second category of the methods, the model is built prior to the localization and mapping. The most

common approach is to build a 3D shape prior of the objects. Unfortunately, matching these 3D shape-

priors directly to the contour of the segmented object in the images is challenging, and most such solutions

are only suitable for RGB-D cameras. Another possible solution is to represent an object as a set of 2D

contours. Such 2D contours are built using the images of the object captured from different viewpoints

(Hinterstoisser et al., 2013). These approaches represent the 2D contours often as images which are not

robust to the variation in the scale, translation, and orientation. This is an important disadvantage as such

geometrical variations between the shape-prior and the segmented objects in the image are expected to be

encountered.

As opposed to image-based methods, contours can also be represented using explicit 2D

parameterization (Cremers, 2002; Khalid, 2012) and implicit 2D parameterization (Tsai et al., 2003;

Foulonneau et al., 2009; Tran et al., 2013). Explicit parameterization represents the contour of an object

as parameterized curves, while implicit representation uses level sets. The two representations are shown

in Figure 2.1. The boundary in the implicit representation is the zero-crossing of the level set function

(𝐹(∅) = 0), while in the explicit representation, the boundary coordinates are parameterized with a

variable (𝑝). With the help of such parameterization, the scale, in-plane rotation and translation of

parameterized shapes can be changed easily. A drawback for 2D parameterized shape prior set is that,

unlike image-based contour representation, matching parameterized shapes is more challenging. The

matching process requires finding the changes in all the geometrical parameters (such as scale), or the

measured distance will be erroneous. Table 2.3 summarizes the advantages and disadvantages of object

26

representation methods. In this thesis, a novel object representation using parameterized 2D shape priors

is introduced. The advantage of this solution is briefly summarised in Section 2.7.

Figure 2.1: Illustration of implicit and explicit shape representation.

Table 2.3: This table summarizes the advantages and disadvantages of object representation methods.

Method

Information

Advantage Disadvantage Details

Simple geometry • Simple perspective projection model • Inaccurate representation
Objects are represented using primitives

such as ellipsoids, cuboids

Feature point clusters • Robust to occlusions • Requires surface textures
Objects are represented as a collection of

features points such as SIFT

3D shape-based models • No requirement for surface texture • Difficult 3d-2d matching
Objects are represented using 3D models

such as volumetric voxel-based models

2D shape-based

(Images contour)

• No requirement for surface texture

• easy 2d-2d matching

• Not robust to geometrical

variations

Objects are represented as a collection of

2D contour images

2D shape-based

(Parameterized contour)

• No requirement for surface texture

• easy 2d-2d matching

• Limited application in pose

estimation

Objects are represented as a collection of

2D implicit or explicit parameterization of

curves.

No model • No requirement for prior models

• Computationally very costly

• Mostly implemented using

RGB-D

Objects models are built during navigation

Explicit parameterization

parameter

Implicit parameterization ()

Level set function

27

2.4 Object Pose Estimation

Object pose estimation is an important module in an object-level SLAM. The classical solutions

for the pose estimation are similar to the PnP algorithms. In this process, some feature points are detected

on the object of interest. The detected feature points are matched to the object model. These 2D-to-3D

correspondences are utilized to estimate the 6DoF pose of the object. Unfortunately, objects with repetitive

or no texture are unsuitable for this approach. In order to address this issue, some pose estimation

techniques have relied on the contours of the objects (Hinterstoisser et al., 2013) in the past. While the

texture problem is addressed by utilizing the object contours, other challenges should also be addressed.

One of these challenges is the degradation of the accuracy of contour detection in the presence of

occlusion and background clutter. In order to address such issues, DL-based solutions for pose estimation

also has emerged. These solutions can be broadly categorized into one-step and two-step methods. In one-

step or end-to-end methods (Xiang et al., 2017; Hu et al., 2020), the pose of an object is directly estimated

using one DNN. However, this approach has several drawbacks. For the regression-based end-to-end

DNN (where the input is an RGB image and the output is a vector representing translation and rotation),

it is difficult to estimate the poses of the objects that are symmetrical (produce similar

silhouettes/appearance from some viewpoints). Therefore, the conventional one-to-one pose estimation

should be replaced with networks that can produce one-to-many estimation. Categorical DNN (where the

input is an image and the output is a 2D or 3D matrix of discretized poses) can handle symmetrical

situations. However, in order to achieve an accuracy of 5°, approximately 50,000 training images are

required to include one sample for one pose (Sundermeyer et al., 2018). This number of images should be

increased to include different backgrounds and scenarios where the object is occluded.

In two (or more) step approach, the pose estimation task is divided into smaller modules. Each

module is responsible for performing one task, and a DNN can be trained separately for them. However,

28

it is not required to rely on DL to implement every module. A common approach is first to detect features

on the object of interest using DL and, in the second step, use these features to estimate the pose (Pavlakos

et al., 2017; Rad & Lepetit, 2017; Zakharov et al., 2019).

In order to address the issues that arise in the case of symmetrical objects, several solutions have

been proposed in the past. One solution is to detect and exclude the symmetrical object from the initial

pose estimation. In this approach, the camera’s pose and trajectory are estimated using other objects in the

images. With the help of this initial estimation, the symmetrical objects are integrated into the solution in

the second step (Merrill et al., 2022). Therefore, such methods are unsuitable if other objects are not

observed in the image with the symmetrical objects. A second solution to address pose-ambiguities is to

train a DNN for different ranges in which such ambiguities do not exist. In the pose estimation phase, the

likely poses of the objects in each region are identified (Rad & Lepetit, 2017). A challenge with this

approach is that it requires further manual labour during the time of training to identify regions where the

object is not symmetrical.

In this thesis, two different techniques for pose estimation are developed. The first technique

jointly estimates the object and camera pose in the SLAM framework. This framework will be explained

in Section 3.4 under tightly coupled IMU/monocular object-level SLAM. The second approach estimates

the pose using a coarse-to-fine pipeline. This approach addresses some of the key issues with the state of

art methods and is summarized in Section 2.7.

2.5 Object-level Localization and Mapping Framework

In the past, different solutions to object-level SLAM were suggested. The earlier solutions are

based on EKF (Ahn et al., 2006; Castle et al., 2010; Civera et al., 2011). Since in EKF, the observations

are processed one at a time, the error propagation can cause a reduction in the accuracy of the final solution

to the SLAM problem. In order to address this challenge, later object-level solutions include two important

29

stages: frontend and backend. Frontend refers to an initial estimation of the poses of the camera and the

objects, which can be achieved using EKF (or other DBN such as PF) and Local Bundle Adjustment

(LBA). LBA is performed using a subset of images captured by the camera (denoted as keyframes) in

close vicinity, while Global Bundle Adjustment (GBA) is performed using all the keyframes (keyframe-

based LBA is introduced in (Klein & Murray, 2007)). The frontend solution is then provided to the

backend, where further optimization is performed using GBA or Factor Graphs (FG) (Dellaert & Kaess,

2006).

The solutions to object-level SLAM can also be categorized based on how objects are integrated

into the method. In the first category, objects are used to add additional constraints in the backend (Pillai

& Leonard, 2015; Dharmasiri et al., 2016; Bowman et al., 2017). These constraints can improve the

accuracy of classical SLAM solutions such as ORB-SLAM2. In the second category, the map and the

trajectory estimation are performed using objects only. These objects are initialized with 6DoF in the map

by estimating their pose in the frontend. The poses and the trajectory of the camera are refined using GBA

(Ok et al., 2019; Yang & Scherer, 2019; Qian et al., 2020).

Table 2.4 and Table 2.5 summarize some of the past solutions to object-level SLAM. Most of these

methods utilize descriptor/detector paradigm and DL-based object detection. Object representation is also

utilized by most of the solutions. Among these methods, objects are most represented as ellipsoids and

feature point clusters (points clouds with assigned feature descriptors for each point). The methods that

do not use any object representation also do not provide a map of the objects (Bernreiter et al., 2019;

Bowman et al., 2017). For the pose estimation, classical PnP (Civera et al., 2011) and DL (Deng et al.,

2021; Song et al., 2021) are used mostly. A solution that depends on ellipsoids (to represent an object)

estimates the tangential planes encapsulating the object and subsequently fits an ellipsoid with correct

orientation and position (Ok et al., 2019; Qian et al., 2020). Some of the solutions have decoupled the

30

mapping and trajectory estimation. (Joshi et al., 2018; Parkhiya et al., 2018). Such decoupling can result

in a decrease in accuracy due to error propagation. Most of these solutions implement a frontend and a

backend. It is important to note that most of the solutions in the past did not provide a standalone object-

level SLAM and depended on low-level feature-based SLAM (ORB-SLAM or visual odometry (Nistér et

al., 2004)) to find the initial solution.

The introduction of keyframe-based LBA has shifted the interest away from DBN methods in the

last decades in classical and object-level SLAMs. This approach can often attain higher accuracy.

However, one of the aspects of many keyframe-based methods is the reliance on standalone monocular

camera solutions. Thus, no motion prediction beyond heuristics and simple models (e.g., constant

velocity) is assumed to be available. A more accurate motion prediction can be achieved using IMU in

shorter periods of time (and wheel odometry in short to medium periods), which can make DBN methods

achieve comparable results to keyframe-based alternatives. The developed method in this thesis is based

on sensor fusion of a monocular camera and IMU in a tightly and loosely coupled fashion (Chapter 3).

Another challenge with most of the current object-level SLAM frameworks is that the errors in the

observation model and the trajectory of the camera are assumed to have a Gaussian distribution with only

a few methods assuming non-gaussian errors (e.g., mixture Gaussian distribution (Doherty et al., 2019)).

In practice, many objects cannot be initialized using a Gaussian distribution. For example, symmetrical

objects will have ambiguous poses that can stay so throughout the navigation and should be accounted for

appropriately. One possible solution is to use a DBN that does not assume a Gaussian error distribution.

To this end, the earlier EKF-SLAM (Smith and Cheeseman, 1986) and Extended Information Filter (EIF-

SLAM) (Nettleton et al., 2000) were replaced later by PF-SLAM (Thrun et al., 2001).

31

Table 2.4: Summary of the components and the framework used in different state-of-the-art object-level solutions.

Object-Level Solution
Methodology

Object Detection Object Representation Frontend/backend

(Bowman et al., 2017) Detector/Descriptor+ DL No 6DoF object models used LBA/FG

(Bernreiter et al. 2019) Detector/Descriptor+ DL No 6DoF object models used Not mentioned/FG

(Doherty et al. 2019) DL No 6DoF object models used EKF/FG

(Qian et al. 2020) Detector/Descriptor+ DL Ellipsoids LBA/FG

(Pillai & Leonard 2015) Detector/Descriptor Online (feature point clusters) LBA/FG

(Civera et al. 2011) Detector/Descriptor Offline (feature point clusters) EKF/ (no backend)

(Nicholson, et al. 2019) DL Ellipsoids decoupled estimation/FG

(Ok et al., 2019) DL Ellipsoids LBA/GBA

(Hosseinzadeh et al., 2018) Detector/Descriptor+ DL Ellipsoids LBA/FG

(Joshi et al., 2018) DL Offline (category-level 3D models) decoupled estimation/FG

(Parkhiya et al., 2018) DL Offline (category-level 3D models) decoupled estimation/FG

(Choudhary et al., 2014) Detector/Descriptor Online (point cloud) FG

(Ahn et al., 2006) Detector/Descriptor Offline (feature point clusters) EKF

(Castle et al., 2010) Detector/Descriptor Offline (feature point clusters) EKF

(Prisacariu et al., 2013) Active contours Online (3D level-sets) Other optimization methods

(Ma & Sibley, 2014) Active contours Online (3D level-sets) Other optimization methods

(Dharmasiri et al. 2016) Detector/Descriptor Online (feature point clusters) LBA/GBA

(Yang & Scherer, 2019) Detector/Descriptor+ DL Cuboids LBA/GBA

(Deng et al., 2021) DL 3D models with RGB values RBPF

(Song et al., 2021) No object models are used No object models are used EKF

32

Table 2.5: Details of different state-of-the-art object-level solutions.

Object-Level Solution
Methodology

Details

(Bowman et al., 2017) • Classical point-based visual odometry is used for the initial solution

(Bernreiter et al. 2019) • Visual/lidar odometry is used for initial solution

(Doherty et al. 2019) • Classical point-based visual odometry is used for the initial solution

(Qian et al. 2020)
• ORB-SLAM is used for the initial solution.

• Object ellipsoids are initialized with the help of bounding tangential planes.

(Pillai & Leonard 2015)
• ORB-SLAM is used as the initial solution.

• The solution to SLAM is used to increase the accuracy of object detection.

(Civera et al. 2011) • Objects are initialized using PnP

(Nicholson, et al. 2019) • Object ellipsoids are initialized with the help of bounding tangential planes.

(Ok et al., 2019)
• Classical point-based visual odometry is used as the initial solution.

• Object ellipsoids are initialized with the help of bounding tangential planes.

(Hosseinzadeh et al., 2018)
• ORB-SLAM2 is used to provide the initial solution.

• Besides objects, planar surfaces are also used.

(Joshi et al., 2018)
• Visual odometry is used for camera pose estimation.

• Object poses are estimated using very simple shape-prior.

(Parkhiya et al., 2018)
• Visual odometry is used for camera pose estimation.

• Object poses are estimated using statistical shape-priors

(Choudhary et al., 2014)
• ICP and wheel odometry is used for sensor pose estimation.

• As objects are modelled, the initial object pose is assumed.

(Ahn et al., 2006) • Homography-based object pose estimation

(Castle et al., 2010) • Homography-based object pose estimation

(Prisacariu et al., 2013) • Single-object joint 3D reconstruction and SLAM

(Ma & Sibley, 2014) • Multiple-objects joint 3D reconstruction and SLAM

(Dharmasiri et al., 2016)
• The initial solution is provided using classical monocular-based SLAM.

• Object poses are only used to provide constraints in BA.

(Yang & Scherer, 2019)
• ORB-SLAM2 is used to provide the initial solution.

• The pose is estimated using a single image.

(Deng et al., 2021) • Only uses one object.

(Song et al., 2021) • End-2-end pose estimation

33

PF-SLAM does not assume the parameters have a Gaussian distribution and is, therefore, more

suitable for object-level SLAM due to the abovementioned issue. A special type of PF-SLAM is RBPF-

SLAM (Montemerlo & Thrun, 2003; Murphy & Russell, 2001) which reduces unnecessary computations.

Due to the structure of the SLAM problem, it is observed that for a given particle, the poses of the

landmarks in the map are conditionally independent. Thus, storing or computing such information for a

given particle is avoided using RBPF.

RBPF-SLAM has been applied in the past using simpler geometrical entities such as points (Eade

& Drummond, 2006; Nguyen et al., 2008) and lines (Eade & Drummond, 2009), but only recently applied

to objects (Deng et al., 2021). Figure 2.4 shows the evolution of DBN-based solutions to the SLAM

problem. To the best of the author’s knowledge, the framework explained in (Deng et al. 2021) is the first

object-level RBPF-SLAM; however, it is only based on a single object.

Figure 2.2: Timeline of the DBN-based solutions to the SLAM problem.

E
K

F
-S

L
A

M

Timeline

1986 2000 2001 2003 2006 2008 20212010

E
IF

-S
L

A
M

P
F

-S
L

A
M

R
B

P
F

-S
L

A
M

P
o

in
t-

b
as

ed

L
in

e-
b

as
ed

P
la

n
e-

b
as

ed

O
b

je
ct

-b
as

ed

Monocular Camera

34

It is known that PF-based methods suffer from the Curse of Dimensionality (COD) (Daum &

Huang, 2003). Defining COD is beyond the scope of this thesis, and other resources can be used for further

information (Asl Sabbaghian Hokmabadi, 2018). However, due to the COD, the number of particles

required to effectively sample the space of the solutions can grow exponentially as the number of

dimensions grows. This leads to an increase in computational cost significantly. The dimensions of the

particles in PF-SLAM are very large due to the number of features in the map.

In this thesis, a novel mapping and localization framework is developed that addresses some of the

problems associated with the state-of-the-art object-level mapping and localization framework. The

developed approach is summarized in section 2.7.

2.6 Data Fusion: Towards Motion Prediction and Object Initialization

Cameras provide an advantage for object detection/segmentation as the rich radiometric

information acquired from the RGB channels of a camera can help detect the appearance and the shape of

the objects in the environment. Cameras in the past have been used as standalone solutions to object-level

SLAM; however, relying on only a camera is a challenging task. One of the challenges is that cameras

depend on the observation of the objects in the environment to estimate the trajectory. This can lead to

large errors in trajectory estimation when there are no or few objects in sight of the camera. In these

circumstances, heuristic motion models should be used to estimate the camera’s trajectory (such as the

constant velocity). However, such motion models are reliable when the camera does not move fast.

Therefore, fusing cameras with sensors such as IMU is more advantageous. IMU can predict the motion,

while the camera observations can be used to weigh the particles in object-level RBPF-SLAM.

A key component of such data fusion is extrinsic calibration, which refers to finding the relative

orientation (boresight) and the translation (lever arm) between two sensors. IMU and monocular camera

extrinsic calibration in the past has been achieved using mainly two classes of methods. Methods that

35

depend on special equipment (Lobo & Dias, 2007) and methods that depend on independent trajectory

estimation for each sensor (Kelly & Sukhatme, 2009). The first class of methods does not offer an on-site

solution and is not useful when the extrinsic calibration parameters are changed during the navigation (for

example, due to physical shocks to the device’s body). The second class of methods requires an

independent and accurate estimation of the trajectory for each sensor. However, this solution might be

erroneous since low-cost IMU produces large errors in a short period of navigation. Similarly, accurate

trajectory estimation with a monocular camera that is useful for extrinsic calibration requires special

targets (such as checkerboards) and is challenging. In addition to these shortcomings, most previous

solutions require an initial estimation of the calibration parameters (Furgale et al., 2013; Huang & Liu,

2018). In this thesis, a novel calibration method is developed that is not affected by the disadvantages

mentioned before. The advantages of the developed method are explained in section 2.7

In addition to the issues related to trajectory estimation, other challenges also exist for a monocular

camera. A monocular camera is a type of bearing-only sensor where only the direction of a point from the

camera is known. Using a bearing-only sensor, it is not possible to insert the landmarks into the map with

few observations. The problem of inserting landmarks into the map is known as initialization. In the past,

two classes of methods were proposed to solve the initialization problem. The first approach is delayed

initialization, where points are observed from different viewpoints, and therefore, the uncertainty of the

position of a landmark can be reduced (Bailey 2003; Davison et al. 2007; Munguia & Grau 2012). Delayed

initialization methods use techniques such as triangulation to reduce the uncertainty of the location of a

landmark. Therefore, a landmark should be observed from different viewpoints with a sufficiently large

baseline. Delayed initialization is suitable for landmarks close to the robot, while distant landmarks cannot

be initialized using this approach. Further, during the delayed initialization, corrections to the robot’s

36

trajectory are not possible. This will cause challenges in IMU/monocular-based solutions as relying only

on an IMU for pose estimation for a longer period can deteriorate the solution significantly.

In order to address the abovementioned issues, undelayed initialization has been proposed in the

past. In undelayed initialization, points are immediately inserted into the map with a large location

uncertainty (Gordon et al., 1993; Kwok & Dissanayake, 2003, 2004; Solà et al., 2005; Mungúia et al.,

2013). The accuracy of the trajectory estimation of a robot can be improved using undelayed initialization

(Eade & Drummond, 2006). This improvement is because of the utilization of landmarks for bearing

correction immediately after they are observed. However, due to the unknown position of a landmark at

the initialization phase, undelayed methods use larger uncertainty. This uncertainty, in turn, will require

more particles in RBPF-SLAM and, therefore, increase the computational cost. See Figure 2.3 for a

schematic comparison of delayed and undelayed initialization. In delayed initialization, the landmark

cannot be inserted into the map at the time 𝑡𝑘 but as the robot moves and encounters the object, the

uncertainty in the position of the object decreases. Finally, the object can be inserted into the map at the

time 𝑡𝑘+1. During the motion, the robot can only rely on other sensors (such as wheel odometry) to

estimate its position but not the camera. In contrast, in undelayed initialization, the landmark is instantly

inserted into the map at the time 𝑡𝑘 but with large uncertainty. During the motion, this uncertain landmark

can still provide partial corrections to the pose of the robot.

With the help of 2D and 3D rangefinders, the distance to the object can also be directly observed.

Unfortunately, the points clouds obtained using these sensors are sparse in comparison to the resolution

of the camera and therefore, most pixels will lack an associating depth. However, unlike point-based

SLAM methods, objects are volumetric entities, and object segments can occupy a large number of pixels

in the image. A few or even one pixel with a depth value can be used for the initialization, making it

37

possible to use 2D sensors such as ultrasonic rangefinders. The initial pose of the object can improve

during the filtering process as more observations become available.

Figure 2.3: Schematic comparison of delayed and undelayed initializations.

In this thesis, a novel fusion method of an ultrasonic rangefinder and a monocular camera is

developed. The developed solution projects ultrasonic observations onto the image. If the projected

ultrasonic observation falls within the segmented area of the object, distance observation can be utilized.

More details about this technique of fusion are provided in Section 3.6. Since the projection of the

ultrasonic reading in the image requires accurate extrinsic calibration, the remainder of this section will

briefly explain the methods of extrinsic calibration of a 2D rangefinder and a monocular in the past and

underline the current gaps.

Map

landmark

No initialization at

Map

Robot at

Robot at

Map

landmark

Map

Robot at

Robot at

Initialization but with
larger uncertainty at

Delayed Initialization Undelayed Initialization

38

Extrinsic calibration methods between rangefinders and cameras could be divided into targetless

and target-based methods. The target-based approach utilizes a special target, such as a checkerboard. The

checkerboard is placed in a location that can be detected using the camera and the rangefinder. An extrinsic

calibration method often matches detected lines on the checkerboard using a 2D rangefinder with the

detected checkerboard’s plane using a camera (Zhang & Pless, 2004; Unnikrishnan & Hebert, 2005;

Kassir & Peynot, 2010; Gomez-Ojeda et al., 2015; Dong & Isler, 2018). The literature indicates that 20-

30 (Unnikrishnan & Hebert, 2005) detected points on the checkboard are required. However, this number

is large for the ultrasonic rangefinder with a low angular resolution. Therefore, the checkerboard size

should be larger, substantially increasing the cost. In the target-less calibration approach, the structure of

the surrounding environment has been utilized for the calibration. To the author’s knowledge, the target-

less calibration methods are developed for more accurate rangefinders (e.g., LiDAR). The developed

method in this thesis is a targetless calibration method that utilizes the available structure of the indoor

manmade environment to find a match between certain points observed by a monocular camera and a local

map built by the ultrasonic rangefinder. Section 5.4 will provide a detailed methodology.

2.7 Chapter Summary

Object-level SLAM includes a number of components. These components are object

detection/segmentation, object representation and object pose estimation. Finally, the components are

integrated using a mapping and localization framework. Based on the literature review, a number of

important research gaps are identified and addressed in this thesis. In the following, the research gaps and

overview of the developed solution are summarized.

Current object-level SLAM mapping and localization rely on the classical feature point-based

methods for the initial solution. These feature point-based methods (such as ORB-SLAM 2) themselves

rely on the assumption that the objects of interest have texture on them. Further, most of the current

39

methods rely on the fact that the uncertainties in the camera pose and the objects can be represented using

Gaussian distribution. In order to address these issues, a tightly coupled IMU/monocular camera object-

level solution using RBPF-SLAM is developed. This developed approach can address the restriction of

the current methods. Further, the proposed solution only relies on the shape of the object of interest.

One of the challenges with the fusion of a camera with low-cost IMUs is that the errors tend to

accumulate very fast due to the dead-reckoning nature of an IMU mechanization. While in the outdoor

environment, this can be addressed by providing frequent updates using GNSS signals, in the indoor

environment, other sensors should provide such updates (here, camera). This problem is specifically very

important when an object is encountered for the first time. In order to address this challenge, an undelayed

initialization is utilized in the thesis. With the help of such initialization, the measurement updates can be

provided to IMU immediately after the object is observed in the first image. Unfortunately, the undelayed

initialization using a monocular camera results in large ambiguity in the distance of the camera from the

object of interest. In order to address this issue, in this thesis, a novel method of fusion with low-cost

ultrasonic sensors is proposed.

In order to achieve a fusion between an IMU and a monocular camera, the system should be

calibrated. This calibration process includes estimating the boresight and lever arm parameters. In the past,

most calibration methods required targets (often with known coordinates) and/or special equipment.

Further, most solutions require an initial estimate of the parameters. However, such an initial estimate

might not be available. In this thesis, a method of extrinsic calibration is developed which utilizes

Manhattan World Constraint (MWC). MWC refers to the geometrical relationship of the planar surfaces

(e.g., wall, floor, ceiling) in the indoor environment, where these surfaces are often parallel or orthogonal

to each other. Such structures can be used to correct the heading of a device (Elloumi et al., 2014) or

40

provide constraints in the map-building process (Abadi & El-Sheimy, 2022). In Section 5.3, the

development of the IMU/camera boresight calibration using MWC is explained.

While object detection and segmentation have been proposed in the past, a segmentation algorithm

is often preferred to detection since it can identify the object of interest at the level of pixels. The state-of-

the-art solutions for object segmentation rely mainly on DNNs. However, training such networks requires

a large database. For most objects, it is difficult to find training images and their corresponding output

masks in the available online databases. In these situations, synthesizing images can meet the large training

set requirement. In this thesis, a hybrid approach to generate a set of synthetic training images and output

masks is proposed. This approach relies on the fact that for the task of object segmentation using

monocular cameras, it is sufficient to only segment the foreground (object) from the background clutter.

In this method, the object’s pose and the illumination conditions (such as shading and highlights) are

simulated. For the background (the scene), real images are captured from multiple indoor environments.

The simulated object is projected onto a virtual camera and is finally superimposed on a background

image. The simulated setup is used to generate tens of thousands of virtual training images and output

masks. With the help of these images, a U-Net (Ronneberger et al., 2015) model is trained. Section 4.2

will explain this in more detail.

The shape-based object representation in the past was achieved using 2D and 3D shape priors. The

3D shape-priors can be directly matched to the observation from the monocular cameras. Further, the 2D

shape-priors are often built using a set of images captured from the object of interest from different

viewpoints. Representing an object using images can lead to challenges in the matching step. Such

challenges are due to the difficulty of changing the scale, in-plane rotation and translation for an image-

based representation. In this thesis, the objects are represented using a collection of explicit 2D contours.

Samples taken from this set for four objects are shown in Figure 2.4.

41

Figure 2.4: Some samples taken from the shape-prior set for four objects

The shape-prior set can provide a coarse estimation of the pose of the object with respect to the

camera in the matching process. The developed method has robustness to geometrical and photometric

distortions since it does not rely on textures. Sections 4.3 and 4.4 will explain the details of the developed

approach.

The state-of-the-art end-to-end pose estimation often requires a large data set and can encounter

difficulty addressing issues regarding symmetrical objects. On the other hand, most of the classical

solutions to the pose estimation rely on the detection of salient feature points on the objects. In this thesis,

a novel method of shape-based pose estimation is developed to address these challenges and limitations.

For this approach, initially using a DNN, objects are segmented from background clutter, occlusions, and

other sources of distortions. This segmented object is then matched to the shape-prior introduced in the

previous paragraph. The output of this matching process is a list of best poses (poses with the smallest

errors) instead of only one pose; therefore, it can also be used for symmetrical objects. Finally, the initial

coarse pose estimation is refined using a PnP algorithm. This pose estimation method does not rely on the

object’s texture. Figure 2.5 illustrates three examples of estimated poses using the developed method. In

42

this figure, the object of interest is a blue water bottle cap. The 3D model of the object and the estimated

viewpoints are shown in an object-centric coordinate frame (Figure 2.5 top row). For this example,

hundreds of best poses are selected for clear visualization. The images are taken from different angles,

and it can be seen that object symmetry will result in ambiguity in the pose. Pose estimation and pose

refinement are important modules for the loosely coupled IMU/monocular camera approach, and it is

explained in Sections 4.3 to 4.4 in detail.

Figure 2.5: Samples of the developed contour-based pose estimation. This method can estimate ambiguous poses.

43

 Chapter 3: Tightly/Loosely Coupled Object-level RBPF-SLAM

3.1 Overview

The Object-level SLAM problem includes many sources of errors. Among these, a type of error

can occur due to the symmetrical shape or appearance of the object from different viewpoints, which

results in ambiguity in the object’s pose with respect to the camera. Another type of error can arise in the

process of object segmentation. Such errors occur since the objects can be partially segmented due to

occlusions (or background clutter) in the indoor environment. These two types of errors are amongst many

that can result in inaccuracies or complete failure of the solution to the SLAM problem. In order to account

for such errors, Gaussian distribution is unrealistic and classical DBN such as EKF cannot be utilized. For

example, if symmetrical objects are encountered, camera poses are best represented by two or more

Gaussian distributions around the symmetrical axes of the object. Therefore, utilizing other DBN methods

that can use or approximate multimodal distributions, such as RBPF, is crucial.

In Section 3.2, an overview of the object-level RBPF-SLAM is provided. In Sections 3.3 and 3.4,

the developed loosely and tightly coupled IMU/camera fusion methods are explained. In these methods,

the acceleration and angular velocity readings from IMU are used to predict the trajectory of the particles

and images from the camera are used to weigh the particles. Such fusion can be useful for handheld devices

nowadays, as they include both of these sensors. For the wheeled robot (which is a widely used type of

robot), IMUs can be replaced with wheel odometers, and tightly/loosely coupled methods can be adapted

to these robots. The main difference is that instead of using IMU mechanization, the robot’s kinematic

model is used to predict the trajectory, which is explained in Section 3.5. In Section 3.6, it is explained

how an ultrasonic rangefinder can also be integrated into the developed solution. Such fusion will provide

distance observation to the object and reduce the pose of uncertainty. Finally, Section 3.7 discusses some

of the challenges with the particle weighting process in RBPF-SLAM.

44

3.2 Object-level RBPF-SLAM

DBN has been utilized in the past to formulate a solution to the SLAM problem. These Bayesian

networks include two main types of variables. The first type is the known variables. Examples of such

variables can be the odometry inputs or the observations (e.g., images, point clouds). The second type of

variable is the hidden variable. The hidden variables are not directly observed but can be estimated given

the known variables. The hidden variables can be the robot’s state (e.g., position, attitude) and the

landmark’s state (e.g., position). The landmarks can be points, lines as well as objects. One of the

differences between the object-level and classical point-based SLAM is that the landmarks defined as

objects have an orientation as well as a position. Figure 3.1 shows a simple schematic of DBN where

hidden variables are shown in gray colour. In this figure, the inputs, the device’s poses, the observations,

and the landmarks are denoted as 𝑢, 𝑥, 𝑧 , 𝑚, respectively. In a SLAM problem, the motion model predicts

the next state, while the observation model is used to update the state of the robot and the landmarks.

Particle filters are among the methods that can be used to implement a DBN.

Figure 3.1: Illustration of the Dynamic Bayesian Network of the SLAM problem

m
o
ti

o
n
 m

o
d
el

observation model

object’s poses (orientation and translation)

Odometry inputs

devices poses

observations

45

The developed method in this thesis extends the methodology of RBPF-SLAM to objects. RBPF-

SLAM is a special type of PF-SLAM, where each particle represents a possible trajectory of a robot (𝑥)

and the pose of the landmarks in the environment (𝑚). Equation 3.1 shows the formalization of RBPF-

SLAM (Montemerlo & Thrun, 2003) where subscript 1: 𝑡 indicates epochs starting from the beginning of

the navigation time (𝑥1:𝑡 = {𝑥1, 𝑥2, . . . 𝑥𝑡}). The first term on the right-hand side of Equation 3.1 is the

posterior of the robot’s trajectory, and the second term is the posterior of the state of the landmarks in the

map. A single particle is associated with one trajectory and one map, each consisting of multiple objects.

In this equation, data association between landmarks and observations is denoted as 𝑎. Data association

is the process of assigning observations to landmarks which can be a challenging problem when there are

similar-looking objects in an environment. As suggested by (Montemerlo & Thrun, 2003), Maximum

Likelihood Estimation (MLE) can be used to keep the most likely data association for each particle.

Equation 3.2 shows this where 𝑥1:𝑡
[𝑛]

 denotes the trajectory of the 𝑛𝑡ℎ particle, 𝑎𝑡 denotes a data association

hypothesis, and 𝑎̂𝑡
[𝑛]

 denotes the MLE for the data association. 𝑎̂𝑡
[𝑛]

can be inserted back into Equation 3.1

once calculated.

𝑝(𝑥1:𝑡, 𝑚|𝑎1:𝑡, 𝑧1:𝑡, 𝑢1:𝑡) = 𝑝(𝑥1:𝑡 |𝑎1:𝑡, 𝑧1:𝑡, 𝑢1:𝑡)∏ 𝑝(𝑚𝑗|𝑥1:𝑡, 𝑎1:𝑡, 𝑧1:𝑡, 𝑢1:𝑡)𝑗 (3.1)

𝑎̂𝑡
[𝑛]

= 𝑎𝑟𝑔𝑚𝑎𝑥𝑎𝑡
𝑝(𝑧𝑡|𝑎𝑡, 𝑎̂1:𝑡−1

[𝑛]
, 𝑥1:𝑡

[𝑛]
, 𝑧1:𝑡−1, 𝑢1:𝑡) (3.2)

The update step in the RBPF-SLAM includes particle weighting and resampling. The weighting

is proportionate to the observation likelihood, and it is shown in Equation 3.3 (𝑤𝑡
[𝑛]

 denotes the weight).

The right-hand side is only proportionate to the left-hand side since the weights have to be normalized to

sum to one. The details about weighting will be provided in Sections 3.3. and 3.4.

𝑤𝑡
[𝑛]

∝ 𝑝 (𝑧𝑡|𝑎̂𝑡
[𝑛]

, 𝑥1:𝑡
[𝑛]

, 𝑧1:𝑡−1, 𝑢1:𝑡) (3.3)

46

As an overview, the following modules should be defined in RBPF implementations (flowchart

provided in Figure 3.2).

1. Proposal distribution is the predicted trajectory of particles, and it is obtained using a motion model.

If IMU is available, mechanization can be used as the motion model. For wheeled robots, the kinematic

model can be used to provide the motion model. Section 3.3 will discuss the IMU mechanization, and

Section 3.5 will discuss the kinematic modelling of a differential-drive robot.

2. Particle weighting is performed using observation likelihood, which can be measured as the distance

between actual and predicted observations. For tightly coupled and loosely coupled methods, different

particle weighting methods are used. In Sections 3.3 and 3.4, these weighting methods are defined.

3. Resampling is used to duplicate the particles with higher weights and discard particles with lower

weights. Resampling often is performed when most of the weights are concentrated in a few particles.

In the following sections, the utilized resampling strategy is explained.

4. Data association is the process of assigning observations to landmarks. If observations are associated

with the wrong landmarks, large errors will be introduced. Therefore, it is important to have a strategy

that is robust to false data associations. The data association in this thesis is used to assign ultrasonic

rangefinder observations to objects, which is explained in detail in Section 3.6.

Figure 3.2: The flowchart of a RBPF algorithm.

Step1:
Proposal distribution

Step3:
Particle Weighting

Step2:
Data Association

New
Observation

Step4:
Resampling

Resample?

1 Particle: 1 trajectory and associated mapNo

Yes

No

Yes

47

3.3 Loosely Coupled IMU/Monocular Camera Object-level RBPF SLAM

In the following, an overview of the developed loosely coupled IMU/camera object-level SLAM

is given. The details, such as mathematical derivations, are provided later in this section. See Figure 3.3

for the flowchart of the algorithm. The first step is the initialization of the particles, which can be achieved

if an image containing at least one object is available. This object is segmented in the image, and the

object’s pose is estimated in the camera’s coordinate frame (object segmentation and pose estimation is

explained in Sections 4.2 and 4.4). The estimated pose is transformed to the inertial frame defined as the

initial position of the IMU (will be explained later in this section). In order to generate the initial proposal

distribution, particles are sampled around the estimated pose. The exact details of the initialization strategy

differ if an ultrasonic rangefinder is available or not. Without such a sensor, samples should be taken with

a larger uncertainty in the direction from the object toward the camera. However, if the ultrasonic sensor

provides distance to the object, the uncertainty in all three directions can be assumed to be equal.

In the next step, the pose of the particles is predicted using IMU mechanization. In the particle

proposal, noise is added to the output from mechanization. In order to weigh these particles, at least one

object should be observed. Object segmentation is applied to the image, and if there is an object in the

image, the camera’s pose is estimated with respect to the object. This pose is denoted as the observed

pose. If this object is already initialized in the map (its coordinates are known in the inertial frame), it is

also possible to estimate the camera’s pose in the object’s frame independently using the particle

proposals. This pose is denoted as the predicted pose. In order to weigh the particles, the distance between

the observed and the predicted poses is measured. The loosely coupling of the IMU and monocular camera

here refers to the fact that particle weighting happens only after an independent pose estimation using each

of the sensors. If the object has not been initialized yet on the map, a different process should be followed.

Similar to the initialization phase, the object’s pose is estimated in the camera’s frame, and samples are

48

drawn around this pose. The sampled object poses are added to the map. If the object is initialized in the

current epoch (and no object is available to be segmented in the image), weighting and resampling cannot

be performed. In these cases, since all particles are propagated to the next frame without weighting, the

uncertainty increases. If no objects were observed for a period of time, the errors could accumulate as the

solution only relies on the IMU.

Finally, resampling can be performed after every weight update. Alternatively, a test can be used

to determine if resampling should be done. This approach follows research literature such as (Grisetti et

al., 2005), where resampling is performed if the weights are accumulated on a small percentage of the

particles.

Figure 3.3: Flowchart of the proposed IMU/monocular loosely-coupled object-level SLAM

Image
available

?

Particle
initialization Read the image

Start

New object pose
initialization

(camera frame)Particle proposal

Object
observed

?

object
segmentation

Weight update

Resample?Resampling

Yes

No

1 Particle: 1 Trajectory + 1 Map of Objects

Yes

No

No

Yes

Yes

Extrinsic Calibration Parameters

Mechanization

IMU Initialization

IMU data
available

?

end

Data association

Object pose
estimation
(proposed)

New
object?

New object pose
estimation

New object pose
initialization

(inertial frame)

No

Segmented
object

Particles

Segmented
object

Assign the new
object to each

particle

Particles

Object pose
estimation
(observed)

No

Yes

49

In order to explain the developed method mathematically, mechanization using IMU is explained

first. The difference between the developed mechanization and the typical mechanization in the Local

Level Frame (LLF) and Earth Centered Earth-Fixed frame (ECEF) (Noureldin et al., 2012) is that several

simplifications can be considered since the device (or robot) navigates a small indoor environment. It is

important to note that more elaborate mechanization methods can also be utilized if the robot is navigating

in larger indoor or outdoor environments. Figure 3.4 shows the mechanization in the inertial frame (an

inertial frame is a frame that can be assumed to have a constant velocity). The following assumptions and

differences are made to simplify the mechanization process. The first assumption is that the inertial frame

is the first frame (the frame before the devices are moved). This assumption is inaccurate since it neglects

the earth’s rotation. However, it is assumed that the earth’s rotation cannot be sensed reliably by low-cost

IMU sensors and, therefore, can be neglected in the developed solution. The second difference is in the

estimation of the gravity vector in the inertial frame. In the developed approach, the gravity vector is

assumed to be the only external force that applies to the device in the initial frame and is corrected in the

following frames. The gravity in the initial frame is estimated by keeping the device still for 10-15 seconds

and averaging the accelerometer’s reading. The initial rotation is set to an identity matrix.

Figure 3.4: Flowchart of IMU mechanization in an inertial frame

50

Equation 3.4 shows the transformation of the accelerometer to the inertial frame. The symbol 𝑅𝑏
𝑖

denotes the transformation from the body frame (𝑏) to the inertial frame (𝑖). With the previous

simplifications, in the initial frame, this matrix can be set to identity. In Equation 3.5, the velocities’ rate

can be computed by compensating for the gravity. The gravity vector 𝑔𝑒 is not computed directly. Rather

𝑅𝑒
𝑖𝑔𝑒 is set to the measured gravity vector in the initial (inertial) frame. The rate of the change of the

rotation matrix 𝑅𝑏
𝑖 is given in Equation 3.6 where 𝛺𝑖𝑏

𝑖 is a skew-symmetric matrix that is built using the

angular velocity reading provided by the gyroscopes. The angular rate is shown as the vector

[𝜔𝑥, 𝜔𝑦 , 𝜔𝑧]
′, denoting the rate of rotation around three axes of IMU (the symbol (.)′ denotes the

transpose of a vector). The skew-symmetric of such a vector is shown in Equation 3.7.

𝑓𝑖 = 𝑅𝑏
𝑖 𝑓𝑏 (3.4)

𝑣̇𝑖 = 𝑅𝑏
𝑖 𝑓𝑏 + 𝑅𝑒

𝑖𝑔𝑒 (3.5)

𝑅̇𝑏
𝑖 = 𝑅𝑏

𝑖 𝛺𝑖𝑏
𝑖 (3.6)

𝛺𝑖𝑏
𝑖 = [

0 −𝜔𝑧 𝜔𝑦

𝜔𝑧 0 −𝜔𝑥

−𝜔𝑦 𝜔𝑥 0
] (3.7)

In order to discretize the equations above, the following steps are taken. For the velocity and the

position, Equations 3.8 and 3.9 can be used. In these equations, the position vector in the inertial frame is

shown as 𝑟𝑘
𝑖 (the subscript 𝑘 denotes the epoch, and ∆𝑡 denotes the time step). Similarly, the velocities are

denoted as 𝑣𝑘
𝑖 . For the rotation matrix, Equation 3.10 can be used for discretization (where the S matrix is

defined as in Equation 3.11). The magnitude of the rotation is denoted as |𝜃| in Equation 3.10 and is

defined in Equation 3.12.

𝑟𝑘+1
𝑖 = 𝑟𝑘

𝑖 + ∆𝑡((𝑣𝑘+1 + 𝑣𝑘)/2) (3.8)

51

𝑣𝑘+1
𝑖 = 𝑣𝑘

𝑖 + ∆𝑡𝑣̇𝑖 (3.9)

𝑅𝑏,𝑘+1
𝑖 = 𝑅𝑏,𝑘

𝑖 (𝐼 +
sin(|𝜃|)

|𝜃|
𝑆 +

1−cos(|𝜃|)

|𝜃|2
𝑆2) (3.10)

𝑆 = ∆𝑡𝛺𝑖𝑏
𝑖 (3.11)

|𝜃| = ∆𝑡√𝜔𝑥
2 + 𝜔𝑦

2 + 𝜔𝑧
2 (3.12)

The mechanization will provide an estimate of the velocities and the attitude (represented as a

rotation matrix, Euler angles and so on) of the device in the inertial frame. The mechanization should be

repeated for each particle. In order to include process noise, two approaches are utilized in this thesis. The

first approach is based on using the calibration of accelerometers and gyroscopes, which can provide the

stochastic characteristics of the sensors. In this approach, samples can be taken from a Gaussian

distribution with a known noise variance for each sensor. This value can then be added to the raw reading,

and finally, the process of mechanization (as explained above) can be repeated for each particle. The

second approach is to use error models such as constant velocity, where the noise can be added after the

mechanization of the velocities. Both of these approaches are tested in this thesis.

In the loosely coupled scheme, the predicted pose from the particle proposal should be compared

to the observed pose estimated using the current image. In order to achieve this, the two poses should be

transformed into a single frame. The observed camera’s pose is in the object frame, and as mentioned

earlier, this pose is estimated directly using the segmented object in the image. Therefore, it is independent

of the particle’s pose (the pose estimation is explained in Sections 4.4 to 4.6). This observed camera’s

pose in the object frame is denoted by a homogeneous matrix 𝐻𝑐
𝑜. The overall structure of a homogeneous

matrix is shown in Equation 3.13, which includes both a rotation matrix (𝑅) and a translation vector (𝑟).

The following equations aim to show how to transform the estimated pose of the camera from the

mechanization (which is in the inertial frame) to the object’s frame.

52

𝐻 = [
𝑅 𝑟

𝟎𝟏𝒙𝟑 1
] (3.13)

With The help of mechanization, we know the transformation from IMU’s frame to the inertial

frame (denoted as 𝐻𝑏
𝑖). It is assumed that IMU’s frame coincides with the body frame, and the subscript

𝑏 is used to denote IMU’s frame. Furthermore, the extrinsic calibration parameters of the camera and IMU

are known, and it is denoted as 𝐻𝑐
𝑏. Therefore, it is possible to derive the transformation from the camera

to inertial frame using the proposal distribution. This is denoted as 𝐻̃𝑐
𝑖 as shown in Equation 3.14 (the

symbol (.)̃ denotes predicted values). If the object is initialized in the map, the transformation from the

object’s frame to the inertial frame is also known (𝐻𝑜
𝑖); therefore, Equation 3.15 can be used to derive the

predicted pose of the camera in the object’s frame.

𝐻̃𝑐
𝑖 = 𝐻𝑏

𝑖𝐻𝑐
𝑏 (3.14)

𝐻̃𝑐
𝑜 = 𝐻𝑖

𝑜𝐻̃𝑐
𝑖 (3.15)

In order to weigh the particle, Equation 3.3 can now be used. The weights, as mentioned, are

proportionate to the observation likelihood. In the loosely coupled scheme, this observation likelihood is

not calculated directly, but it is approximated using Equation 3.16.1. In Equation 3.16.1, the updated

weight (𝑤𝑘+1
[𝑛]

) is calculated using the current weight of the particle (𝑤𝑘
[𝑛]

) multiplied by an exponential

proportional to the distance vector (∆𝑒). The distance vector is calculated between the estimated position

of the camera using the mechanization (𝑟̃𝑘+1
𝑜,[𝑛]

, estimated with 𝐻̃𝑐
𝑜) and the estimated position of the camera

using object pose estimation (𝑟𝑘+1
𝑜 , estimated with 𝐻𝑐

𝑜) (see Equation 3.16.2). This equation assumes that

the errors in the observation likelihood of a single particle follow a Gaussian distribution; however, it is

important to note that from this assumption, it does not follow that the distribution of particles is Gaussian.

Similar weighting methods were used in the past for point-based RBPF-SLAM (Montemerlo & Thrun,

53

2003). In Equation 3.16.1, all the constants are included in the term ղ, and since the weight of the particles

should sum to one, it is not required to calculate the constants explicitly for each particle. The covariance

matrix (𝛴∆𝑒) can be set experimentally. The details about how to set values of covariance appropriately

are provided in the following.

𝑤𝑘+1
[𝑛]

= ղ 𝑤𝑘
[𝑛]

[𝑒𝑥𝑝(−
1

2
∆𝑒́𝑘+1

[𝑛]
𝛴∆𝑒

−1∆𝑒𝑘+1
[𝑛]

)] (3.16.1)

∆𝑒𝑘+1
[𝑛]

= 𝑟̃𝑘+1
𝑜,[𝑛]

− 𝑟𝑘+1
𝑜 (3.16.2)

The abovementioned method can be used when the pose estimation using the camera is also known

up to the correct scale. Unfortunately, without a rangefinder such as an ultrasonic sensor, it is not possible

to estimate the object’s pose with the correct scale (unless the size of the object is assumed to be known).

Therefore 𝑟𝑘+1
𝑜 will only be estimated up to an unknown scale while 𝑟̃𝑘+1

𝑜,[𝑛]
 has a scale. In this case, an

alternative approach based on the unit vectors is shown in Equation 3.17. The unit vectors can be derived

by normalizing the vectors. For the normalizations, each element of the vector is divided by the magnitude

of the vector (denoted with symbol ||. ||).

∆𝑒̂𝑘+1
[𝑛]

= 𝑟̃𝑘+1
𝑜,[𝑛]

/||𝑟̃𝑘+1
𝑜,[𝑛]

|| − 𝑟𝑘+1
𝑜 /||𝑟𝑘+1

𝑜 || (3.17)

Setting the values for the covariance matrix (𝛴∆𝑒
−1) is challenging using the normalized vector since

the distance ∆𝑒̃𝑘+1
[𝑛]

 is difficult to interpret. One solution is to measure the angle between the two vectors,

as shown in Equation 3.18. The angle between the two vectors can be understood as shown in Figure 3.5.

We expect this angle not to be larger than 5° to 10°; however, setting this value depends on the IMU errors

and the errors in the pose estimation generally. Overall, one of the issues with the loosely coupled method

is the difficulty of determining the covariance matrix associated with the uncertainties in ∆𝑒̂𝑘+1
[𝑛]

.

∆𝑒̂𝑘+1
[𝑛]

= 𝑎𝑡𝑎𝑛2 (𝑟̃𝑘+1
𝑜,[𝑛]

/||𝑟̃𝑘+1
𝑜,[𝑛]

||, 𝑟𝑘+1
𝑜 /||𝑟𝑘+1

𝑜 ||) (3.18)

54

Figure 3.5: Illustration of the estimated and observed object pose error in loosely coupled object-level SLAM.

3.4 Tightly Coupled IMU/Monocular Camera Object-level RBPF SLAM

The tightly coupled approach has many common procedures with the loosely coupled method.

Here, the repetition is avoided, and only the differences are highlighted. In the developed tightly coupled

IMU/camera object-level SLAM, the particles are weighed using the observation likelihood. The

likelihood is proportionate to the distance between the predicted (𝑧̃) and the observed contour (𝑧). The

distance between points on the contour cannot be measured directly. This is because the correspondence

between the points on the predicted and the observed contours is unknown. Therefore, instead of a point-

to-point distance, the Intersection over Union (IoU) area of the two contours is used as the similarity

measure. This measure is inversely proportional to the distance. Similar approaches have been used to

Camera’s frameIMU’s frame

Inertial frame

Object

55

define the distance between two contours in the past (Tsai et al. 2003). The IoU can be 1 at maximum

when two contours exactly coincide, while it is 0 when one contour is completely outside of another.

In order to obtain the predicted contour (𝑧̃𝑘+1
[𝑛]

), the 3D points on the object’s surface are projected

onto the image plane (via the predicted pose of the object in the camera’s frame). The predicted contour

is estimated as the boundary around these points, similar to some methods in the past (Rosenhahn et al.,

2007). In order to obtain the observed contour (𝑧𝑘+1), object segmentation is used (explained in Section

4.2). Figure 3.6 shows a schematic of the explained process. In the tightly coupled method, the weights of

the particle are updated using Equation 3.19. The distance (𝑑(𝑧̃𝑘+1
[𝑛]

, 𝑧𝑘+1)) is defined as the inverse of IoU

shown in Equation 3.20. The flowchart of the tightly coupled method is shown in Figure 3.7.

𝑤𝑘+1
[𝑛]

= ղ 𝑤𝑘
[𝑛]

[𝑒𝑥𝑝 (−
1

2𝜎𝑑
(𝑑 (𝑧̃𝑘+1

[𝑛]
, 𝑧𝑘+1) − 1)

2
)] (3.19)

𝑑 (𝑧̃𝑘+1
[𝑛]

, 𝑧𝑘+1) = (𝐼𝑜𝑈(𝑧̃𝑘+1
[𝑛]

, 𝑧𝑘+1))
−1 (3.20)

Figure 3.6: Particles are weighted using the distance between the predicted and observed contour of the object.

Segmented Contour ()

Projection() d()

56

Figure 3.7: Flowchart of the proposed IMU/monocular tightly-coupled object-level SLAM

The tightly coupled method, as it will be shown in Chapter 7, can produce a more accurate solution

than the loosely coupled. However, particle weighting in the tightly coupled can be computationally

expensive. The following should be taken into consideration for real-time implementation.

1. Initially, only the centroid of the 3D points on the object’s surface can be projected onto the image.

If the centroid does not fall close to the segmented object, a small weight can be immediately

assigned to the corresponding particle without further computations.

2. For all the remaining particles, all the 3D points are projected onto the image, and the centroid is

estimated again. Similar to the previous step, if the distance between the estimated and segmented

Image
available

?

Particle
initialization Read the image

Start

New object pose
initialization

(camera frame)Particle proposal

Object
observed

?

object
segmentation

Weight update

Resampling?Resample

Yes

No

1 Particle: 1 Trajectory + 1 Map of Objects

Yes

No

No

Yes

Yes

Extrinsic
Calibration
Parameters

Mechanization

IMU Initialization

IMU data
available

?

end

Data association

Object pose
estimation
(proposed)

New
object?

New object pose
estimation

New object pose
initialization

(inertial frame)

No

Segmented
object

Particles

Segmented
object

Assign new
object to each

particle

Particles

Project object
onto image

Measure IoU

Yes

No

57

object’s centroids is above a certain threshold, the corresponding particle is assigned a small

weight and further computations are avoided.

3. It is important to note that not all the points in the 3D model are required to be projected onto the

image for a reasonably accurate estimation of the predicted contour. Therefore, it is possible to

down-sample the 3D points of the object to further decrease the computational burden.

Figure 3.8 shows the developed fast method to measure the IoU for each particle. In order to

measure IoU, the following steps are taken. First, the center of 3D points on the object’s surface is

projected onto the image using the estimated particle’s pose (assuming the camera’s calibration matrix is

known). It is also assumed that the segmented object in the image is available. Then, the distance between

the projected and segmented object’s center is measured to test whether it is smaller than a threshold. If

the distance is smaller, then the down-sampled object’s 3D points are projected onto the image and the

boundary of the projected points is found. There are many approaches to finding such boundaries. In this

thesis, a MATLAB function designed for this task is utilized. In the next step, the projected boundary

points are rasterized (they are inserted into an image where pixels corresponding to the boundary are

assigned as 1 and the remaining pixels are assigned 0). In order to ensure that the rasterized boundary is

connected, morphological dilation is used. Finally, the inside of this connected boundary can efficiently

be assigned with 1 using the known morphological operation of hole filling (Woods & Gonzalez, 2008).

The mentioned steps of detecting boundary, rasterizing and filling the image can also be repeated for the

segmented object. Since the output of DL is already a binary image, it is unnecessary to go through the

same steps, and this process can be skipped. Finally, an additional step of size reduction is also performed.

Size reduction can greatly reduce the computational cost of measuring IoU, and in our experiments, it did

not affect the performance of the tightly coupled method. Once the two masks are available logical

operations on binary images can be used to calculate IoU.

58

Figure 3.8: Flowchart of the process particle weighting in tightly-coupled object-level SLAM

3.5 Wheel Odometry/Monocular Camera Object-level SLAM

For the wheeled robot, loosely and tightly coupled methods are implemented similarly to the

previous section. Here, only the differences are highlighted. For the wheeled robot, the mechanization can

be replaced with the kinematic model. The kinematic model is a set of equations explaining the motion of

a robot using velocities. Since the utilized robot in this thesis is a differential-drive robot (see Chapter 6),

the kinematic modelling for this type of robot is explained in this section.

In a differential-drive robot, often two fixed wheels exist (free wheels in the front or back are

considered to not have significance on the kinematic modelling). In order to derive the kinematic

equations, the steps in (Siegwart et al., 2011) are followed (more details are included here). In this

Project 3D model’s
centroid

Is distance of
two centers

above a
threshold?

Object
segmentation
(in the image)

Is distance of
two centers

above a
threshold?

Assign a low
weight to particle

Project 3D model

Find the center

Find boundary

Reduce the size

Reduce the size

3D model

Rasterize

Hole filling Calculate
(binary image

operations)

Predicted pose of the object in the camera
frame

Output: particle
weight

Input: 1 particle

Calculate

Yes

No

Yes

No

Camera calibration
matrix

Measure observation
likelihood

59

approach, the velocities in the body frame(𝑏) are projected onto the direction of the motion of each wheel.

For a given fixed wheel, Figure 3.9 depicts how the kinematic model can be derived. This figure includes

the main directions and angles to illustrate the projection (additional line segments are included for

convenience). The movement of the fixed wheel instantaneously is constrained to the rolling direction,

and perpendicular to this is the direction of slippage assumed here to have 0 velocity component. The

vector from the center of the robot (𝑃) to the center of the wheel is denoted as 𝑙 (its length is denoted as

𝐿). The symbol α corresponds to the angle between 𝑙 and 𝑋𝑏, and symbol 𝛽 corresponds to the angle

between 𝑙 and the axis of rotation of the wheel. In Figure 3.9, the green line is parallel to the rolling

direction. The dashed blue circle corresponds to the circular motion centred at the origin of the body frame.

The red line shows the tangent of the circular motion.

Figure 3.9: Illustration for calculating velocities in the direction of motion of a fixed wheel

𝛼

𝛽

𝛽

𝛽
(𝛼 + 𝛽)

Wheel

Ground Normal

60

For a differential-drive robot, the motion is constrained to a plane and can be defined using three

states (position and heading). To find the motion along the rolling direction, the first step is to calculate

the projection of the three velocities (two linear and one rotational) in the body frame onto the rolling

direction of the wheel (yellow arrow in Figure 3.9). If the state in the body frame is denoted as a vector

𝜉𝑏
 and the corresponding velocities are denoted as 𝜉̇𝑏([𝑥̇𝑏 , 𝑦̇𝑏 , 𝜃̇]

′
), projecting 𝑥̇𝑏 and 𝑦̇𝑏 onto the rolling

direction, Equations 3.21.1 and 3.21.2 are obtained. These equations can be verified using Figure 3.9 (see

how 𝑥̇𝑏 and 𝑦̇𝑏 project onto the green axis). The last component is the velocity due to the rotational motion

of the robot. The direction of this motion is tangential to the circle in Figure 3.9 and has two components.

One component is projected along the green axis, and the other component is projected along the axis of

the rotation of the wheel (the wheel cannot move in this direction). The component along the green axis

is shown in Equation 3.21.3.

𝑥̇𝑏𝑐𝑜𝑠(
𝜋

2
− (𝛼+ 𝛽)) = 𝑥̇𝑏𝑠𝑖𝑛(𝛼 + 𝛽)= 𝜉̇1

𝑏𝑠𝑖𝑛(𝛼 + 𝛽) (3.21.1)

−𝑦̇𝑏𝑐𝑜𝑠(𝛼 + 𝛽)=− 𝜉̇2
𝑏𝑐𝑜𝑠(𝛼 + 𝛽) (3.21.2)

𝜃̇(−𝐿𝑐𝑜𝑠(𝛽)) = 𝜉̇3
𝑏(−𝐿𝑐𝑜𝑠(𝛽)) (3.21.3)

Assuming that there is no slippage motion (only rolling motion), the rotational motion generated

by the motors (𝐷𝜑̇) should be equal to the summation of Equations 3.21.1, 3.21.2 and 3.21.3. This is

expressed in Equation 3.22, where 𝐷 is the radius of the wheel, and 𝜑 is the angular velocity of the wheel

(known from the wheel encoder). The goal is to estimate the velocities of the robot in the inertial frame

(𝜉̇
𝑖
). The transformation of the velocity state vector from the body to the inertial frame is shown in

Equation 3.23. The rotation matrix (𝑅𝑖
𝑏) is defined in Equation 3.24, where 𝜃𝑖 is the robot’s heading in

the inertial frame.

[𝑠𝑖𝑛(𝛼 + 𝛽) − 𝑐𝑜𝑠(𝛼 + 𝛽) − 𝐿𝑐𝑜𝑠(𝛽)]′𝜉̇𝑏 − 𝐷𝜑̇ = 0 (3.22)

61

𝜉̇𝑏 = 𝑅𝑖
𝑏𝜉̇𝑖 (3.23)

𝑅𝑖
𝑏 = [

 𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜃) 0
−𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃) 0

0 0 1

] (3.24)

In order to obtain the complete kinematic model, Equation 3.22 should be considered for each

fixed wheel. Since the differential-drive robot has two fixed wheels, two equations are required. The

values 𝛼 and 𝛽 can be replaced appropriately for the robot that is used in the experiments (a schematic is

provided in Figure 3.10). Equation 3.25 shows the stacked equations where the unknowns are moved to

the left-hand side. The inverse of the matrix shown in the bracket on the right-hand side of Equation 3.25

does not exist, and the Moore-Penrose pseudoinverse can be used instead (denoted using the symbol (.)+).

The results are shown in Equation 3.26. It is possible to rewrite Equation 3.26 in terms of the forward and

angular velocity of the robot in the body frame, as shown in Equation 3.27.

Figure 3.10: Illustration of the parameters of the fixed wheels of a different wheel robot.

In
er

ti
al

 F
ra

m
e

Fixed wheels

Free wheel

Chassis

62

𝜉̇𝑖 = [[
0 −1 −𝐿

0 −1 𝐿
] [

 𝑐𝑜𝑠(𝜃𝑖) 𝑠𝑖𝑛(𝜃𝑖) 0

−𝑠𝑖𝑛(𝜃𝑖) 𝑐𝑜𝑠(𝜃𝑖) 0
0 0 1

]]

+

[
𝐷𝜑̇1

𝐷𝜑̇2
] (3.25)

𝜉̇𝑖 = [

 𝑠𝑖𝑛(𝜃𝑖)/2 𝑠𝑖𝑛(𝜃𝑖)/2

−𝑐𝑜𝑠(𝜃𝑖)/2 −𝑐𝑜𝑠(𝜃𝑖)/2
−1/(2𝐿) 1/(2𝐿)

] [
𝐷𝜑̇1

𝐷𝜑̇2
] (3.26)

𝜉̇𝑖 = [

 𝑐𝑜𝑠(𝜃𝑖) − 𝑠𝑖𝑛(𝜃𝑖) 0

 𝑠𝑖𝑛(𝜃𝑖) 𝑐𝑜𝑠(𝜃𝑖) 0

0 0 1

] [
−(𝐷𝜑̇1 + 𝐷𝜑̇2)/2

 −(𝐷𝜑̇1 − 𝐷𝜑̇2)/2𝐿
] = [

 𝑠𝑖𝑛(𝜃𝑖) 0

−𝑐𝑜𝑠(𝜃𝑖) 0
0 −1

] [
𝑣
𝜔
] (3.27)

The kinematic model in Equation 3.27 can be converted to the standard form in Equation 3.28.1.

To discretize the state space, Equation 3.29 can be used. The complete derivation for the discretized space

is given in Appendix A. Since 𝐴𝑐 is all zeros, the matrix 𝑒𝐴𝑐 ∆𝑡 is the identity matrix. It is also assumed

for simplicity that 𝐵𝑐 is constant during one epoch. However, since 𝐵𝑐 in fact varies with 𝜃𝑖, this

assumption is more accurate for shorter time intervals (∆𝑡). Equation 3.30.1 shows the derived discretized

kinematic model and can replace mechanization in Sections 3.3 and 3.4.

𝜉̇𝑖 = 𝐴𝑐𝜉
𝑖 + 𝐵𝑐𝑢 (3.28.1)

𝑢 = [
𝑣
𝜔
] 𝐴𝑐 = [

0 0 0
0 0 0
0 0 0

] 𝐵𝑐 = [
 𝑠𝑖𝑛(𝜃𝑖) 0

−𝑐𝑜𝑠(𝜃𝑖) 0
0 −1

] (3.28.2), (3.28.3), (3.28.4)

𝜉𝑘+1 = 𝑒𝐴𝑐 ∆𝑡𝜉𝑘 + ∫ 𝑒−𝐴𝑐(𝑡−(𝑘+1)∆𝑡)𝐵𝑐𝑢
(𝑘+1)∆𝑡

𝑘
𝑑𝑡 (3.29)

𝜉𝑘+1 = 𝐴𝑑𝜉𝑘 + 𝐵𝑑𝑢𝑘 (3.30.1)

𝑢𝑘 = 𝑢 𝐴𝑑 = [
1 0 0
0 1 0
0 0 1

] 𝐵𝑑 = 𝐵𝑐(∆𝑡) (3.30.2), (3.30.3), (3.30.4)

63

3.6 Object-level RBPF-SLAM with Ultrasonic Rangefinder

RBPF-SLAM was originally implemented using rangefinders (Montemerlo et al., 2003), where it

was assumed that the distance from the sensor to the observed points is approximately known.

Unfortunately, a monocular camera does not observe the distance to the points, and the uncertainty of the

point’s distance from the camera using a single image is large. There are two approaches to initializing

objects. In delayed initialization, the object is only inserted into the map once it is observed in many

images, while in undelayed initializations, the object is inserted into the map once it is observed in a single

image. In Section 2.6, it is argued that undelayed initialization is more advantageous than delayed

initialization.

In this thesis, two undelayed initialization methods are used. The first approach relies only on the

fusion of the camera with an IMU (or wheel odometer). With this approach, the uncertainty of the object’s

pose is high with one observation. However, utilizing two or three observations can reduce the uncertainty

in the object’s pose. The reduction in the uncertainty is due to the IMU’s capacity to estimate the distance

between camera poses, which will eventually resolve the scale ambiguity. This process might take a long

time, and many particles should be used to represent such uncertainty in the initialization.

The second undelayed initialization is based on the fusion of the monocular camera with a

rangefinder. In the past, the data from accurate laser rangefinders were often fused with the monocular

camera. One difference between object-level and classical solutions to the SLAM is that the objects

correspond to volumetric bodies and occupy a larger number of pixels in the images. Thus, it is likely that

less accurate rangefinders (such as ultrasonic sensors) could return distance readings from some parts of

the object. The provided distance by the ultrasonic rangefinder can reduce uncertainty in the initialization

significantly. In addition to undelayed initialization, the observed distance from a rangefinder can

significantly reduce the search space for particles with accurate poses. For instance, particles that fall far

64

from the measured distance to the object can be assigned with a low weight immediately, without further

evaluation of observation likelihood (this is very advantageous for the tightly coupled method where it

suffers from computational cost due to estimation of likelihood). It will be discussed in the following how

the data from the ultrasonic rangefinder and camera can be fused.

The ultrasonic rangefinder’s beam angle depends on the physical characteristics of the sensor and

ultrasound wave propagation in the air (Strickland & King, 1993). Nowadays, a common sensor used in

many low-end robots is HC-SR04. This sensor approximately has a beam angle of 15° (much higher than

the beam angle of a LiDAR). This large beam angle can cause the ultrasonic waves to hit multiple points

in the vicinity. Some or most of these points might be a part of the background clutter. In these

circumstances, a false data association can occur. Therefore, the beam angle should be taken into

consideration in determining whether the wave has reflected back from the object or from the background.

In order to address this issue, a new method is developed in this section that projects the point 𝑝

(see Figure 3.11), as well as a defined uncertainty region around this point onto the monocular camera’s

image. Assuming that the extrinsic calibration parameters of the ultrasonic sensor and camera are known

(Section 5.4); this uncertainty region can be estimated using rangefinder distance reading (𝑧𝑑) and the

beam angle (𝜓) (both of these quantities are known). The beam angle causes a larger uncertainty as the

distance between the ultrasonic rangefinder and the point 𝑐 increases. The uncertainty region can be

defined as a spherical volume centred at the point 𝑐 at a distance 𝑧𝑑 from an ultrasonic sensor. The radius

of this region (𝑠) can be approximately estimated using Equation 3.31. Figure 3.11 provides more details

about this process. The objective is to examine if the projected uncertainty region intersects the segmented

object in the image. In order to achieve this, the uncertainty sphere should be projected onto the image.

𝑠 = 𝑧𝑑/tan (𝜓/2) (3.31)

65

Figure 3.11: Illustration of uncertainty region of the ultrasonic rangefinder reading

In order to project the sphere onto the image, many methods can be used. One possible approach

is to project a subset of points on the sphere onto the image. Once the points are projected, an approximate

ellipse can be fitted. This ellipse can be used to measure the intersection area with the segmented object

in the image. One of three scenarios can occur:

1. The ellipse is completely inside the segmented object.

2. The ellipse is partially inside the segmented object.

3. The ellipse is completely outside of the segmented object.

If cases 1 or 3 occur, accepting or rejecting the rangefinder’s reading is easy. Further, it is possible

to know which object the distance reading corresponds to. If case 2 occurs, it is still possible that the

ultrasonic sensor has measured the distance to the object. In this case, the intersection area over the area

inside the ellipse can be used to determine if the distance reading should be accepted or rejected. The

flowchart of the algorithm is shown below in Figure 3.12.

ultrasonic rangefinder

camera

objectdistance reading

beam angle
ultrasonic rangefinder’s

uncertainty region

66

Figure 3.12: The flowchart of accepting/rejecting a distance measurement received from the ultrasonic rangefinder

3.7 Challenges Related to the Observation Likelihood

In this section, some of the challenges regarding RBPF-SLAM due to the observation likelihood

will be discussed. Overall, four common Challenges (I-IV) will be discussed in this section. These

challenges are selected as the most frequently occurring in developed object-level solutions. As it was

mentioned in the prior works (Grisetti et al,. 2005), one challenge (Challenge I) with RBPF-SLAM is that

often; observation likelihood has low uncertainty (high precision) while proposal distribution has larger

uncertainty (low precision). In order to understand this phenomenon, an example of possible observation

likelihood and proposal distribution is shown in Figure 3.13. Such discrepancy between the two

distributions can lead to a lack of the particle drawn closer to the peak of the observation likelihood. Most

particles will have a lower weight. Therefore the solution can diverge.

Start

Project uncertainty region onto camera

Determine the radius of the uncertainty region

Is the area of
intersection

above a
threshold?

End

Accept ultrasonic
reading

Reject ultrasonic reading

Extrinsic
calibration
parameters

Reject ultrasonic reading Accept ultrasonic reading

Segmented
object

Measure the intersection ratio

Fit an ellipse

No Yes

67

Figure 3.13: A comparison of possible likelihood and the proposal distribution

In order to demonstrate this issue in the context of object-level SLAM, the problem is illustrated

schematically in the image domain. In Figure 3.14, given the poses of the object and camera associated

with a particle, the object’s 3D model is projected onto the image (predicted contour) and compared to the

segmented object (observed contour) in the image. Figure 3.14 illustrates that the two particles (𝑝1 and

𝑝2) have zero weights (since they have zero IoU with the segmented object); however, 𝑝1 is much closer

to the segmented object. This figure shows the likelihood is peaking in a region narrowly around the

object, which can be difficult to sample as most regions are not covered by this observation likelihood.

Figure 3.14. Illustration of Challenge I with the observation likelihood

68

The second challenge (Challenge II) with the observation likelihood can be due to partial occlusion

of the object or failure in segmenting a large number of pixels belonging to the object. Figure 3.15 (top

row) shows an example where an object is partially occluded (the black rectangle represents an occlusion).

Here, the likelihoods of 𝑝1 and 𝑝2 are very similar since the estimated IoU is similar (and low). However

𝑝1 is much closer to the real solution. A similar challenge (Challenge III) occurs when some of the

background pixels are segmented as a part of the object, as shown in Figure 3.15 (bottom row). This

challenge rarely happens, and it can be due to errors in the object segmentation process. In Figure 3.15

both 𝑝1 and 𝑝2 receive a high weight (as opposed to Challenge II, where both particles receive a low

weight), while 𝑝1is much closer to the solution.

Figure 3.15: Illustration of Challenge II and Challenge III with the observation likelihood

69

The abovementioned possible challenges can be resolved in most situations, as will be

demonstrated in Chapter 7. Challenge I does not pose a significant issue for the developed method in the

experiments since there are enough particles found intersecting the object of interest. Challenge II

frequently happens in experiments as objects can get occluded. It is important to note that even though

better and worse particles can be assigned to low IoU, the weights from the previous steps (where the

objects were not occluded) still have an effect. This can be seen in the particle weighting equation, as

shown before in Equation 3.19. Further, even though some particles with less accurate poses can obtain

similar weights in a single epoch, as the camera moves, they will quickly move away from the solution

(and receive a low weight again). Challenge III requires falsely identifying parts of the background as a

part of the objects, and it rarely happened in our experiments. However, similar to Challenge II, the

particle’s weight from the previous step and the accumulation of more observations can often resolve this

challenge.

Challenge IV relates to anisotropic changes in the likelihood along different camera axes. Figure

3.16 illustrates this problem. In Figure 3.16 (left), the particle is moved to the right slightly. The IoU (and

the observation likelihood) immediately drops significantly. In contrast, in Figure 3.16 (right), the camera

moves backwards (in the direction pointing from the camera’s center to the object). It can be seen that

even though the camera’s distance from the object is increasing (the object looks smaller), the IoU and

(therefore, the likelihood) stay relatively high.

Unlike Challenges I-III, Challenge IV has the most impact on the accuracy of the developed object-

level solution. This challenge will result in lower precision in the direction pointing from the camera

toward the object relative to the two other directions. Challenge IV is closely related to the scale ambiguity

of the monocular camera, and all the experiments conducted in Chapter 7 are impacted by this challenge.

More information will be provided in Chapter 7.

70

Figure 3.16: Illustration of Challenge IV with the observation likelihood

3.8 Chapter Summary

In this chapter, the main methodology of the developed tightly and loosely coupled object-level

RBPF solutions is explained. These methods utilize an IMU mechanization or (kinematic modelling) to

predict the device's trajectory. This prediction is corrected using the monocular camera’s observations of

the objects.

The developed tightly and loosely coupled methods require other modules, such as object

segmentation and object pose estimation. Object segmentation is a necessary component for direct

evaluation of the observation likelihood, as introduced in Section 3.4 for the tightly coupled solution. The

pose estimation is important in the initialization of the object. One important characteristic of many objects

in the indoor environment is the lack of identifiable salient feature points on their surface. In the next

section, object segmentation and the developed shape-based coarse-to-fine pose estimation methods are

explained.

71

 Chapter 4: Object Segmentation, Representation, and Pose Estimation

4.1 Overview

In this chapter, the important topics of object segmentation, representation and pose estimation

toward the implementation of object-level RBPF-SLAM are explained in detail. Object segmentation is

one of the most important components of the developed RBPF-SLAM. RGB cameras capture a large

amount of radiometric information. The appearance of an object is subjected to variations due to the

illumination conditions, and the shape of the object can change due to viewpoint variation and camera

calibration parameters. Therefore, object segmentation should exhibit robustness to these sources of

distortions. In order to address these, a novel segmentation approach is introduced in Section 4.2. The

developed method is a DL-based object segmentation. As pointed out in Section 2.2, one of the biggest

efforts in the field of DL is to synthesize images to address the problem of massive training data

requirements. In Section 4.2, a novel hybrid approach for synthesizing training images is developed. This

approach only simulates the pose and the illumination effects on the foreground (object of interest), while

the background is captured using real images from the environment of experiments.

The next important component is object representation. The objects in this thesis are represented

as organized 2D contour sets denoted as the shape-prior set. This method of object representation provides

robustness to the scale, in-plane rotation, in-plane translation, and 3D viewpoint changes. Building this

shape-prior set is explained in Section 4.3.1. As mentioned in the literature review in Section 2.3, it is

more advantageous to represent object contours as explicit parameterization rather than images. The

parameterization of contours using the B-splines is explained in Section 4.3.2.

The final two sections of this chapter are concerned with coarse-to-fine pose estimation. Since, in

this thesis, the objects are represented using their contours, classical PnP methods cannot be utilized for

the pose estimation directly. The developed contour-based pose estimation using a monocular camera

72

includes two steps. In the first step, an initial pose is estimated using the shape of the segmented object

(coarse estimation). In order to obtain a coarse pose estimation, the segmented contour of the object is

matched to the organized shape-prior set using a fast-matching technique. This matching provides an

estimation of the pose, assuming that the camera is directly looking into the object. The coarse estimation

is explained in Section 4.4. As it was explained in Section 2.4, most state-of-the-art pose estimation

methods cannot be applied when the object is symmetrical. It will be shown in Section 4.5 that the

developed method can address the challenges with symmetrical objects. In Section 4.6, pose refinement

(the second step) is explained. This pose refinement method is based on finding matching features between

the 2D contour of the projected 3D model of the object and the segmented contour of the object in the

image. In summary, Figure 4.1 shows an overview of this chapter and how it relates to the developed

object-level SLAM explained in the previous section. The tightly coupled solution only utilizes pose

estimation and refinement in the initialization stage, while the loosely coupled solution depends on pose

estimation to update the weights and resample particles. Both of these approaches rely on object

segmentation.

Figure 4.1: Overview of the chapter. The topics discussed in this chapter are shown in light and dark blue.

Object segmentation

Training deep learning

network

(Trained u-net)

Synthesized images

Object (foreground)

• Simulated in 3D

• Simulated shading

• …..

background

• Real images

Shape-prior set

• 2D contour

• Object-centric

• B-spline based

• Organized

Object segmentation

Find best matching

shapes

Coarse-to-fine pose

estimation

Loosely-coupled object-level SLAM

• Initialization

• Observation likelihood

Tightly-coupled object-level SLAM

• Initialization

• Observation likelihood

73

4.2 Object Segmentation Using Synthesized Images

One of the challenges in DL-based methods is the requirement for a large data set. Unfortunately,

there are no available online training image databases for many of the objects found in indoor

environments. Therefore, DL-based segmentation cannot be used by many researchers. In this thesis, in

order to train DNN, a novel hybrid technique to synthesize images is developed. This approach uses

domain randomization (Tremblay et al., 2018) to improve the training. Domain randomization is a method

of synthetic data generation that introduces variations in the object and scene characteristics. For example,

the illumination conditions, camera viewpoints, intrinsic camera parameters, colour of the object, the pose

of the object, and image noise are all among such characteristics. The randomization in these parameters

can help train a DNN, which is able to segment the object in real images under different photometric and

geometrical distortions.

In this thesis, in order to achieve domain randomization, a hybrid method is used. In hybrid

methods (Georgakis et al., 2017), the background is obtained using real images with the object

(foreground) excluded. The object of interest is then superimposed onto these images. However, using

this simple approach, the changes caused to the object’s appearance and shape (e.g., due to the variations

in the illumination conditions) cannot be captured effectively. In order to account for these changes, a 3D

CAD model of the object of interest can be utilized. Such 3D models can be used to obtain the silhouette

of the object as the result of perspective projection. Further, the surface normal (included in most CAD

models) can be used to estimate the shadows, shadings, and highlights on the object caused by a light

source. Finally, in projecting the object onto the camera, the intrinsic calibration matrix can also be varied.

Figure 4.2 illustrates the overall procedure of the developed synthetic image generation. For the shading

and highlights, classical Phong’s light model (Edward & Shreiner, 2013) is used. Table 4.1 summarizes

different domain randomization parameters utilized in our experiments.

74

Figure 4.2: Overview of the procedure to build synthetic images.

Table 4.1: Domain randomization parameters

Domain Randomized parameters Purpose

Light source Intensity and position Increase robustness to illumination condition variations

Object pose Scale, orientation and translation Increase robustness to the camera’s viewpoints variation

Object motion Gaussian filter variance Increase robustness to motion blur

Object colour R/G/B colours Increase robustness to object colour variation

Camera calibration Camera calibration parameters Increase robustness of the camera’s intrinsic parameters

Background Images from different indoor environments Increase robustness to background clutter

The generated images are used to train a segmentation DNN known as U-Net. The architecture of

U-Net is shown in Figure 4.3. U-Net receives an RGB image input and outputs an image of the same size.

In the output image, the pixels belonging to the foreground (or the object) are represented with values

closer to one, while the pixels belonging to the background object are represented with values closer to

3D Model Surface Normals Posse variation

Position Object in a 3D scene with lighting source

Perspective projection

Generate synthesized ImageBackground

Generate Object Mask

75

zero. In Figure 4.3, the size of a layer is shown with three numbers, where the first number denotes the

feature layers, and the next two numbers denote a layer’s height and width. For example, using this

notation, 3×128×128 denotes an input image with three feature layers (red, green, and blue channels) and

a resolution of 128 × 128 pixels. Different operations are applied to these layers. The details about such

operations can be found in the fundamentals DL textbook and are left out here for brevity. Figure 4.4

shows an example of the segmented object (water bottle cap) acquired with the help of a trained U-Net

(the output of the U-Net is superimposed on the input as a mask). Details about hyperparameters used for

this DNN are explained in Section 6.8.

Figure 4.3 : U-Net architecture.

Figure 4.4: Examples of segmented object masks generated with the help of the trained DNN

C
C

Input image: 3x128x128

128x32x32

64x64x64

256x32x32

512x16x16 1024x4x4

128x64x6464x64x64

64x128x128

512x32x32

output image: 1x128x128

C

Color Code : Drop out Concat. Conv. Max pool ReLU Up-conv.

76

4.3 Object Representation Using Shape-Prior Set

Object representation is prior information stored about the object’s appearance and/or shape. The

segmented objects in the previous step are matched to this representation, and the output of such matching

is used in the pose estimation. The objects in this thesis are represented using a set of organized 2D

contours. These contours correspond to the perspective projection of the 3D CAD model of the object

from different viewpoints. Representing objects as a set of 2D contours has the advantage that no

information about the texture of the object is required. Further, the contours are more robust to variations

in the illumination conditions in comparison to textures. Finally, matching such 2D contours to the

segmented object in the image is easier than matching the 3D model directly.

In the past, 2D contours were often stored as images. However, the scale, in-plane rotation and the

translation of such contours cannot be modified easily. Such variations are required in matching

representation to the segmented contours. In this thesis, 2D contours are represented as B-splines where

arbitrary scale, in-plane rotation, and translation can readily be applied. In order to make the object

representation invariant to the viewpoint changes, a set of contours is built in an offline phase by projecting

the CAD model of the object onto virtual images (Section 4.3.1). These projected contours are then

parameterized using B-splines. Finally, the B-splines are grouped together to assemble an organized

shape-prior set. In order to avoid confusion, the contours are represented as B-splines, referred to as the

boundary. In summary, B-splines have three advantages that are helpful for shape matching and pose

estimation:

• In-plane translation, rotation and scale changes can be applied to B-splines easily.

• B-splines are parametric curves. Therefore, the order of the points on the contour is known.

• B-splines represent contours with the same number of coefficients, regardless of the number

of pixels detected in the image. This will be explained in Section 4.3.2.

77

4.3.1 Developed Shape-prior Set

In order to build the shape-prior set, virtual camera viewpoints are sampled in an object-centric

coordinate frame. In the next step, the CAD model of the object is projected into these viewpoints. Figure

4.5 shows the schematic of this process. In this figure, the viewpoints are illustrated with their coordinate

frames (red, green and blue arrows). In these frames, the blue and red arrows correspond to the image

axes, and the green arrow corresponds to the axis perpendicular to the image plane. For the projections, a

calibration matrix with realistic parameters is utilized. In Chapter 7, it will be illustrated that this shape-

prior set can help find the best matching shapes to the segmented object in the image with different

cameras. As it is shown in Figure 4.5, the shape-prior set is organized in a two-dimensional array-like data

structure based on their 𝜑 and 𝜆. These angles are the spherical coordinates of the camera’s position in an

object-centric viewpoint. In Section 4.4, it will be shown that organizing shape-prior sets in this manner

will help develop a fast-searching algorithm, therefore, greatly reducing the matching time.

Figure 4.5: Shape-prior sets are generated using object-centric viewpoints.

Stored Shapes In Matrix

1 2

Shape 1

... …

Shape 2

…
…

78

4.3.2 B-splines

B-splines are piece-wise polynomial curves that are defined as Equation 4.1. In Equation 4.1, a

curve (𝑐(𝑠), where 𝑠 is the parameter) can be defined by selecting a set appropriate B-spline basis (𝐵𝑛)

and control points (𝑐𝑛) (where 𝑁𝐵 is the number of basis). Each basis vector is non-zero in a certain span

and 0 otherwise. The vector 𝑄 denotes B-spline coefficients while 𝐵(𝑠) is the matrix built by

concatenating the basis (the transpose is denoted as (.)′).

𝑐(𝑠) = ∑ 𝑐𝑛
𝑁𝐵−1
𝑛=0 𝐵𝑛(𝑠) = 𝐵′(𝑠)𝑄 (4.1)

The process of estimating B-spline coefficients using the boundary of the segmented object (the

boundary is the outline of the segmented object) can be achieved using the least square technique as shown

in Equation 4.2, where 𝑐(𝑠) is the boundary of the segmented object.

𝑄 = (𝐵(𝑠)𝐵′(𝑠))
−1

𝐵(𝑠)𝑐(𝑠) (4.2)

In order to define a set of B-spline basis, one needs to determine the number of polynomial pieces

(the number of basis vectors), the degree of each polynomial, and knot multiplicity. The knots are points

where two adjacent polynomial pieces intersect, and knot multiplicity is the quantity that defines the

continuity of the polynomials at the point of intersection. As an example, for two polynomials of degree

ℎ, a knot multiplicity, same as ℎ, indicates discontinuity of the two polynomials and their derivatives at

this knot. Similarly, a knot multiplicity of 0 indicates the continuity of the polynomials and all their

derivatives up to order ℎ − 1. Any knot multiplicity between 0 and ℎ indicates discontinuity of derivatives

from a certain degree and higher. Please refer to (Piegl & Tiller, 1996) for more details on B-spline curves.

Examples of the B-spline basis for two different sets of knot multiplicity are shown in Figure 4.6 (each

colour indicates one basis vector). B-splines can represent almost any 2D shape, even curves that are

discontinued, which can be achieved by modifying the knot multiplicities.

79

Figure 4.6: B-spline basis of different order and knot multiplicity. The top row shows a B-spline basis of order 4 and a

knot multiplicity of 2. The bottom row shows the B-spline basis of order 4 and the knot multiplicity of 3.

Parameterizing shapes using B-splines facilitates the calculation of the tangents and the normal

vectors at any point given on the shape. Further, properties such as centroid, area, and second moments

can be calculated using B-splines efficiently. It is explained in Section 4.4 that the centroid and area are

important properties in matching the boundary of the segmented object and the shapes in the shape-prior

set. In Figure 4.7 (a), the fitted B-spline to the contour of the segmented object is shown as a red point,

the first column of the second-order moment matrix is shown as a green arrow, and the centroid of the B-

spline is shown as a white circle. Figure 4.7 (b) shows a closer look at this B-spline. The zoomed-in figure

shows the smoothness of the representation as well as the defined tangents at each point on this curve.

B-spline parameterization imposes ordering in boundary points. This property helps to find the

nearest points without using algorithms such as kd-tree (Bentley, 1979). The nearest points are required

in the matching step (Section 4.4); therefore, B-splines reduce the computations of the developed method.

80

Figure 4.7: Illustration of the fitted B-spline. Figure (a) shows the B-spline fit to the object’s boundary in the image.

Figure (b) shows a closer look at the fitted boundary.

One of the challenges in using Equation 4.2 to fit B-splines to the pixels in the image is that such

fitting is not constrained to any subspace. Therefore, inaccuracies in the segmentation will be directly

passed on to the matching stage. This issue can cause wrong matches and, finally, wrong pose estimation.

It will be shown in the following that Equation 4.2 can be modified slightly using a projection matrix 𝑊.

The projection matrix is built using a subset of shapes in the shape-prior set. By using a projection

matrix, the fitted B-spline is forced to reside in a vector space defined by the shapes in the shape-prior set.

This approach increases robustness to the noise in the images or small occlusions of the object boundary.

Formally, the projection matrix is defined by concatenating the B-spline coefficients (𝑄.,𝑥 and 𝑄.,𝑦) of the

shapes in the shape set as shown in Equation 4.3. The first two columns in this equation introduce

invariance to in-plane translation (bold represents vector). The third and fourth columns introduce

invariance to in-plane rotation and scale changes (𝑄𝑚 is created by averaging all the shapes in the shape

set). The remaining coefficients correspond to the shape prior set. Increasing the number of shapes results

in a fitting that follows the pixels more accurately (but is more affected by the noise as well).

Zoomed-in

(a) (b)

81

𝑊 = [
𝟏
𝟎
 𝟎
 𝟏

 Q𝑚,𝑥

Q𝑚,𝑦

 −Q𝑚,𝑦

 Q𝑚,𝑥

 Q1,𝑥

Q1,𝑦

−Q1,𝑦

 Q1,𝑥

 ⋯
 ⋯

 Q𝑛,𝑥

Q𝑛,𝑦

−Q𝑛,𝑦

 Q𝑛,𝑥
] (4.3)

In order to explain the fitting method mathematically, one can commence with Equation 4.4.

Initially, the coefficients 𝑄̂ are estimated using the detected object boundary in the image (𝑐𝑖𝑚𝑔). In the

next step, the corresponding coefficients in the projection space (𝑂, a vector) are found using Equation

4.5. The main difference between Equations 4.4 and 4.5 and Equations 4.1 and 4.2 is the inclusion of the

𝑊 matrix in estimating the coefficients.

𝑄̂ = (𝐵𝐵′)−1𝐵𝑐𝑖𝑚𝑔 (4.4)

𝑂 = ((𝑊′𝐵𝐵′𝑊)−1𝑊′𝐵𝐵′)𝑄̂ (4.5)

The coefficients 𝑂 are in the projected space (𝑊). Equation 4.6 can be used to find the updated B-

spline coefficients. Finally, the corresponding curve points can also be reestimated using Equation 4.7.

𝑄 = 𝑊𝑂 (4.6)

𝑐𝑓𝑖𝑡 = 𝐵′𝑄 (4.7)

Unfortunately, the fitted coefficient does not correspond directly to any of the shapes in the shape-

space and often corresponds to a weighted combination of many more shapes (some of these shapes are

not close to each other in object-centric coordinates). This behaviour is due to the high dimensions in the

column space of the projection matrix (in our experiments, the shape set includes more than 30,000

shapes). However, the explained method can still be used to fit a smooth boundary to the detected pixels

around the segmented object. In the next section, a fast-searching algorithm is introduced to find the best

matching shapes in the shape-prior set with the help of estimated coefficients 𝑄 and 𝑐𝑓𝑖𝑡.

82

4.4 Finding Best-Matching Shapes (coarse pose estimation)

In order to obtain a coarse pose estimation, the segmented boundary of the object should be

matched to the shapes in the shape-prior set. The output of such a process is a list of the best matching

shapes in the shape-prior set. From this point on, the boundary of the segmented object in the image is

denoted as the query shape for brevity. The process of matching is shown in Figure 4.8.

In order to match, the unknown in-plane rotation, translation, and scale between the shape-prior

and the query shape must be found. In order to achieve this, relative translation and the scale between the

query shape and a prior shape are found in the first step. Since both shapes are parameterized using B-

splines, the area and the centroid can be calculated very fast. Figure 4.8. shows this process (see query

shape (blue) is scaled and translated (red shape) in Figure 4.8(b)).

In order to estimate the relative orientation, one possible solution is to find a corresponding feature

point on the query shape and the shape prior. For fast feature detection, the feature of interest is defined

as the point that is furthest away from the center of the boundary (see Figure 4.8(b)). Unfortunately, due

to the distortions (e.g., occlusions), false feature correspondence might be established between the two

shapes, and therefore, inaccurate estimation of the in-plane rotation will be acquired. In order to address

this issue, more than one correspondence hypothesis can be evaluated, and the rotation which achieves the

highest IoU area can be selected. In order to consider multiple hypotheses, a list of furthest points is

considered. Since B-splines are parameterized curves, this list can be organized into groups immediately

without the requirement to perform the Nearest Neighbour Search (NNS). In each group, the point furthest

from the center is designated as a possible feature. The rotation is estimated for the corresponding features,

and the IoU between the transformed query shape and the shape prior is estimated. Finally, the in-plane

rotation that results in the largest IoU is selected (see Figure 4.8 (c)). In practice, often testing about 2 to

3 hypotheses is sufficient to find the best match.

83

Figure 4.8: Illustration of matching a query shape to a shape-prior.

Object Boundary Detection

Normalize the Scale, Translation and Rotation

Superimposed Matched Shapes

(a) (c)

(b)

84

Unfortunately, using an exhaustive search, the before-mentioned process should be repeated for

all the shapes in the shape-prior set to find the best matches. However, an exhaustive search does not

utilize the fact that the developed shape-prior set is organized in an array-like two-dimensional structure

using spherical coordinates (𝜑 and 𝜆). An alternative faster matching method is to take advantage of the

fact that the object-centric shape-prior set (𝑆) (as shown in Figure 4.5) is organized.

In this fast-matching method, initially, several shapes in the shape-prior set are selected randomly

at the four-quadrant (𝑞). Each quadrant is built by dividing the range in 𝜑𝑖 𝑎𝑛𝑑 𝜆𝑖 into two halves. Next,

the sum of all IoUs (𝑇𝐼𝑜𝑈) for this selected set of shapes in each quadrant is measured. Each IoU is

measured by the process that is just explained above. One (or more) quadrants 𝑞∗ with the least total

distance (highest 𝑇𝐼𝑜𝑈) are selected as the likely space that can include the closest shapes to the query

shape. This quadrant is then divided into four smaller quadrants with new ranges in 𝜑𝑖+1 and 𝜆𝑖+1, and

the previous process is repeated. Furthermore, at every iteration, the matched shapes are ranked based on

the IoU area and stored in a list (𝑆𝑟), while the indices of tested shapes are recorded in a list as well (𝑆𝑐)

to avoid checking the same shape multiple times. The process stops when the number of remaining shapes

in the current quadrant (𝑛(𝜆𝑖+1) × 𝑛(𝜑𝑖+1)) is smaller than the number of random shape selections (𝑎).

At this point, all the remaining shapes are tested in this quadrant, and the algorithm terminates. A

pseudocode of the aforementioned algorithm is shown in Figure 4.9. The output of the algorithm is a

ranked list of all the matched shapes based on IoU. In order to keep the best matches and decrease the

computational cost in the further steps of pose estimation, a fixed number of shapes (in our experiments,

50) can be kept, and the remaining shapes can be discarded.

To compare the developed fast-matching method with an exhaustive search, the number of

computed IoU for the two searching algorithms is recorded. It is found the fast-matching method can

return most of the best-matching shapes by only testing 24.10% of the total shapes in the shape-prior set.

85

Figure 4.9: Pseudocode of the developed fast-matching algorithm.

Estimating the object’s pose can be accomplished as the shapes in the shape-prior include an

object-centric coordinate (𝜑 and 𝜆) of the camera. Further, the in-plane rotation between the image and

the monocular camera is also known (as explained in Section 4.4). Therefore, this information can be used

to estimate a coarse estimation of the object’s pose in the camera’s frame. This pose is accurate only when

the camera is directly looking into the object (the camera’s coordinate center, the image’s principal point,

and the centroid of the 3D object are on a line). However, as it will be shown in Chapter 7, the initial pose

estimation stays highly accurate when the assumption is not valid. Further improvement to the pose

estimation can be obtained using refinement (Section 4.6).

Pseudocode: Finding best matching shapes in the shape space (𝑰, 𝑺, N,𝒂)

Inputs Outputs

𝑰: image, 𝑺: shape-space,

𝑵: deep learning network,

𝒂: initial number of random shapes

𝑺𝒓: Best shapes

iteration: 𝒊 = 1, checked shapes: 𝑺1
𝑐=∅, ranked shapes: 𝑺1

𝑟 = ∅

Step1: Object contour detection.

 𝑶 =segment object (𝑰, 𝑵)

 𝑺𝐼 =detect object’s contour (𝑶)

Step 2: Find the best matching shapes.

while 𝒏(𝝋𝑖+1
𝑞∗

) × 𝒏(𝝀𝑖+1
𝑞∗

) > 𝒂 // number of: 𝒏(.)

 (𝝋𝑖+1
𝑞

, 𝝀𝑖+1
𝑞

), 𝑞 ∈ [1,4] = divide range to quadrants (𝝋𝑖
𝑞∗

, 𝝀𝑖
𝑞∗

)

{𝑺𝑖+1
𝑞

, 𝑞 ∈ [1,4]}=select random shapes (𝑺, 𝑺𝑖
𝑐 , (𝝋𝑖+1

𝑞
, 𝝀𝑖+1

𝑞
))

𝑺𝑖+1
𝑐 =update checked shapes (𝑺𝑖

𝑐 , 𝑺𝑖+1
𝑞

)

𝒅𝐼𝑜𝑈
𝑞

=Measure IoU (𝑺𝐼 , 𝑺𝑖+1
𝑞

) // remove in-plane translation, rotation and scale

𝑺𝑖+1
𝑟 =Update best matches list (𝑺𝒊

𝒓, 𝒅𝐼𝑜𝑈
𝑞

)

 for each 𝑞

 𝑻𝐼𝑜𝑈
𝑞

= ∑𝒅𝐼𝑜𝑈
𝑞

 end

𝑞∗ =Select quadrant with largest total IoU (𝑻𝐼𝑜𝑈
𝑞

)

 end

86

4.5 Pose Estimation of Symmetrical Objects

With the help of the ranked list of best-matching shapes (𝑆𝑟), it is possible to obtain a coarse pose

and use it in the object-level RBPF-SLAM solution. However, for the objects that are symmetrical (they

appear to have symmetrical silhouettes from multiple viewpoints), more than one shape in the ranked

shape list should be selected. Figure 4.10 demonstrates that with the help of object segmentation (Figure

4.10 (a)) and matching, plausible viewpoints for this object can be identified. In Figure 4.10 (b), red points

identify the best-matching shapes in the shape-prior set (lighter colours correspond to higher IoU). Figure

4.10 (c) shows the corresponding poses of the best-matched shapes in the shape-prior set.

Figure 4.10: Illustration of pose estimation of a symmetrical object.

Masked Object

Viewpoints 2

Object Model
Viewpoints 1

Camera frame
y

x
z

Includes Viewpoints 2

Includes Viewpoints 1

(a)

(b)(b) (c)

87

4.6 Pose Refinement

Pose estimation using only one image is very important in the developed loosely coupled object-

level SLAM (Section 3.3); therefore, the accuracy of this estimation should be improved. This

improvement can be obtained through the process of pose refinement. The pose refinement in this section

relies on the coarse pose estimation and the boundary of the segmented object. The coarse pose is used to

project the 3D model of the object onto the image. Once the points are projected, their boundary in the

image is found. This projected boundary will reside at the center area of the image, and through the process

of refinement, it should align with the boundary of the segmented object. At this point, some feature

correspondences (2D-to-2D) between the projected and segmented boundaries should be found. With the

help of such correspondence, it is also possible to find correspondence (2D-to-3D) of the points on the

segmented boundary and the 3D points in the model. Finally, using these correspondences, a PnP

algorithm can be used to find the pose (see Figure 4.11)

Figure 4.11: A set of 2D-to-3D correspondences are required to solve a PnP problem.

Interest point
correspondencesobject axes

Image axesTranslation,
Rotation?

88

In this thesis, for 2D-to-2D correspondences, the points with large curvature on the two boundaries

(the projected and the segmented) are detected. The curvature of a point can be defined as shown in

Equation 4.8, where 𝑐(𝑠) = [𝑥(𝑠), 𝑦(𝑠)]′ is the curve (Equation 4.1). The variables 𝑥′, 𝑦′, 𝑥′′ and 𝑦′′

denote the first and second-order derivates of B-splines with respect to 𝑠. The estimated value 𝜅 for each

point can be used to select a group of points with the highest curvature.

𝜅 =
|𝑥′(𝑠)𝑦′′(𝑠)−𝑥′′(𝑠)𝑦′(𝑠)|

((𝑥′(𝑠))
2
+(𝑦′(𝑠))

2
)
3/2 (4.8)

In order to establish 2D-to-2D correspondences, the projected boundary is translated to the

segmented boundary first. The scale differences between these two boundaries are resolved using the ratio

of the areas. The correspondence can then be established by finding the closest features. This is achieved

using a range search algorithm. A range search is similar to NNS, where the nearest points within a

maximum radius from a query point are found. If multiple neighbours are detected in a given range, only

the closest one is used for correspondence. If no points are found with the maximum radius, then this

feature is discarded. The radius for the range search is set to 15 pixels in the experiments. The 2D-to-2D

correspondences can be seen in Figure 4.12. In this figure, the boundary of the projected object (red) is

centred in the image, as expected from the coarse estimation discussions. These boundary points are scaled

and translated to the segmented object (yellow), and finally, 2D-to-2D correspondence is established (four

examples of the established correspondences are shown with numbers). In the next step, 2D-to-3D

correspondence can be established since the correspondence between projected points and 3D points on

the object is known. The 2D-to-3D correspondence can be used to solve a PnP problem. In the thesis, P3P

(Gao et al., 2003) with RANSAC (Torr & Zisserman, 2000) is used (this algorithm is available in

MATLAB). The explained procedure can be shown in Figure 4.13.

89

Figure 4.12: Establishing 2D-to-2D correspondence using coarse pose estimation

Figure 4.13: The flowchart of the developed pose refinement

Boundary of the projected points using

coarse pose estimation (red)

Boundary of the segmented object(green)
Translated and scaled boundary of the

projected points (yellow)

Zoomed-in (matched points)

Start: coarse pose

Project object’s model (3D) using coarse pose

estimation

Find boundary around the projected points

Resolve scale difference (use area ratio)

Translate boundary to the segmented object

Detect high curvature points as features

Find feature correspondences (2D-to-2D)

Find feature correspondence (2D-to-3D)

Solve a P3P with RANSAC

3D object model

Segmented object

Output: refined pose

90

4.7 Chapter Summary

In this chapter, the developed object segmentation using synthetic data generation and the contour-

based coarse-to-fine pose estimation algorithm were explained. These important components are required

in the initialization and the particle weighting processes, as introduced in Chapter 3.

A second important component of the particle weighting process is to know the relative orientation

and the translation between the sensors. The boresight calibration of IMU and monocular cameras is a

challenging task. The main reason for this is the lack of a common observation between the two sensors.

Estimating these calibration parameters in the past often relied on an independent trajectory estimation

using each sensor. Due to the error accumulation in the IMU mechanization, such processes require

GNSS/IMU integration. However, this integration is not possible in the indoor environment. In the next

section, it will be shown that it is possible to utilize the structure of the indoor manmade environment to

obtain the boresight calibration parameters.

In the past, the boresight and lever arm calibration of a monocular camera and a rangefinder was

estimated using planar targets. However, detecting a sufficient number of points on these targets is

challenging using an ultrasonic sensor due to the large beam angle. In the next section, a method is

proposed that utilizes the structure of the indoor manmade environment directly to estimate these

parameters.

91

 Chapter 5: Extrinsic (Boresight and Lever Arm) Calibration of Sensors

5.1 Overview

Sensor fusion is important in many state-of-the-art solutions to the SLAM. The developed

tightly/loosely coupled object-level solution also relies on sensor fusion. The sensor fusion of a monocular

camera with an IMU (as explained in Chapter 3) allows motion prediction. Further, such sensor fusion is

necessary to estimate a map with a real scale. Similarly, the sensor fusion of a monocular camera with a

rangefinder, such as an ultrasonic sensor, provides range measurements. Such range measurements are

helpful in the undelayed initialization and particle weighting processes.

One necessary component for these fusions is to find the extrinsic calibration parameters of the

sensors. Extrinsic calibration refers to the process of estimating translation (lever arm) and orientation

(boresight) between the coordinate frames of two or more sensors. As discussed in Section 2.6, state-of-

the-art extrinsic calibration methods of IMU and monocular cameras often rely on equipment such as a

turntable that is not accessible on-site. Some other calibration methods rely on an accurate and independent

estimation of the trajectory with each sensor. But, standalone trajectory estimation, especially for low-

cost IMU, is not possible due to the accumulation of errors in dead-reckoning.

In this chapter, a novel method of boresight calibration of an IMU and a monocular camera is

developed. This approach does not depend on expensive equipment or independent trajectory estimation.

This developed method leverages DL to estimate the normal vector to the floor in indoor environments.

This vector is antiparallel to the direction of the local gravity vector. Since the local gravity vector can be

estimated in the IMU’s frame, a correspondence between observations in the IMU and monocular camera

frame can be established. Finally, such correspondence can be used to solve for the boresight parameters.

The developed method is designed to be used for handheld devices, small drones, and indoor robots.

92

Section 5.2 will explain the floor-segmentation method using DL, and Section 5.3 will explain the

boresight calibration of IMU and monocular cameras.

In Section 5.4, the developed boresight and lever arm calibration of the ultrasonic rangefinder and

the monocular camera are explained. Based on the reviewed literature (Section 2.6), the calibration of 2D

rangefinders and monocular cameras requires the detection of at least 15-20 points on special calibration

targets (e.g., checkerboard) (Unnikrishnan & Hebert, 2005). However, detecting such a number of points

is very challenging with an ultrasonic sensor that has a low angular resolution (very large targets might be

required). In this thesis, indoor structures are used for calibration instead of relying on special targets. The

developed extrinsic calibration utilizes the 2D line-segment maps built by the ultrasonic sensor in indoor

manmade environments. The 2D maps are built using state-of-the-art methods for wheeled robots

equipped with ultrasonic rangefinders (Abadi & El-Sheimy, 2022).

5.2 Floor-Segmentation Using Deep Learning

Floor segmentation in indoor manmade environments can provide useful information. Floors in

most of these environments are often planar surfaces where the normal to this plane accurately aligns with

the direction of the local gravity vector. This alignment can be used to solve for the boresight calibration

parameters of an IMU and a monocular camera. A requirement for such a process is to segment the floor

in the images. Floor segmentation in the past is mainly used for navigation (Berenguel-Baeta et al., 2020;

Posada et al., 2010; Zhou & Li, 2006). These approaches are not robust to distortions caused by the

reflections, shadows, shadings, and textures on the floor. Recently, DL provided solutions for accurate

semantic image segmentation. Such capacity can also be used for robust floor segmentation in the presence

of the abovementioned distortions. To the best of the author’s knowledge, no general-purpose floor

segmentation in the indoor environment has been proposed in the past.

93

The developed DL-based segmentation utilizes U-Net architecture. However, the training data for

floor segmentation is not synthesized. Unlike objects, the floors do not have a general shape and can only

be defined in terms of their spatial relationships to other surfaces and objects in indoor manmade

environments. For example, a floor is often encompassed by vertical structures (e.g., walls). Therefore, in

order to generate synthetic images, a complete simulation of an indoor environment might be required,

and the hybrid method discussed in Section 4.2 cannot achieve high segmentation precision (and recall).

In order to address the large data requirement, the image set captured from the indoor environments is

augmented using in-plane rotation (image plane), brightness modifications, and more. The binary output

masks for training are generated with the help of Grab-cut (Rother et al., 2004), which requires user

interaction.

Some of the results of the estimated floor segmentation with the help of the trained DNN are shown

in Figure 5.1. The first image (Figure 5.1(a)) is captured inside the same indoor environment as the training

set; however, from a different viewpoint and using a different camera. It can be seen that the floor

segmentation is successful (the green area is the segmented floor). As pointed out previously, distortions

such as the ones caused by the reflections on the floor can challenge classical segmentation methods. The

second image (Figure 5.1 (b)) is acquired using the Google search engine. The indoor environment is very

different from the training set, and the floor has many textures. Such textures will typically cause severe

issues for classical segmentation methods. It can be seen that the floor segmentation is also successful to

a great extent. The third image (Figure 5.1(c)) shows another image acquired using the Google search

engine, and most pixels belonging to the floor are identified. The fourth image (Figure 5.1(d)) shows an

example of utilizing the trained DNN in outdoor scenes where the road and grass are segmented instead

of the floor segment. The relative success of the developed floor segmentation in such a variety of scenes

can be understood by considering common features in these scenes. One common feature, especially in

94

indoor manmade environments, is the box-like structure. The floor in such environments is often a planar

surface that lies below the horizon and is confined by vertical structures (e.g., walls). Some of these

common features are also present in the images shown in Figure 5.1. It is possible that the trained DNN

is capturing such aspects.

Figure 5.1: The floor(or road) segmentation in different environments with the help of the developed approach

Image references (Creative Common license): (b) Courtesy of L. Brett.” Hospital Lobby,” Accessed: July 2023. (c)

Courtesy of L. Warren,” Middle East Wing, Old Buffalo State Hospital,” Accessed: July 2023, (d) Courtesy of L. Viv,”

Trans-Allegheny Lunatic Asylum,” Accessed: July 2023.

The performance of the developed floor segmentation is tested using precision and recall. Precision

(𝑃𝑟) and recall (𝑅𝑒) are defined in Equations 5.1 and 5.2 where 𝑇𝑃, 𝐹𝑃, and 𝐹𝑁 correspond to true

positives, false positives, and false negatives, respectively. All three values are calculated at the pixel

level. The training image masks are obtained manually using the Grab-cut method.

𝑅𝑒 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (5.1)

(c) (d)

(a) (b)

95

𝑃𝑟 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) (5.2)

The different precision and recall values are obtained by varying the binarization threshold for the

output image. This hyperparameter threshold can be set to a value between 0 to 1. The precision versus

recall plot is shown in Figure 5.2 for three image sets by varying the binarization threshold between 0.01

to 0.99. The image sets (easy) and (challenging) are taken from the same environment as the training set.

The challenging set includes images taken from viewpoints very different from the training set, while the

image set (easy) includes images obtained from similar viewpoints. The image set (internet) was obtained

using the Google search engine to find images of indoor scenes such as office spaces, hospitals, and

airports. Despite the difference in the training images and the test images, for the image set (internet),

precision and a recall over 0.9 can be obtained. It can be seen that higher precision and recall values are

obtained as the environment and the camera viewpoints become similar to the training images.

Figure 5.2: Precision versus recall plot of the trained floor segmentation for different data sets

96

5.3 IMU/Monocular Camera Boresight Calibration

IMU and monocular cameras sense different phenomena. In this thesis, in order to find the

boresight calibration, a novel method is developed that does not depend on the estimation of trajectory or

utilizing special targets. The developed method is based on detecting normal vectors to the floor plane in

an indoor manmade environment using Vanishing Points (VP). These environments often have planar

surfaces parallel or perpendicular to each other. Such structural constraints are known as Manhattan World

Constraint (MWC) (Peasley et al., 2012) and have been used in the past to detect VP (Elloumi, Treuillet,

and Leconge 2014; Gakne and O’Keefe 2017; Huang et al. 2018). Such VPs can estimate the orientation

of the camera with respect to the indoor structure. The detection of VPs relies on finding line segments in

the environment using Line Segment Detector (LSD) (Von Gioi et al., 2012). Unfortunately, these

detected line segments can correspond to highlights, shadows, and shading edges (van de Weijer et al.,

2007) which will confuse VP detection algorithm. In order to improve the performance of VP detection,

it is often assumed one of the axes of the camera’s coordinate frame is parallel to the vertical structure

(such as the edges of walls) (Camposeco & Pollefeys, 2015). Therefore, detecting a single VP is sufficient

to estimate the orientation of the camera with respect to an indoor structure. Such assumptions entail

restricting the camera’s range of motion significantly (for example, cameras should be attached to a

vehicle that is assumed to move locally on a plane). However, these restrictions are not suitable for

estimating the boresight calibration parameters.

In this thesis, a method is developed to detect vertical VP corresponding to the normal of the floor

segment in the image frame without restricting the motion of the camera. The normal to the floor plane

can be assumed to be antiparallel to the gravity direction in most indoor manmade environments. Since

the IMU can easily detect the gravity vector, the unknown orientation parameters of the IMU and the

camera can be estimated readily. Figure 5.3 shows the schematic of the developed method.

97

Figure 5.3: Gravity vectors in the indoor environment can be used to find the boresight calibration parameters of an

IMU and a camera.

An overview of the developed method is explained in the following (see Figure 5.4), and

mathematical details are provided later in this section. The algorithm has three steps. In the first step, floor

segmentation is used to detect one of three VPs corresponding to the indoor structure. This VP is found

using the intersection of the lines on the boundary of the floor segment (this will be illustrated later in this

section). Since the boundary of the floor segment lies on the floor plane, the corresponding VP is denoted

as Horizontal Vanishing Point (HVP). In the second step, a line-segment detection algorithm (such as

LSD) is applied to the image. The detected line segments that converge to HVP are removed, as these line

segments cannot correspond to any vertical structure. Further, the line segments detected inside the floor

segment in the image are also removed. In the third step, the remaining line segments are intersected. The

corresponding vanishing directions are placed inside histogram bins.

98

Figure 5.4: The flowchart of the proposed boresight calibration method

Finally, histogram voting is used to select the direction with the largest number of votes. Since the

remaining line segments mostly belong to the vertical structure, the bin with the highest vote most likely

corresponds to the Vertical Vanishing Point (VVP). The flowchart of this method is shown in Figure 5.4.

In order to find HVP, the boundary of the floor segment is extracted first (the floor segment and

its boundary are shown as red and blue in Figure 5.5 (a), respectively). Two points on the floor boundary

are designated as endpoints. These endpoints should satisfy two conditions. The first condition is that they

should be very close to the edges of the image, and the second condition is that the angle (in the polar

coordinate representation of point coordinates) between the two endpoints should be maximum. These

two angles are shown as 𝜃1 and 𝜃2 in Figure 5.5 (a). Line segments starting from each endpoint are

searched in a range from 0° to 180°. Finally, two lines (one for each endpoint) that have the largest number

of boundary points falling within a threshold (𝜏) at its vicinity are selected. These lines are shown in red

in Figure 5.5 (a). The intersection of these two lines identifies the HVP (shown in yellow). The line

segments corresponding to HVP and the line segment on the floor are removed in order to find the VVP.

Figure 5.5 (b) shows the eliminated and survived line segments in red and green, respectively.

99

Figure 5.5: Figure (a) illustrates the detection of HVP. Figure (b) shows line segments (shown in green) that can

correspond to vertical structures.

The developed method is explained mathematically in the following. Initially, the detected VVPs

(𝑝𝑗) (one in each image) is converted to direction vectors in the camera frame (𝑣𝑗
𝑐) using Equation 5.3 (𝑗

is the enumerating index). The camera calibration matrix (𝐾) should be estimated using a self-calibration

(a)

(b)

100

process. A detailed explanation of the intrinsic camera calibration process is provided in Section 6.7, and

the camera calibration matrix (𝐾) here is assumed to be known. Equation 5.4 shows the unknown rotation

transformation between the camera and the IMU’s coordinate frames. In this equation, the elements of the

rotation matrix are shown as 𝑟 , and the gravity vector in the IMU frame (body frame) is shown as (𝑣𝑗
𝑏).

If the unknown and known variables are reorganized in standard least square form, Equation 5.5 can be

derived.

𝑣𝑗
𝑐 = 𝐾−1𝑝𝑗/||𝐾

−1𝑝𝑗|| (5.3)

𝑣𝑗
𝑏 = [

𝑟1 𝑟2 𝑟3
𝑟4 𝑟5 𝑟6
𝑟7 𝑟8 𝑟9

] 𝑣𝑗
𝑐

 (5.4)

[

𝑣𝑗
𝑏(1)

𝑣𝑗
𝑏(2)

𝑣𝑗
𝑏(3)

] = [

𝑣𝑗
𝑐(1) 𝑣𝑗

𝑐(2) 𝑣𝑗
𝑐(3) 01𝑥3 01𝑥3

01𝑥3 𝑣𝑗
𝑐(1) 𝑣𝑗

𝑐(2) 𝑣𝑗
𝑐(3) 0

1𝑥3

01𝑥3 01𝑥3 𝑣𝑗
𝑐(1) 𝑣𝑗

𝑐(2) 𝑣𝑗
𝑐(3)

] 𝒓𝟗𝒙𝟏 (5.5)

Each image provides three equations (shown in Equation 5.5). These equations can be stacked in

Equation 5.6 (the number of images is shown with the index 𝐽). The solution to this simple least square

problem is shown in Equation 5.7, which also includes a weight matrix 𝑊 (will be explained in the

following). The estimation parameters 𝒓 can be reorganized into a rotation matrix (𝑅̃). Finally, Singular

Value Decomposition (SVD) can be used to make sure that the rotation matrix is orthonormal. The SVD

decomposition is shown in Equation 5.8, where the columns of 𝑈 and 𝑉 are orthonormal, and 𝐷 is a

diagonal matrix with positive real elements. The correction to the rotation parameters is shown in Equation

5.9.

𝑣1:𝐽
𝑏 = 𝐴𝒓 (5.6)

𝒓 = (𝐴′𝑊𝐴)−1𝐴′𝑊𝑣1:𝐽
𝑏 (5.7)

101

𝑅̃ = 𝑈𝐷𝑉′ (5.8)

𝑅 = 𝑈𝑉′ (5.9)

The precision of the estimated parameters can be calculated using error propagation. In order to

achieve this, the covariance of the gravity vector (𝐶𝑏) sensed in the IMU’s frame (𝑣𝑗
𝑏) should be known.

This covariance can be approximated by analyzing the noise characteristics in the accelerometer reading.

The variance of this noise is estimated at the beginning of each experiment. In order to achieve this,

systematic errors such as biases, scales and non-orthogonalities of the axes are compensated in the raw

readings. The remaining errors are assumed to be due to white noise. The process is repeated for each axis

of the IMU frame. The estimated covariance matrix is used to create 𝐶𝑏 matrix. With the approximated

covariance matrix of the observations, the covariance of the parameters 𝒓 (𝐶𝑟) can finally be estimated.

The relationship between the covariance matrix and error parameters is shown in Equation 5.10. In order

to obtain a minimum variance estimation (Petovello, 2003), the weight matrix is substituted with the

inverse covariance of the observations as shown (Equation 5.11), and Equation 5.12 can be derived.

𝐶𝑟 = (𝐴′𝑊𝐴)−1(𝐴′𝑊𝐶𝑏𝑊𝐴)(𝐴′𝑊𝐴)−1 (5.10)

𝑊 = (𝐶𝑏)−1 (5.11)

𝐶𝑟 = (𝐴′(𝐶𝑏)−1 𝐴)−1 (5.12)

5.4 Monocular Camera andUltrasonic Sensor Boresight and Lever Arm Calibration

In this section, the extrinsic calibration of an ultrasonic rangefinder and a monocular camera using

the floor-segmentation algorithm is explained. The developed method of calibration is based on feature

correspondence. The feature correspondence that is established between the two sensors is between the

line segments detected in a 2D map (built by the ultrasonic sensor) and the boundary of the floor segment

102

(detected in the image by the monocular camera).In order to build 2D maps, a robot equipped with an

ultrasonic sensor mounted on a rotating platform is used in this thesis (Chapter 6 will provide more

information about this platform). Such a rotating platform can produce panoramic range observations of

the environment, but unlike LiDARs (which produce dense point clouds), ultrasonic sensors provide

Regions of Constant Depth (RCD) (Leonard et al., 1992). In the past, RCDs were used to build maps of

the environment using the occupancy grid technique (Elfes, 1989). Unfortunately, such maps do not

provide features such as corners and line segments and cannot be used directly to find the extrinsic

calibration parameters of an ultrasonic sensor and a camera.

More recently, a mapping method has been proposed (Abadi & El-Sheimy 2022) designed to detect

such features using RCDs. Figure 5.6 (a) provides an example to explain this method. In Figure 5.6 (a),

the environment that is used for mapping is shown. The features in the environments, such as the corners

(shown in the blue box) and line segments (shown as red line segments), can be detected using an

ultrasonic sensor. The floor segment (shown in green) can be detected in the image, as mentioned earlier.

In this experiment, the robot moves from the starting to the ending points and builds the map. The acquired

sparse point cloud is shown in Figure 5.6 (b). Figure 5.6 (c) shows the map built using the line segments

(red shows the final results) and the corner features (shown in blue). The occupancy grid map is shown in

Figure 5.6 (d) for comparison. Such a map built by line segments can be used in the next step to find the

extrinsic calibration parameters. The developed calibration algorithm assumes that the camera’s distance

from the floor segment is known (ℎ). The known height makes it possible to intersect rays starting from

the camera’s coordinate origin and passing through the boundary pixels with the floor plane using back

projection. Finally, the error function, defined as the distance between the back-projected pixels and the

2D line segments in the map (built by the ultrasonic sensor), can be minimized to obtain the optimum

extrinsic calibration parameters. In the following, each step of the extrinsic calibration is explained.

103

Figure 5.6: Figure (a) shows an image of the environment the robot builds the map. Figure (b) shows the point cloud

obtained using an ultrasonic rangefinder. Figure (c) shows the line-segment map. Figure (d) shows the occupancy grid

map.

In order to explain the beforementioned steps, the back projection of the pixels of the floor

boundary is explained first. In Figure 5.7, the map coordinate and camera frames are denoted as 𝑚 and 𝑐

superscripts, respectively. The vector 𝑣𝑚 is the direction from the camera center towards the point on the

floor. The 𝛾 is the angle between the vector -𝑍𝑚 and 𝑣𝑚. The goal is to derive the coordinates of the point

on the floor segment(𝑃̃) in the map frame (the predicted coordinates of the boundary point in the map

frame). The map frame is defined using the initial pose of the robot.

Initial Position

Final Position

corner

a

b

c

d

Floor-segment

104

Figure 5.7: Illustration of ray intersection with the floor segment

In order to explain the back projection mathematically, one can commence with the camera’s

perspective projection shown in Equation 5.13. In this equation, the homogenous pixel coordinates and

the intrinsic calibration matrix of the camera are denoted as 𝑝, and 𝐾, respectively. The 𝑝 is a pixel that

corresponds to the boundary of the floor segment, and it is known using floor segmentation. The rotation

and the translation between the camera and the map coordinate are denoted as Rm
c and T (both unknown

at this point). The symbol | denotes the concatenation. The direction pointing from the camera’s center to

a point on the boundary frame (𝑟𝑐) can be calculated using Equation 5.3 and will not be repeated here.

This direction vector is in the camera’s frame and should be transformed into the map frame using rotation.

𝑅 𝑐
𝑚 as shown in Equation 5.15 (where 𝑅𝑐

𝑚 is the transpose of 𝑅𝑚
𝑐). Note both 𝑟𝑐 and 𝑟𝑚 are unit vectors.

𝑝 = 𝐾[𝑅𝑚
𝑐 | 𝑇]𝑃̂ (5.13)

𝑟𝑚 = 𝑅𝑐
𝑚𝑟𝑐 (5.14)

Camera ()

Map ()

Map ()

h
Camera ()

Ultrasonic rangefinder

Floor

105

The 𝛾 angle between 𝑟𝑚 and 𝑍𝑚 is derived in Equation 5.15 and can be used to calculate the

unknown distance between the camera’s center and the point 𝑃̃ using basic trigonometry as shown in

Equation 5.16 (the inner and cross products of vectors are denoted with <. , . > and ×). Finally, the scale

(𝛼) can be applied to find the position 𝑃̃ in Equation 5.17. In Equation 5.17, the vector addition between

the translation from the camera’s center to the world coordinate (−𝑅𝑐
𝑚𝑇) and translation from the point 𝑃̃

to the camera’s center (𝛼𝑟𝑚) is shown. The rotation matrix can be decomposed into three rotations, as

shown in Equation 5.18. The objective is to estimate the pose of the camera with respect to the map’s

frame ((𝜅∗, 𝜑∗, 𝜃∗) and 𝑇 = [𝑥∗, 𝑦∗, ℎ]). This pose is closely related to the extrinsic calibration parameters.

𝛾 = 𝑎𝑡𝑎𝑛2(||𝑟𝑚 × −𝑍𝑚||, < 𝑟𝑚, −𝑍𝑚 >) (5.15)

𝛼 = ℎ/ 𝑐𝑜𝑠(𝛾) (5.16)

𝑃̃ = −𝑅𝑐
𝑚𝑇 + 𝛼𝑟𝑚 (5.17)

𝑅𝑐
𝑚 = 𝑅𝑧(𝜅

∗)𝑅𝑦(𝜃
∗)𝑅𝑥(𝜑

∗) (5.18)

In order to estimate the optimum pose, an error function should be defined. As mentioned earlier,

it is assumed that ultrasonic rangefinder has produced line segments and corners as the map of the

environment. These line segments correspond to a horizontal intersection of vertical structure. The error

function is defined as the distance between these line segments and the back-projected points of the

boundary of the floor segment. This error function is shown in Equation 5.19. In this equation 𝑃̃𝑗, 𝑃𝑗, B

denote estimated back-projected points, the corresponding point on the line segment, and the set of all the

boundary points. The symbol 𝑛 denotes the total number of points in set 𝐵. In order to solve Equation

5.19, the corresponding points 𝑃𝑗 should be found first.

𝑒(𝑃̃𝑗 , 𝑃𝑗) = (1/𝑛)∑ ||𝑃̃𝑗 − 𝑃𝑗||𝑗𝜖𝐵 (5.19)

106

In this thesis, two methods for building correspondence are used. The two approaches are

compared to each other in Figure 5.8. In Figure 5.8 (a), the boundary pixels on the floor segment are

shown in red. These pixels are back-projected onto the map in Figure 5.8 (b-e) (shown in red as well). The

line segments detected in the map are shown in green (Figure 5.8 (b-e)). The blue points denote the

corresponding points. The black line segments (with a darker colour) correspond to the segments used for

distance (||𝑃̂𝑗 − 𝑃𝑗||) calculation. In the first method for error calculation (𝑒1), the correspondence is made

by intersecting the line segments with the rays passing through the camera’s center. These intersection

points are shown in Figure 5.8(b, c). In the second approach (𝑒2), the correspondence is made by finding

the closest point in the line segment orthogonally. Figure 5.8(d, e) shows the correspondences for 𝑒2. In

Figure 5.8 (b, d), the 𝜑 is set at −15°, while in Figure 5.8 (c, e), the 𝜑 is set to −10.3°. The larger

discrepancy between the back-projected points and the line segments for 𝜑 = −15° is apparent in Figure

5.8 (b, d) (the ground-truth 𝜑 is −9.8°). The distances corresponding to 𝑒1 varies more significantly from

−15° to −10.3°. The accuracy of the estimated extrinsic calibration parameters using 𝑒1 and 𝑒2 will be

compared in Chapter 7.

Figure 5.8: This figure shows the correspondence between the line segment detected using an ultrasonic sensor and the

back-projected pixels on the image.

(b)

(a)

(c)

(d) (e)

107

Unfortunately, errors 𝑒1 and 𝑒2 are not convex with respect to the parameter of extrinsic

calibration. This is illustrated by evaluating both errors in Figure 5.9 (the results for 𝜑 and κ are shown).

In this figure, the error function 𝑒1 and 𝑒2 are shown in red and blue colours, respectively. It can be seen

that convexity is attained only locally. To solve this non-convex problem, an exhaustive search approach

can be used. In order to achieve this, the error can be evaluated for sampled angles 0.1° interval. However,

due to the high computational complexity of such an approach, the applicability in the real-world

application would be very limited. Further, for the translation vector, similar sampling is infeasible.

Therefore, to decrease the processing time, angles are optimized in a sequential manner, which reduces

the number of tests from 𝑎3 to 3𝑎 (where 𝑎 is the total number of angles to be tested in one dimension).

Further, the 𝜃∗ corresponding to rotation around the axis of the normal floor plane can be optimized using

Cox’s point-to-line registration approach (Cox, 1991). Cox’s algorithm can also provide the in-plane

translation (𝑥∗ and 𝑦∗). The flowchart of the developed algorithm is shown in Figure 5.10. The developed

extrinsic calibration is evaluated in Chapter 7.

Figure 5.9: Error functions with respect to the 𝝋 and 𝜿 parameters are non-convex, with only a local convexity

108

Figure 5.10: The flowchart of the developed method.

5.5 Chapter Summary

The proposed tightly and loosely coupled object-level solution to the SLAM is based on IMU and

monocular camera fusion. The fusion of these sensors for the developed algorithm requires the estimation

of boresight and the lever arm calibration parameters. These important parameters are often difficult to

obtain. While in the outdoor environment, IMU/GNSS integration is often required to find these

parameters, in the indoor environment, such solutions are not possible to utilize. Thus, this chapter

camera image

start

end

increment

co-register (Cox’s
method)

back-project and
calculate error

Are all
angles

tested ?

Are all
angles

tested ?

increment

back-project and
calculate error

floor boundary
detection

line segment map

ultrasonic point cloud

Yes

No

Yes

No

109

develops a new method to take advantage of the MWS in indoor environments to address such challenges.

This method utilizes floor segmentation and vanishing point detection to identify vertical direction. The

vertical direction is further assumed to correspond to the direction of the gravity vector. This

correspondence is utilized to obtain the boresight calibration parameters of an IMU and a monocular

camera.

In order to obtain the boresight and lever arm calibration parameters of an ultrasonic sensor and a

monocular camera, a similar approach is utilized. In this method of calibration, the boundary of the

detected floor segment in the image is matched to the 2D line-based maps (built using an ultrasonic

sensor). This approach is useful for wheeled mobile robots, where such small 2D maps can reliably be

built, often using MWC.

In Chapters 3 to 5, the main methodology and the required components of the developed object-

level solution are explained. In order to test the developed method, two platforms are utilized. The first

platform is a handheld device, and the second platform is a mobile-wheeled robot. The details of these

platforms and the methods to estimate the reference solutions are explained in the next section.

110

 Chapter 6: Experimental Setup

6.1 Overview

The developed RBPF-SLAM can be implemented on different platforms. Wheeled Mobile Robots

in the indoor environment are one of the common platforms that can be used with the developed approach.

Section 6.2 provides the specification of the developed differential-drive mobile robot for small indoor

environments (e.g., most domestic environments). The designed platform includes ultrasonic

rangefinders, a monocular camera, and wheel encoders. This robot is used to evaluate the wheel odometer/

monocular camera tightly/loosely coupled object-level SLAM.

With the advent of smartphones, handheld devices have gained larger popularity. Unlike wheeled

robots, these devices can move fast and in directions that are less predictable. In order to show that the

developed object-level RBPF-SLAM solution can be utilized under such circumstances, a handheld device

is designed. This device includes a Micro Electronic Mechanical System (MEMS) IMU, a monocular

camera and an ultrasonic rangefinder. The platform is used to evaluate the IMU/monocular camera

tightly/loosely coupled object-level SLAM. The specifications of this device are provided in Section 6.3.

In order to assess the performance of the developed methods, the estimated results should be

compared to a reference solution. Reference solutions can help evaluate precision, recall, position

accuracy, orientation accuracy, and so on. References solutions are denoted as ground truth if obtained

through measurements. In order to evaluate the performance of the developed RBPF-SLAM methods for

each of the abovementioned platforms, different ground-truth estimation methods are utilized. For the

differential wheel robot, the first type of ground truth is obtained by measuring the distance vector between

the robot's initial and final poses. This measurement is obtained using distance measuring tools (such as

measuring tape); therefore, no further explanations are provided. The second type of ground truth is

obtained using an accurate beacon-based positioning system. This system can estimate the pose of the

111

robot at certain points along the trajectory during the navigation. This beacon-based positioning system is

explained in Section 6.4. For the handheld device, unfortunately, the abovementioned beacons cannot

provide a 6DoF pose estimation during the motion. In this case, the ground truth is estimated by measuring

the distance of the device’s initial and final poses. Due to the simplicity of this approach, it is not explained

further. It is also important to note that measuring position and orientation error is not the only means to

assess the performance of the developed object-level solution. Other assessment metrics based on

reprojection error, IoU (between the estimated and observed contour of the object), can also provide

insights into the performance. These are explained in Chapter 7 in detail.

The boresight calibration of IMU and the monocular camera is evaluated on the developed

handheld. For this device, an accurate CAD model exists; therefore, no further considerations are given

to obtain reference solutions. The monocular camera and IMU boresight calibration are also implemented

on smartphone devices. The method of estimating ground truth solutions for smartphones is explained in

Section 6.5. Section 6.6 explains how the reference solutions are obtained for the object pose estimation.

Section 6.7 provides details about how the intrinsic calibration parameters of the cameras are estimated.

Finally, Section 6.8 provides details of the trained DNNs.

6.2 The Designed Differential-drive Robot

In indoor manmade environments such as houses, a robot’s overall size should often be small. The

smaller size and smaller power often pose restrictions for the type of sensory equipment that can be

installed in these robots. However, it is often expected for a robot to be equipped with lightweight 2D

rangefinders (e.g., ultrasonic sensors), wheel encoders and monocular cameras. A platform is designed to

be able to store the data received from each of these sensors in a stop-and-go fashion while at the same

time being able to communicate (send data and receive commands) with the user. The 3D model of this

112

robot and the included sensors are shown in Figure 6.1. The robot includes one microprocessor (Raspberry

Pi) and two microcontrollers (Arduino and ESP8266).

Figure 6.1: The CAD model of the designed indoor robot. The designed platform includes many sensors, such as an

ultrasonic rangefinder (seen in the close view on the right), a monocular camera and an infrared receiver.

The details about the equipped sensors are provided below:

1. The monocular camera used is a Raspberry Pi Camera Module V2 (RPV2) with 8-megapixel.

RPV2 is developed for smaller projects with often lower available processing power. The

maximum resolution of this camera is 3280×2464, and it has a fixed focal length. The intrinsic

parameters for this camera are acquired using MATLAB’s Camera Calibrator toolbox.

2. In order to build point clouds, two HC-SR04 ultrasonic rangefinders are mounted on a platform.

The platform rotates while the ultrasonic rangefinders measure the distance. Once the platform

completes one rotation, it returns to its initial pose. Figure 6.2 shows the rotating platform and an

example of a collected sparse point cloud of the environment. The platform itself (as it can be seen

Infrared

receiver

Ultrasonic

rangefinder

platform

Monocular

Camera

Wheel

Equipped with

Encoder

113

in Figure 6.2) is an encoder disk. Therefore, the rotation can be counted with high accuracy. Such

an encoder has a simple mechanism, and its output is either 0 or 1 based on whether the photo-

interrupter’s signal pathway is blocked. Due to the simplicity of such a design, often, no calibration

is required.

3. Similar encoders are used to measure the angular velocity of the wheels. There is no specific

calibration required for these wheel encoders as well.

4. Finally, an infrared (IR) receiver is included with this robot. This receiver is crucial to provide the

ground truth estimation, and it is explained in more detail in Section 6.4 (and Appendix B). This

receiver is also mounted on a rotating platform with a defined initial pose.

Figure 6.2: The designed ultrasonic rangefinder and an example of a point cloud generated by this platform.

114

The origin of the body frame is defined at the center of the line connecting the two wheels. The

motion model for this robot was explained in detail in Section 3.5; therefore, repetition is avoided here.

An overview of the sensors on the board is shown in Table 6.1. The extrinsic calibration parameters

between the sensor and the coordinate frame of the body are obtained from the 3D CAD model.

Table 6.1: The specifications of the sensors and calibrations used in the differential wheel robot.

Sensor Intrinsic calibration Extrinsic calibration Additional information

Monocular camera MATLAB’s toolbox Provided by 3D CAD model Raspberry Pi Camera Module V2

2D rangefinder No calibration is required Provided by 3D CAD model HC-SR04 mounted on a rotation platform

Wheel encoders No calibration is required Provided by 3D CAD model Custom-built encoders with large disk

Infrared receiver No calibration is required Provided by 3D CAD model Used to estimate the ground truth position

The schematic of the designed software of the system is shown in Figure 6.3. The microprocessor

(Raspberry Pi) and the two microcontrollers (Arduino and ESP8266) are each responsible for

communicating with certain sensors/actuators. The tasks shared between the microcontroller and the

Raspberry Pi ensure that there is shorter latency created compared to delegating all the tasks to a single

processor. The main software runs on Raspberry Pi. Once this software starts, client-server

communication through the HTTPS interface becomes available to the user. The user can upload a

predetermined sequence of commands as a text file or can send individual commands separately. The

obtained sets of commands (such as actuating the motors or requesting data acquisition from one of the

sensors) are sent from Raspberry Pi to appropriate microcontrollers and sensors. Once the command is

sent, the main software waits until it receives a response and then saves the results of running that

command. The output files include text files (as seen in Figure 6.3) and images. This text file includes the

readings from each wheel encoder, the point cloud from the ultrasonic rangefinder platform, and

observations by IR receivers. The images obtained using Raspberry Pi PiCamera are referenced in this

115

text file as well. Each sensor reading is timestamped using Coordinated Universal Time (UTC). In this

example shown in Figure 6.3, the robot activates the two ultrasonic rangefinders and reads the distance

measured (the distances readings are 8.0 and 43.3 centimetres). In the second step, the robot captures an

image. In the third step, the main program sends a command to Arduino to active motors and then reads

the angular velocities measured by the wheel encoders (in this example, 0.64 and 0.61 turns per second

with a duration of motion of 0.89 seconds). Finally, it records the data received from the beacons.

Figure 6.3: In this figure, the communication between the processors and microcontrollers, as well as the

communication between the operator and robot, is shown. The robot also receives signals from the beacons to measure

the ground-truth position and orientation.

Robot Operator

Web browser-based HTTP commandsWeb browser-based HTTP commands

file sharing

['1652806909.2338755', 'ultrasonic', '8.0', '43.3']

['1652806920.5067935', 'PiCamera', 'source', 'img_0000.jpg']

['1648610748.8857887', 'motionandsense', 0.64, 0.61, 1.0, 1.0, 0.89]

['1652806924.9619453', 'infrared-complete', ‘0 0 0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1']

Typical output file

116

6.3 The Designed Handheld Device

Handheld devices have gained a lot of attraction in recent years. Unlike wheeled robots that often

have a constrained motion to a plane, handheld devices can move in a wider range of directions. Further,

these devices can be subjected to vibration of the hands of the user. Therefore, it is important to investigate

the applicability of the developed solution for handheld devices. In this thesis, a handheld device that is

equipped with a monocular camera, IMU and an ultrasonic rangefinder is designed. The device is operated

using a Mini Desktop PC (Beelink Mini S), which is relatively inexpensive compared to smartphones

nowadays. The designed platform is shown in the images in Figure 6.4. The monocular camera board is

designed by Arducam and equipped with an 8 Mega Pixel CMOS IMX219 sensor, which is a low-cost

and low-resolution camera. The IMU is an Xsens mti-g-710 which is a MEMS sensor with lower cost

compared to tactical grade IMUs. The noise density of the gyroscope and accelerometer for this sensor is

0.01° s/√𝐻𝑍, and 60 𝜇𝑔/√𝐻𝑍 on each axis. The ultrasonic sensor is HC-SR04 with 15° angular resolution

(and approximately ±2 cm error in the range reading). The same model was used in the previous platform.

The data is collected and timestamped using the Mini Desktop PC.

The intrinsic calibration of the monocular camera is obtained using MATLAB’s toolbox. The IMU

is calibrated using the 6-position static test, which provides biases, scales, and non-orthogonality error

parameters. In practice, bias is the most important error parameter recommended to be estimated for the

developed RBPF-SLAM. The developed RBPF-SLAM solution can mitigate other types of errors caused

by scale and non-orthogonality. As is the case with most other proposed methods in the past, no specific

calibration for the ultrasonic sensor is performed. However, in Chapter 7, it will be shown the best results

will be obtained by setting the angular resolution to 14°-16° which is very close to the nominal value.

Table 6.2 provides some information about the sensors used in this platform. The extrinsic calibration

parameters are all estimated with the help of a CAD model.

117

Figure 6.4: The designed handheld device includes an IMU, a monocular camera and an ultrasonic rangefinder.

Table 6.2: The specifications of the sensors and calibrations used in the handheld device.

Sensor Intrinsic calibration Extrinsic calibration Additional information

Monocular camera MATLAB’s calibration toolbox Provided by 3D CAD model Arducam with 8MP IMX219

2D rangefinder No calibration is required Provided by 3D CAD model Single HC-SR04

IMU 6-position static test Provided by 3D CAD model Xsens mti-g-710

The software design of the platform is shown in Figure 6.5. The main software runs on the Mini

Desktop PC. This software is responsible for receiving data from the sensors, and it is coded in Python

programming language. The images are captured using OpenCV libraries. The data from IMU is captured

using the Software Developing KIT (SDK) provided by the manufacturing company of Xsens. The

ultrasonic sensor data is captured on an Arduino and subsequently sent to the Mini Desktop PC using

Universal Asynchronous Receiver Transmitter (UART) communication which is one of the most common

methods of sending and receiving data between an Arduino and a PC. Figure 6.5 shows an example of

possible output files. The reading of each sensor is timestamped with UTC.

IMU

Ultrasonic
rangefinder

Arduino

Monocular
Camera

Mini Desktop PC

118

Figure 6.5: Overview of the architecture of the designed handheld device.

6.4 Infrared-based Bearing-only Beacons

In this section, the developed indoor beacons are introduced. This system is designed to provide

ground truth heading and the position of the robot and depends on establishing a Line of Sight (LoS) from

the beacon to the receiver (mounted on the robot). This can be a limitation in many scenarios; however,

the accuracy of the developed indoor beacon system is much higher (approximately 3 to 11 cm) compared

to state-of-the-art Bluetooth-based beacons (approximate 1-meter error) (Ivanov, 2021; Jin et al., 2023).

The developed system estimates the position based on triangulation equations. In the past, the

solution to these non-linear equations is based on linearization (e.g., EKF). The uncertainty of such a

solution can be evaluated locally using the covariance matrix. The linearization of the equations of

triangulation is avoided in this thesis. This can be achieved by utilizing the fact the environment of the

experiments is relatively small (limited 10 by 10 meters), which provides an opportunity to evaluate the

likelihood analytically in a grid defined in the map. Further, since the overall size of the environment is

small, the cell size can be chosen to be with dimensions as small as one centimetre (see Appendix B)

Arduino

(Embedded

Programming)

Handheld

Device

Ultrasonic Sensor

Sensors

Mini PC (Operating

System)

CameraIMU

Sensors

Serial Communication(Through USB)

Computer Station

(e.g. Laptop)

Wi-Fi Communication/USB

Typical output file

Ultrasonic sensor reading

1681239560.8788493 ['119']

1681239561.0042799 ['122']

1681239561.1297252 ['120’]

....

1681239560.769091

Acc X: 0.08585430, Acc Y: -0.23700538, Acc Z: 3.67337799

Gyr X: -0.00097790, Gyr Y: 0.00129211, Gyr Z: 0.00010095

1681239560.769091

Acc X: 0.22782311, Acc Y: -0.65233910, Acc Z: 9.78430176

Gyr X: -0.00068790, Gyr Y: 0.00211652, Gyr Z: -0.00135489

IMU images

119

The developed system can be divided into transmitter and receiver modules. Three transmitter

modules are shown in Figure 6.6. Each transmitter consists of a programmable microcontroller, a circuit

with a 555 timer Integrated Circuit (IC), and an array of IR transmitters that send modulated signals at

38kHz. The receiver module is mounted on the rotating platform of the robot. This receiver is concealed

inside a box which blocks light, including IR, from penetrating in all directions except at a narrow-angle.

By limiting LoS, it is ensured that higher angular precision can be achieved. The receiver is triggered

every time it senses a modulated IR signal. Once the IR receiver completes a rotation, the output is a

binary value (indicating triggered or not) at each step. Each step is defined by a fixed angle of rotation

(approximately 6°). Once the binary sequence is acquired, the average angle within the runs is detected

(a run is defined as a sequence of uninterrupted 1s, as shown in Figure 6.7). The final output of this process

is a series of angles, denoting the observed orientation from the robot to each beacon.

Figure 6.6: A depiction of the transmitter modules of the beacon-based positioning systems.

Trigger Signal

Programming

38 kHz modulation

Transmission

Timer 555

ESP8266

Transmitter LED

1

2

3

4

120

Figure 6.7: The procedure of estimating position using observed angles from the robot to each beacon

The obtained angles can be used to solve equations of triangulation. As mentioned, the developed

approach achieves this by evaluating the observation likelihood in the map. A number of positions

estimated using the beacons and the true position are shown in Figure 6.8. In these examples, three beacons

are used (labelled in yellow). The likelihood in the map is encoded with the colour intensity (the darker

the colour, the higher the likelihood). The true position of the robot is shown as green, and one thousand

cells with the highest estimated observation likelihoods are shown in blue. As is known in typical beacon-

based (or satellite-based) positioning systems, the estimated position can be affected by the geometry of

the beacons and the robot. The estimated observation likelihood clearly shows the effect of the geometry

on the accuracy of the estimated position as well. For example, when the robot is close to the line going

from one beacon to another, the uncertainty in the direction of this line is larger. At the same time, the

uncertainty decreases substantially perpendicular to this line (see also Figure 6.9). In contrast, as the robot

moves to the centroid of three beacons, the uncertainty becomes more isotropic (more uniformly

distributed errors in 𝑥 and 𝑦 directions). Quantitively the accuracy of the method is measured to be in the

range of 3 to 11 cm, based on the geometry throughout an extensive study around the indoor environment.

Perform triangulation

Receive data from the receiver

Calculate the average angle

1

2

3

[x=-2 cm, y= 17cm]

121

Figure 6.8: The estimated location and the observation likelihood of the robot using three beacons. The geometry of the

location of the beacons and the robot affects the uncertainty.

Figure 6.9: The uncertainty of the estimated positions is due to the geometry.

Table 6.3: The lowest error is achieved when the geometry is more isotropic in all directions (approximately 3 cm).

However, the error increases to 11 cm for all the tests.

Set of test positions Accuracy (Absolute Mean Error)

More isotropic geometry subset ~ 3cm

All the tests ~ 11cm

Real pos 1000 cells with

largest likelihood

Higher Likelihood

Lower Likelihood

More isotropic geometry Less isotropic geometry

122

6.5 Ground Truth for Boresight Calibration

In order to assess the developed boresight calibration of the IMU and the monocular camera,

experiments are performed using two devices. One of these is the handheld device introduced earlier. The

reference boresight calibration parameters are obtained from the 3D CAD; therefore, no further attempt is

made to measure this device’s ground truth calibration parameter.

The second device tested for boresight calibration is a smartphone. Here it is assumed that the

orientation parameters between a smartphone’s camera and IMU are not provided by the manufacturer,

and therefore, it should be estimated. The platform is shown in Figure 6.10. The 3D printed box is used to

estimate the ground truth boresight calibration parameters; however, the boresight calibration method can

be used alone with the smartphone. The ground truth estimation is very similar to the developed boresight

calibration method, and it utilizes the gravity vector. The designed platform (see the black box in Figure

6.10) is aligned with gravity in at least one image. In order to ensure that the direction is aligned with

gravity, a leveling instrument is utilized. The image captured at this leveled pose is saved as the first

image.

Figure 6.10: The devices were used to test the IMU/monocular camera boresight calibration.

123

The relative poses of all other images with the first image are estimated with the help of the

fundamental matrix (𝐹), as shown in Equation 6.1. In this equation, homogenous coordinates of image

pixels are denoted as 𝑝𝑘
𝑖 and 𝑝𝑘

𝑗
 (𝑖 and 𝑗 are the image indices, and 𝑘 is the corresponding pixel index).

The fundamental matrix is a 3 × 3 matrix, and therefore it has 9 unknown parameters. However, this

matrix only has 7 degrees of freedom (at least 7 independent equations are required to solve for 𝐹). The

well-known eight-point approach can be used to estimate 𝐹 (Hartley, 1997). In the experiments, in order

to find the fundamental matrix accurately, Apriltags (Olson, 2011) are used as the features. Aprtiltags are

fiducial markers, and each maker has an associated identification, which makes it possible to establish a

correspondence between two tags captured from different images (see Figure 6.11). Once the

correspondences are found, the fundamental matrix in 6.1 can be estimated.

(𝑝𝑘
𝑗
)
′
𝐹𝑝𝑘

𝑖 = 0 (6.1)

The obtained fundamental matrix can be decomposed into a translation (𝑇) (up to an unknown

scale (𝑠)) and a relative rotation matrix 𝑅𝑖
𝑗
 using Equation 6.2 ([𝑇]× is the skew-symmetric 𝑇). Assuming

one of the frames 𝑖 or 𝑗 is the first frame (𝑓) (here 𝑖 = 𝑓 without loss of generality), the relative rotation

matrix can be used to estimate the gravity direction in the other image (Equation 6.3). This estimation is

possible since the gravity vector is known in the first frame. Since the gravity vector is known in the

IMU’s frame (𝑏), the unknown rotation matrix between the IMU and the camera can be shown in Equation

6.4. This matrix can be estimated using the method explained in Section 5.3 and will not be repeated here.

Figure 6.11 shows a schematic of the explained process, where the known transformations are shown in

green arrows and the unknown boresight calibration is shown in red (which can be estimated with the help

of known transformations).

𝐹 = (𝐾′)−1([𝑇]×𝑅𝑓
𝑗
)𝐾−1 (6.2)

124

𝑣𝑗
𝑐 = 𝑅𝑓

𝑗
𝑣𝑓

𝑐 (6.3)

𝑣𝑗
𝑏 = [

𝑟1 𝑟2 𝑟3
𝑟4 𝑟5 𝑟6
𝑟7 𝑟8 𝑟9

] 𝑣𝑗
𝑐 (6.4)

Figure 6.11: The process of estimating ground truth boresight calibration parameters.

6.6 Reference Solution for Pose Estimation

Object pose estimation is one of the important aspects of the developed solution. In addition to

measuring the accuracy of the RBPF-SLAM in terms of the final position and some positions during the

navigation, the accuracy of the pose estimation is also measured independently in this thesis. These

experiments to measure the accuracy of the pose estimation is towards assessing the coarse-to-fine method

explained in Chapter 4.

Obtaining a reference solution for the pose of an object is a challenging task. In order to obtain

such a solution for the pose of the camera with respect to an object, the following steps are taken. Initially,

Apriltag:1

Apriltag:2

Gravity vector

IMU

First image is leveled (camera’s axis y

aligned with gravity vector)

125

the object is placed on a turntable. Then the homography (𝐻) between the planar surface of the turntable’s

plate and the camera is found. In order to estimate the homography, a correspondence of at least four

points in the image and the planar structure should be established. In the experiments, this homography

can be estimated by selecting four corners of the surface of the turntable’s plate. In Figure 6.12, the

projected points from the world frame to the camera’s frame are shown with the help of estimated

homography. The center of the turntable’s plate is also defined to be the center of the world coordinate

frame. The homography can be decomposed into a rotation and a translation (up to an unknown scale 𝑠)

if the calibration matrix (𝐾) is known (Zhang, 2000). This can be achieved by using Equations provided

from 6.5 to 6.8 (𝑟1:3 denotes the column vector 𝑟 = [𝑟1, 𝑟2, 𝑟3]
′). Here it is assumed the length and width

of the turntable plate are known accurately (since the plate is 3D printed). Therefore, this provides an

accurate estimation of the scale. The definitions of the homography, rotation matrix and translation vectors

are provided in Equation 6.9.

𝑟1:3 = 𝑠𝐾−1ℎ1:3 (6.5)

𝑟4:6 = 𝑠𝐾−1ℎ4:6 (6.6)

𝑟7:9 = 𝑟1:3 × 𝑟4:6 (6.7)

𝑇 = 𝑠𝐾−1ℎ7:9 (6.8)

𝐻 = [

ℎ1 ℎ4 ℎ7

ℎ2 ℎ5 ℎ8

ℎ3 ℎ6 ℎ9

] 𝑅 = [

𝑟1 𝑟4 𝑟7
𝑟2 𝑟5 𝑟8
𝑟3 𝑟6 𝑟9

] 𝑇 = [
𝑇1

𝑇2

𝑇3

] (6.9.1,6.9.2,6.9.3)

Once the initial pose of the camera is known, the subsequent poses can also be estimated using the

turntable’s accurate rotation. These poses are shown in Figure 6.13. In this figure, it is assumed the world

coordinate frame is attached to the turntable’s rotating plate.

126

Figure 6.12: The projection of the points in the world frame to the camera’s frame

Figure 6.13: The estimated poses of the camera

127

The explained technique above helps to find a reference pose of the camera in the coordinate frame

defined using the plate of the turntable. However, this frame is not the same as the object’s coordinate

frame (the estimated pose is in the frame of the object). This transformation can be estimated using two

approaches. The rigorous approach is to digitally reconstruct the object using the turntable. Three

reconstructions are shown in Figure 6.14, where the method in (Asl Sabbaghian Hokmabadi & El-Sheimy,

2022) is utilized. This 3D reconstruction method is based on the silhouette of an object. The silhouette-

based reconstruction only requires segmenting the object of interest (foreground) from the background.

The segmented area identifies a mask for the reconstruction algorithm. The pixels located inside the mask

are back-projected and intersected with a virtual box around the turntable. This virtual box is divided into

cells. As the turntable rotates, each cell's occupancy probability is updated. Once all the images are

processed, a threshold is utilized to identify cells with higher occupancy values. These cells correspond to

the object.

The reconstruction object can be registered to the 3D CAD model of the object. This CAD model

was used to build the shape-prior set, and therefore, the estimated object pose is in the corresponding

coordinate frame. The registration can follow these steps:

1. Convert 3D CAD model to a point cloud.

2. Find the relative translation and the scale between the CAD model and the reconstruction.

3. Manually initialize the relative orientation.

4. Use a point-to-point Iterative Closest Point (ICP) method to optimize the initial estimates.

Finally, the ground truth pose of the object in the camera frame can be obtained. The second

approach is to pay attention to the fact that the object of interest has only a rotation around the z-axis with

the turntable. This rotation can be determined by measuring this angle once the object is placed on the

turntable.

128

Figure 6.14: The 3D reconstruction of the object of the interest

6.7 Camera Calibration

The estimation of the intrinsic calibration parameters of a camera is an important requirement for

the proposed solution. In the tightly coupled fusion, the particle weight update is achieved after the

projection of the object onto the image. Such projections require the known intrinsic camera calibration

parameters. Further, the developed extrinsic calibration of an IMU and a camera assumes that the intrinsic

camera calibration parameters are known.

Some of the calibration parameters of a camera can be represented in the form of a matrix known

as the intrinsic calibration matrix (𝐾) (as shown in Equation 6.10). This matrix has five parameters. Two

of these parameters (𝑜𝑥, 𝑜𝑦) are the coordinates of the principal point of the camera (located on the image

plane). The principal point is the orthogonal projection of the camera’s center (an ideal point where light

rays are assumed to intersect) onto the image’s plane. Further, the camera calibration matrix includes a

focal length (f). This length is typically reported in millimetres (mm). The focal length is the distance of

the camera’s center from the image plane. The parameters 𝑎𝑥 and 𝑎𝑦 correspond to the number of pixels

per unit (e.g., mm). With these definitions, the parameters of the calibration matrix do not have physical

129

units, and this definition of the calibration matrix is consistent with the classical literature (Hartley &

Zisserman, 2003)

𝐾 = [
𝑎𝑥𝑓 0 𝑜𝑥

0 𝑎𝑦𝑓 𝑜𝑦

0 0 1

] (6.10)

A calibration matrix defines an ideal pinhole camera. Unfortunately, due to sources of distortion,

real cameras are affected by other types of errors. One type of distortion that is common in many cameras

is the radial distortion. The radial distortion is shown mathematically in Equations 6.11 and 6.12, where

∆𝑟𝑑𝑖𝑠𝑡
‘ is defined in Equation 6.13 (∆𝑥𝑑𝑖𝑠𝑡

‘ and ∆𝑦𝑑𝑖𝑠𝑡
‘ are the camera’s distance from the principal point

in the 𝑥 and 𝑦 directions, respectively). The radius (𝑟) is defined in Equation 6.14, where 𝑥′ and 𝑦′ are

normalized pixel coordinates (𝑥′ = (𝑥 − 𝑜𝑥)/𝑎𝑥𝑓 and 𝑦′ = (𝑦 − 𝑜𝑦)/𝑎𝑦𝑓). The calibration process

estimates the coefficients 𝑘1 and 𝑘2 (higher order terms often are assumed to be negligible). The camera

calibration is performed using MATLAB’s Camera Calibration toolbox. This software toolbox requires a

checkerboard (a planar target) and can estimate the five parameters of the camera calibration matrix and

the radial coefficients (among other error parameters). The errors caused by the radial distortions can be

mitigated in the images with the help of functions provided in MATLAB’s Computer Vision toolbox.

Once radial distortion is mitigated in each image, the camera calibration matrix is the only set of intrinsic

calibration parameters required in the process of tightly and loosely coupled solutions. The estimated

intrinsic calibration parameters for each of the cameras used in the experiments (for the SLAM) are

provided in Table 6.4.

∆𝑦𝑑𝑖𝑠𝑡
‘ = 𝑦′ ∗ (∆𝑟𝑑𝑖𝑠𝑡

‘ /𝑟) (6.11)

∆𝑥𝑑𝑖𝑠𝑡
‘ = 𝑥′ ∗ (∆𝑟𝑑𝑖𝑠𝑡

‘ /𝑟) (6.12)

∆𝑟𝑑𝑖𝑠𝑡
‘ = 𝑘1𝑟

3 + 𝑘2𝑟
5 (6.13)

𝑟 = √((𝑥′)2 + (𝑦′)2) (6.14)

130

Table 6.4 Summary of the estimated intrinsic camera calibration parameters

Camera

𝒂𝒙𝒇, 𝒂𝒚𝒇

(pixels)

𝒐𝒙,𝒐𝒚

(pixels)

Radial distort.

(k1,k2)

Image size

(pixels)

Reproj. error

(pixels)

Raspberry Pi Camera V2 2530,2525 1623,1239 0.1745, 0.3764 3280,2464 0.68

Arducam with 8MP 514,515 332,257 0.1575,-0.1413 640,480 0.18

6.8 Deep Neural Network Training

In this section, some of the hyperparameters for the trained DNN are discussed. This thesis uses

two DNNs for the object-segmentation and the floor-segmentation. Such DNNs are trained using U-Net

architecture (as explained in Sections 4.2 and 5.2). Other important methods and hyperparameters should

be known for the training process. Some of these hyperparameters are mentioned below.

• The larger image sizes are often preferred as they can lead to higher precision in object

segmentation. However, an increase in the image size will increase the memory requirement for

the training. Therefore, the size of the images should often be kept within the limits of the

computational memory.

• One of the most important characteristics of a DNN is the larger number of layers than the classical

shallow networks. The number of weight parameters (also known as trainable parameters) of a

DNN depends on the number of layers. However, increasing the number of layers (and thus the

number of parameters) will often require a larger number of input images and training time.

• As the number of input data for a DNN is very large (hundreds of thousands up to millions),

processing all the data at the same time is often not possible. Thus, the data is provided to a training

algorithm in batches. The batch size or batch dimension refers to the number of images provided

to a training algorithm at each iteration.

131

• The initial weights assigned to a DNN should be adjusted based on the input data (these weights

are initialized either randomly or based on a pre-trained DNN). The algorithm for adjusting these

weights is known as the training method. In the training phase, the weights are adjusted to

minimize the error (the difference between the predicted and the actual output data). In practice,

this process is iterative. There are numerous methods introduced in the literature in the past decades

for training. As the cost function defined in training is often differentiable, the gradient of this

function can be estimated. In order to minimize the cost function, the direction of the gradient that

can lead to the largest decrease in the cost function can be selected. This method of minimization

is known as the gradient descent. If the batches are selected at random for the training, the resultant

method is known as Stochastic Gradient Descent (SGD) (Chollet, 2021).

• The allowed maximum amount of change for the weights in each iteration can be tuned using a

learning rate hyperparameter. The higher learning rates can increase the speed of convergence,

but it is possible that the global minimum is missed. Table 6.5 summarizes some of the

hyperparameters for the trained DNN.

Table 6.5. Summary of the hyperparameters used to train DNN

Hyperparameters/Methods Details

Number of trainable parameters 31,000,000

Image input size (type)/ Output format (type) 256, 256 (RGB images)/ 256, 256, (Binary)

Training algorithm Stochastic Gradient Descent

Batch size 32

Initial Learning Rate 0.01

132

 Chapter 7: Results

7.1 Overview

In this chapter, the main results of the developed object-level SLAM are provided. These include

the assessment of the accuracy, runtime, and other aspects of the tightly and loosely coupled approaches.

The reference solutions introduced in Section 6 are among the techniques used for the performance

evaluations. In addition to evaluating the developed solution to the object-level SLAM, some components,

such as object segmentation, pose estimation and refinement, are evaluated separately. These evaluations

can provide insight into the performance of individual components of object-level SLAM independent of

the others. As an overview, the results include the following:

1. Precision and recall analysis of the object segmentation using different domain randomization

techniques (Section7.2)

2. Qualitative and quantitative analysis of coarse pose estimation without refinement (Section 7.3).

The pose estimation method is compared to the reference solution (obtained with the help of a

turntable) and to Zhang’s method.

3. Quantitative and qualitative analysis of refined pose estimation (Section 7.4).

4. Assessment of the performance of the object-level SLAM using the differential-drive robot (for a

single object) (Section 7.5): The experiment in this section investigates the performance (e.g., the

accuracy of the estimated trajectory) of the developed method under different conditions and

possible sources of error. Such conditions include the camera’s distance from the object (closer or

further), illuminations (dimmer or brighter scenes), and occlusions.

5. Assessment of the object-level SLAM performance using the handheld device (for a single object)

(Section 7.6): In this section, the designed handheld device is used to assess the developed

133

IMU/monocular camera object-level SLAM. Similar to experiments in the previous section, the

method is assessed under different conditions and possible sources of error.

6. Assessment of the tightly coupled object-level SLAM performance with ultrasonic rangefinder

fusion (for a single object) (Section 7.7). In this section, the ultrasonic rangefinder’s observations

are used to provide the distance to the objects in the scenes. The results are compared in terms of

accuracy and runtime, among other criteria, to the standalone IMU/monocular-based solution.

7. Assessment of the tightly coupled object level SLAM performance with ultrasonic rangefinder (for

multiple objects) (Section 7.8). Multiple objects can improve the overall accuracy; however, it also

can introduce new challenges. Such challenges include the requirement for initialization of the

new objects during the navigation. In this section, the performance of the developed method using

more than a single object is assessed.

In the experiments of Sections 7.2 to 7.8, it is assumed that the extrinsic calibration parameters of

the sensors, such as the IMU and the monocular camera, are known. However, as was explained in Chapter

5, in practical circumstances, such assumptions cannot be made. The performance of the developed

boresight calibration technique is assessed in Section 7.9. Finally, the performance of extrinsic (boresight

and lever arm) calibration of the ultrasonic rangefinder and camera is assessed in Section 7.10.

7.2 Precision and Recall of the Object Segmentation

In this section, the performance of the object segmentation method is evaluated. Object

segmentation is a crucial component in the developed solution to object-level-based SLAM. Object

segmentation is used in estimating the object’s pose in the initialization phase and the particle weighting

process of the tightly coupled SLAM. The developed object segmentation is trained using a synthesized

training image set (as explained in Section 4.2). In order to assess performance, precision and recall are

utilized. These assessment criteria are measured at the pixel level by comparing the reference solution and

134

the output of the trained DNN. The reference segmentation of the object of interest is obtained manually

using the Grab-cut algorithm. The experiments are performed in many indoor environments (some of the

images from these indoor environments are shown in Figure 7.1). For these experiments, a Canon

PowerShot s110 is used.

Figure 7.1: Illustration of some of the environments for the experiments.

The developed DNNs are trained using synthesized images. Synthesizing images is achieved based

on the concept of domain randomization (explained in Section 4.2). In order to investigate the

effectiveness of different domain randomization factors (e.g., illumination condition, camera calibration

parameters), ten DNNs are trained. In training DNNs, progressively, more training images are added. At

each new set, one or more aspects are considered in domain randomization. The results are summarized

in Table 7.1. Since the output images using U-Net include more than two values, a process of binarization

135

is required to separate the two segments (background and the foreground(object)). This threshold is the

only hyperparameter that can be required for tuning in the experiments. High recall and high precision for

the developed pose estimation, in general, are required. The results in Table 7.1 report the precision for a

recall of approximately 85%. The networks DNN 1 and DNN 2 are trained with image resolutions of

256×256 and 128×128 pixels, respectively, and approximately 27𝑘 images (𝑘 here denotes one thousand).

The precision values for these two cases indicate that better results are achieved for the lower resolution.

The lower precision of the set trained with higher image resolution (DNN 1) might be due to the higher

ratio of training parameters to the number of input images, which leads to a lower capacity to generalize

from training to test sets (overfitting occurs).

In the second set of experiments (DNN 3 and DNN 4), the image database size was increased to

49𝑘 by adding extreme viewpoints (cameras that are too close or too far from the object). It can be seen

that adding such extreme viewpoints, overall, does not increase performance. Conversely, in certain

scenes, precision is reduced (realistic viewpoints are added in DNN 9 and DNN 10). In the third set of

experiments (DNN 5 and DNN 6), the image database size has increased to 59𝑘 by including new

backgrounds. These backgrounds, for example, have a single hue or are from an outdoor environment and

are different from the test environments. As with the previous test, overall, no significant gain in precision

is obtained. In the fourth set of experiments (DNN 7 and DNN 8), the size of the image database has

increased to 120𝑘 by including different illumination conditions (including extreme conditions). The

precision of this experiment has improved overall. Finally, realistic viewpoints and illumination

conditions are included in training DNN 9 and DNN 10. The obtained results indicate that considering

domain randomization factors corresponding closer to the real-world scenarios plays a significant role in

increasing the precision. For the four best DNNs, a complete precision versus recall plot is provided in

Figure 7.1 (the binarization threshold is varied in a range from 0.01 to 0.99).

136

Table 7.1: The precision of DNNs using different numbers of training images, image resolution and more.

Figure 7.2: The precision versus recall plot of four DNNs with the best performance.

Trained

DNN

Experiment Information

Input

Image

Test 1

(p)

Test 2

(p)

Test 3

(p)

Test4

(p)

Test5

(p)

Test6

(p)

Test 7

(p)
description

DNN 1 256x256 27k 0.19 0.07 0.18 0.13 0.04 0.20 0.33 original set

DNN 2 128x128 27k 0.65 0.02 0.75 0.77 0.03 0.81 0.92 original set

DNN 3 256x256 49k 0.60 0.48 0.69 0.24 0.09 0.32 0.51
+extreme viewpoints

variations

DNN 4 128x128 49k 0.39 0.17 0.58 0.19 0.04 0.24 0.93
+extreme viewpoints

variations

DNN 5 256x256 59k 0.13 0.22 0.14 0.12 0.05 0.06 0.28 +unrealistic backgrounds

DNN 6 128x128 59k 0.30 0.63 0.18 0.16 0.10 0.18 0.54 +unrealistic backgrounds

DNN 7 256x256 120k 0.44 0.36 0.74 0.03 0.02 0.04 0.95
+extreme illumination

conditions

DNN 8 128x128 120k 0.65 0.08 0.88 0.54 0.02 0.77 0.91
+extreme illumination

conditions

DNN 9 256x256 180k 0.95 0.81 0.94 0.93 0.39 0.99 0.99
+realistic viewpoints

+realistic illumination

DNN 10 128x128 180k 0.90 0.60 0.89 0.64 0.06 0.94 0.94
+realistic viewpoints

+realistic illumination

137

7.3 Qualitative and Quantitative Analysis of Coarse Pose Estimation

In this section, the accuracy of the coarse pose estimation is evaluated. The developed pose

estimation (explained in Chapter 4) is object-centric. Therefore, the estimation is only accurate if the

camera is looking at the object of interest (the center of the camera, the principal point and the center of

the 3D model of the object are aligned). As the results in this section will indicate, the pose estimation

stays relatively accurate, even when the camera is not looking at the object.

For the purpose of quantitative analysis, the reference solution (for the relative pose of the object)

is obtained using a turntable (Chapter 6). The results are summarized and shown in Table 7.2. The

accuracy of orientation parameters is estimated by decomposing the rotation matrix into three Euler

angles. These decomposed angles are used to measure the Euclidean distance from the reference to the

estimated angles. Since the center of the CAD model (where the object’s pose is estimated with respect

to) and the coordinate center of the turntable (where reference rotation and translation are measured) are

often not known, the error in relative translation is reported. This relative translation is measured as the

vector from a designated camera pose to other camera poses. The designated viewpoint can be the first

image (or any other image in the set). Relative translation cancels out the unknown offset between the two

centers (of the turntable and the object). The last assessment criterion is the ratio of the relative translation

error to the magnitude of the relative translation vector, as reported in Table 7.2.

The experiments are performed with two camera-to-object distances (short-range (~50 cm) and

medium-range (~100 cm)). As can be seen from the results, the orientation error of approximately 9.96° to

10.31° has been achieved for these tests. One possible reason for the better performance in the experiment

with a shorter range is the higher precision and recall of the object segmentation. The boundary of the

segmented object of interest is used in finding the best-matched shapes in the shape-prior set (as explained

in Chapter 4).

138

Table 7.2: The orientation and translation errors of the developed pose estimation.

Exp.

Experiment Details

Orientation error

(degrees)

Translation error

(cm)

Translation error

ratio (%)
Description

Test 1 9.96 3.77 0.09 short-range

Test 2 10.31 2.13 0.12 medium-range

Figure 7.3 shows the orientation error for each image. The symbol # indicates the index of the

image (a total of 33 images used for the test). As can be seen, the overall mean error is affected by one or

two images with large errors. The median rotation error is 7.56° .

Figure 7.3: Orientation error for each image

The second quantitative analysis is conducted to compare the developed pose estimation to

Zhang’s method (Zhang, 2000). Zhang’s method is a planar-based camera calibration method that also

estimates the relative pose of the camera with respect to the checkboard. The advantage of Zhang’s method

is that it can be used in different indoor scenes as long as the target (a checkerboard) is present in the

image. The disadvantage of this method is that it does not produce poses as accurately as using the

139

turntable. It will be shown the developed pose estimation outperforms Zhang’s method. Due to an

unknown translation vector between the coordinate origin of the checkerboard and the CAD model, only

the orientation error is reported. In order to measure this error, the object is aligned with the checkboard’s

axes in the scene. The accuracy is measured in four scenes, and multiple images are included for each

scene. Based on the results in Table 7.3, the orientation error becomes larger as the distance of the camera

from the object increases. This can be due to the fact that Zhang’s method depends on corner detection,

and as the camera becomes closer to the checkerboard, the accuracy of such detection increases. In order

to compare the results qualitatively, the object’s 3D model and its coordinate frame are projected onto the

image with the help of known pose parameters in Figure 7.4. This figure illustrates that the developed

method can estimate a more accurate pose of the object compared to Zhang’s method.

Further qualitative analysis of the developed method is provided in Figure 7.5. It can be seen that

the estimated pose is very close to the expected pose in different indoor scenes . The images show

variations in the camera’s viewpoint, illumination conditions, as well as different levels of background

clutter. In some images, the object is occluded to demonstrate the partial robustness of the pose estimation

to this source of error. It can be seen that the developed method can still estimate a relatively accurate

pose under mild to moderate occlusions.

Table 7.3: Orientation error between the developed and Zhang’s pose estimation.

Exp.
Experiment Details

Orientation error (degrees) Range Background clutter

Test 3 12.79 Very Short Low

Test 4 13.27 Short Low

Test 5 15.38 Short High

Test 6 19.43 Medium High

140

Figure 7.4: Qualitative comparison of the developed and Zhang’s pose estimations. The developed method is shown in

(a), and Zhang’s method is shown in (b).

Figure 7.5: Qualitative assessment of the developed pose estimation technique.

141

7.4 Quantitative and Qualitative Analysis of Refined Pose Estimation

The procedure explained in the previous section can only provide an accurate pose estimation if

the camera is directly looking at the object. In the cases that this cannot be held true, the coarse estimation

of the pose should be refined. The developed loosely coupled object-level SLAM solution is directly

affected by the independent pose estimation using the camera; therefore, pose refinement can significantly

impact the accuracy of this approach.

In order to evaluate the pose refinement, two assessment metrics are used. The first assessment

metric is the reprojection error, and it is defined as the distance between the projected points of the object’s

3D model onto the image and the observed points on the boundary of the segmented object. In order to

measure this error, one-to-one correspondence between points on the projected and the observed

boundaries should be established. As explained in Section 4.6, such feature correspondence is already

established in the refinement process. Therefore, the reprojection error can be measured readily. The

second assessment metric is the IoU of the projected and observed boundaries. Unlike the reprojection

error, the IoU considers every point on the boundary to assess the accuracy of the pose refinement. Further,

IoU is independent of point-to-point feature correspondence. The two methods are illustrated in Figure

7.6, which shows that even though the predicted (yellow) and observed boundaries (green) are very

similar, the reprojection error is high (6.98 pixels on average). Similarly, the IoU is relatively low (0.579

with a maximum possible value of 1 and minimum 0). Figure 7.7 shows the initial boundary, the observed

boundary, and the boundary obtained after refining the pose in red, yellow, and purple, respectively. As

mentioned, the initial pose estimation assumes that the camera is directly looking at the object. It is

important to note that the refined pose is not only an in-plane translation of the coarse (initial) pose

estimation. This can be seen in the image in the third row and the second column in Figure 7.7, where the

object’s 3D orientation is also improved significantly.

142

Figure 7.6: Comparison of reprojection and IoU values.

Figure 7.7: Illustration of coarse and refined poses

IoU=0.58reprojection error =6.98

143

For quantitative analysis, the experiments are performed in four indoor environments. In these

experiments, the distance to the object and illumination conditions are varied. Table 7.4 summarizes the

reprojection error. The object’s distance to the camera did not affect the values in the reprojection error

significantly. Figure 7.8 shows the reprojection error for each individual image in each set. It is important

to note these reprojection values are estimated with the developed method of feature correspondence.

There are at least two reasons for large reprojection errors:

• The feature correspondence can be inaccurate. This is because the correspondences (as explained

in Section 4.5) are established by finding the nearest features, which depend on the coarse pose

estimation.

• The segmentation does not accurately correspond to the boundary of the object. This can be seen

in Figure 7.6 (the green boundary in the left image). The resolution of images matters significantly

in the results of segmentation. The results from the previous section were obtained using a Canon

PowerShot S110, and the result in this section is obtained using RPV2, which produces lower-

quality images.

Table 7.4: Reprojection error of the developed pose refinement.

Exp.

Experiments details

Mean Error

(pixels)

Median Error

(pixels)

Range More information

Test 7 7.99 7.96 short low background clutter, bright light

Test 8 8.01 7.69 long low background clutter, dim light

Test 9 8.61 8.37 long low background clutter, bright lights

Test 10 8.80 8.22 long high background clutter, dim light

144

Figure 7.8: Illustration of reprojection error for each image in four tests.

The IoU values are provided in Table 7.5. In these experiments and all the subsequent experiments

in this chapter, the reported IoU is the average of all the tested images in that experiment. Based on this

table, it seems that the background clutter has a significant impact on the accuracy. The lower background

clutter in Tests 7, 8, and 9 results in a better performance than Test 10, which has higher background

clutter. In Table 7.6, the corrections to the orientation after the pose refinement are shown. The correction

in the orientation is measured as before, where the rotation matrix is decomposed into three Euler angles,

and the distance between the angles before and after applying pose refinement is measured. Since the pose

estimation is obtained using a single image, no scale is available. Therefore, translation correction is not

reported. From Table 7.6, it can be seen that a significant correction in the orientation is obtained after the

refinement. The result in this section indicates that the pose estimation has errors. In the following

sections, it will be shown that through the process of RBPF, better camera poses can be achieved.

145

Table 7.5: IoU after pose refinement.

Exp.

Experiments details

Mean Error Median Error Range More information

Test 7 0.56 0.57 short low-background clutter, bright light

Test 8 0.68 0.67 long low background clutter, dim light

Test 9 0.65 0.67 long low background clutter, bright lights

Test 10 0.43 0.44 long high background clutter, dim light

Table 7.6: Orientation correction after pose refinement.

Exp.
Experiments details

Orientation correction (degrees) Range More information

Test 7 28.55 short low background clutter, bright light

Test 8 41.09 long low background clutter, dim light

Test 9 42.98 long low background clutter, bright lights

Test 10 27.39 long high background clutter, dim light

7.5 Assessment of the Object-level Solution Using the Differential-drive Robot (single object)

In this section, the accuracy of the estimated trajectory using a differential-drive robot is

investigated. Similar to the previous sections, the effects of illumination conditions, camera distance from

the object, and background clutter on the accuracy of the solution are studied. The error in the position is

estimated using two different approaches. In the first approach, the reported error is the distance between

the ground truth and the estimated final positions. In the second approach, beacons with an accuracy of

approximately 3 to 11 cm are utilized to measure the error in the estimated position at different points

along the trajectory of the robot. Both these methods are explained in Chapter 6. The images for these

experiments are captured in a stop-and-go fashion. The image segmentation is applied to all the images.

146

One of the key components of any RBPF-SLAM is the weighting and resampling processes. The

weighting step in an RBPF-SLAM can fail in the tightly and loosely coupled methods due to challenging

scenarios. These scenarios are investigated in Section 3.7. Here, a summary and further details are

provided:

a) The object of interest is present in the image but only partially segmented. Possible reasons for

this challenge to occur are occlusions of the object of interest by other objects, the long distance

of the object from the camera, and more. (Challenge II, Section 3.7).

b) The object of interest is present in the image, but object segmentation has low precision. This

challenge can occur if other objects with similar appearance or shape in the background are

segmented as well (Challenge III, Section 3.7)

In the loosely coupled solution, the particle weighting is based on an independent pose estimation

using the current image and the motion model (i.e., using the robot’s wheel odometry). However, in the

tightly coupled method, particle weighting is based on the projected and observed object boundary (pose

estimation from one image is only used in object initialization). Therefore, camera poses are refined

indirectly in the resampling process and pose estimation from one image is not required (as explained in

Section 3.4). This makes the tightly coupled approach not reliant on coarse-to-fine pose estimation. As

shown in Section 7.2, the coarse estimation of the pose has only low to medium robustness to errors in

segmentation; therefore, it is expected for the loosely coupled approach to be more affected by Challenges

II and III. However, the tightly coupled method is also affected by both challenges. For example, when

Challenge II occurs (e.g., due to occlusions), the maximum possible particle weight (when prediction and

observation coincide perfectly) is limited to the visible area of the object. Such scenarios can result in the

particles with more and less accurate poses receiving similar (and low) weights (as explained in Section

3.7).

147

To address possible degradation in the accuracy due to these challenges, a mechanism for failure

detection should be utilized. In order to identify if Challenge II has occurred, the newly estimated weights

can be investigated. If these weights are all low, then this can indicate Challenge II has occurred. In such

cases, the observation from the current epoch can be disregarded to avoid degradation of the accuracy.

Challenge III can occur when some background pixels are labelled as objects. However, in the

experiments, this issue rarely occurs. If the background pixels are far from the object of interest, the

accuracy of neither loosely nor tightly coupled methods will be reduced with the help of one additional

step after segmentation. This step is the identification of connected pixels in the segmented binary image

(which can be achieved using classical computer vision techniques). Once these connected groups are

identified, the one group that has the largest number of pixels can be selected. These pixels most likely

correspond to the object of interest. The remaining pixels can be labelled as background. In addition to

the fault detection mechanisms, both tightly and loosely coupled methods propagate the weight of the

particle to the next epochs, and if Challenge II or Challenge III occurs in only several images, the solution

can recover from these problems.

Three experiments are conducted to evaluate the tightly and loosely coupled methods. Table 7.7

summarizes the error in centimetres, and Table 7.8 shows the error relative to the total trajectory length.

In order to estimate the best position using all the particles, two approaches are used. The first approach

reports the weighted average of the particle poses (denoted as Expected Value (EV)), and the second

approach reports the pose of the particle with maximum weight (denoted as Maximum a posteriori

(MAP)). The number of particles utilized for these experiments for tightly coupled is 10,000, and for

loosely coupled, it is 50,000 particles. Further, each experiment is performed five times, and the average

of 5 experiments is reported as the final accuracy. However, no significant difference in the accuracy

among these repeated experiments was observed. The short-range corresponds to approximately 35 cm,

148

and the longer range corresponds to 75 cm. In these tests, the loosely coupled solution produces a more

accurate final position overall. One reason for the better performance of this method is the estimation of

the pose of the object with respect to the camera in each new image, independent of the current particle

proposal. This can provide a certain degree of robustness to the accumulated errors during the navigation

and errors in the initializations. However, it is important to note that tightly coupled have performed better

along the trajectory (this will be demonstrated clearly in the following).

Table 7.7: The error in the position of the tightly and loosely coupled solutions

Exp.

Experiments details

Loosely coupled Tightly coupled Range More information

EV

(cm)

MAP

(cm)

EV

(cm)

MAP

(cm)

Test 11 23.2 19.6 12.7 27.7 short low background clutter, bright light

Test 12 10.1 89.5 25.0 46.9 long low background clutter, dim light

Test 13 20.5 92.4 46.2 29.4 long low background clutter, bright lights

Table 7.8: The error ratio in the position to the path length of the tightly and loosely coupled solutions.

Exp.

Experiments details

Loosely coupled Tightly coupled Range More information

EV/DT MAP/DT EV/DT MAP/DT

Test 11 0.06 0.05 0.03 0.07 short low background clutter, bright light

Test 12 0.01 0.12 0.03 0.06 long low background clutter, dim light

Test 13 0.03 0.13 0.06 0.04 long low background clutter, bright lights

149

The results for the IoU are provided in Table 7.9. This table reflects the average IoU measured for

the best particle across all the epochs, but failure cases (which can result in very small IoU) are not

considered. The failure percentage is reported in Table 7.10, and it is very small for the tightly coupled

method in comparison to the loosely coupled method. This is since, as mentioned earlier, the tightly

coupled method is less influenced by Challenge II and III. Tables 7.9 and 7.10 show that the IoU is reduced

(and the failure rate increased) for the loosely coupled method for longer ranges. These experiments show

that even with some images failing to provide an update (particle weighing and resampling), both methods

can produce an overall error in the trajectory between 0.01 to 0.06 of the total path (see the EV/DT in

Table 7.8).

Table 7.9: IoU of the back-projected 3D CAD model and the segmented object.

Exp.
Experiments details

Loosely coupled Tightly coupled Range More information

Test 11 0.73 0.86 short low background clutter, bright light

Test 12 0.69 0.89 long low background clutter, dim light

Test 13 0.61 0.84 long low background clutter, bright lights

Table 7.10: failure-rate (the smaller, the better)

Exp.

Experiments details

Loosely coupled Tightly coupled Range More information

Test 11 0.20 0.12 short low background clutter, bright light

Test 12 0.34 0.00 long low background clutter, dim light

Test 13 0.41 0.19 long low background clutter, bright lights

150

More experiments using different numbers of particles are provided in Table 7.11. In this table, it

can be seen that the failure rate for the loosely coupled is overall higher. This rate for the loosely coupled

decreases overall from 0.48 to 0.17 as the number of particles increases from 1000 to 20000. However, it

seems that a very small improvement has been gained beyond 12500 particles. Conversely, once the

number of particles is above 5000, no failure has been reported for the tightly coupled.

The accuracy and the IoU of tightly coupled remain similar after 5000 particles, exhibiting that

increasing the number of particles beyond this point will not impact the accuracy. However, the runtime

significantly increased for the tightly coupled as the number of particles increased. This increase in

runtime is expected as tightly coupled requires the projection of the particles onto the image and finding

the boundary of the projected points. Finding the boundary is the computational bottleneck of the process.

In practice, several steps can be taken to reduce the runtime. These steps are explained previously in

Section 4 but will be briefly repeated here. One approach to reducing the computational cost is initially to

project only the center of the 3D CAD model. If this center falls away (more than a certain pixel threshold)

from the observed contour, the particles will be assigned to a low weight. In our experiments, a large

percentage of particles are assigned with a low weight using simple steps. But despite using such

additional steps, the runtime can still remain high.

For the loosely coupled, the overall reported IoUs are less than the tightly coupled method.

However, the runtime is shorter since updating the weights of the particles in the loosely coupled does not

require projection of the 3D model (and finding its boundary). Instead, the weights are updated using the

predicted pose (obtained from the wheel odometry) and the observed pose (obtained from the monocular

camera) (as explained in Chapter 3). The estimated error in these experiments does not assess the

performance along the trajectory. In order to compare the trajectories of the two methods, more details are

provided in the following.

151

Table 7.11: This table illustrates the mean, IoU elapsed time for the experiments for different numbers of particles.

Particle

number

Experiments details

Loosely coupled Tightly coupled

EV

(cm)

IoU

no units

Time

(s)

Fail rate

no units

EV

(cm)

IoU

no units

Time

(s)

Fail rate

no units

1000 20.0 0.697 34.5 0.48 - - - 1.00

2500 9.7 0.760 36.2 0.23 - 0.527 76.8 0.92

5000 22.6 0.730 42.8 0.26 12.1 0.879 413.7 0.00

7500 32.3 0.684 49.5 0.26 12.3 0.895 623.4 0.00

10000 29.3 0.674 61.4 0.31 11.9 0.892 827.5 0.00

12500 14.0 0.715 70.1 0.20 12.1 0.899 1019.0 0.00

15000 11.25 0.712 77.9 0.14 12.0 0.906 1246.5 0.00

17250 7.1 0.819 88.5 0.17 12.3 0.904 1441.6 0.00

20000 15.2 0.767 100.7 0.17 12.3 0.903 1595.5 0.00

The error ellipsoids, the particles, and the trajectory estimated for the tightly and loosely coupled

method (Test 12) are shown in Figures 7.9 and 7.10, respectively. The ground truth final position (GT)

and the estimated final position (End) is also shown in these figures. The estimated trajectory is in 6DoF;

however, only the top view is shown for clarity. In order to illustrate the errors, ellipsoids are fitted to the

particles that contain 50% of the overall weight (the corresponding particles are shown in green points).

The actual trajectory of the robot is approximately a circle around the object. These figures show that the

tightly coupled method produces a more accurate trajectory. Also, from Figure 7.9 (tightly coupled) failure

rate is 0, while Figure 7.10 (loosely coupled) exhibits a failure to update in one epoch (where the

uncertainty grows large, the algorithm failed to update).

152

Figure 7.9: Particles and uncertainty ellipsoids of the tightly coupled solution.

Figures 7.9 and 7.10 show that the uncertainty in the direction from the object’s center to the

camera’s coordinate center is larger. This larger uncertainty is expected due to the scale ambiguity with

monocular cameras (see Section 3.7, Challenge IV). Further, It is important to note that the estimated

distribution of the particles is not ellipsoidal as well. The exact shape of the error is different based on the

pose of the camera with respect to the object. For illustration, a schematic of possible uncertainty is shown

in Figure 7.10. The non-ellipsoidal shape of the error makes the PF-based approach more suitable than

methods such as EKF for this problem.

153

Figure 7.10: Particles and uncertainty ellipsoids of the loosely coupled solution.

Figure 7.11: Comparison of a hypothetical set of particles and the fitted ellipses schematically

Object

Correct boundary of the camera’s uncertainty region

Approximate error ellipse

A particle

154

In the second set of experiments, beacons are utilized to measure the accuracy of the estimated

pose during navigation. Three beacons are positioned in the indoor environment, and the robot moves

around the object of interest. The ground truth position is measured with respect to the beacons with the

help of the developed method in Appendix B. In Figure 7.12. a set of 1000 most likely positions are shown

in blue, and the position corresponding to the maximum likelihood is shown in a white asterisk. As is seen

in this figure, the uncertainty is very isotropic due to the position of the beacons and the robot.

Figure 7.12: The best and the uncertainty estimates of the robot’s position using the beacons

155

Table 7.12 shows the results obtained for the errors of tightly/loosely coupled methods in four

tests. Test 15 includes severe occlusion to demonstrate the robustness of methods in such scenarios. The

error of the estimated pose is measured in many locations along the trajectory, and the reported number is

the average of these errors. Table 7.12 shows that the tightly coupled solution provides an overall lower

error (with an error rate between 0.03% to 0.06 % of the total trajectory). The main contributor to the

lower accuracy of loosely coupled in this experiment is the higher background clutter and occlusions,

leading to higher failure rates. The IoU and the failure rate for these experiments are provided in Table

7.13 and Table 7.14. As was expected, the tightly coupled approach produces a much higher IoU and a

much lower failure rate.

The estimated position, the ground truth, and the uncertainty of the ground truth in 𝑥 and 𝑦 axes

are shown in separate plots in Figure 7.13 for Test 14. The estimated position falls within the confidence

interval of the ground truth in most cases (especially in the 𝑥 direction). The ground truth is measured at

eight positions. The confidence interval is obtained by finding the range of cells in the 𝑥 and 𝑦 axis where

their overall likelihood reaches 96.00% (more information about beacons is in Appendix B).

Table 7.12: Error in the estimated position of the tightly and loosely coupled methods

Exp.

Experiments details

Loosely coupled Tightly coupled Occlusion

Exists?

More information

EV

(cm)

EV/DT

no units

EV

(cm)

EV/DT

no units

Test 14 40.0 0.053 24.4 0.032 no bright light, longer trajectory

Test 15 37.7 0.089 19.2 0.045 yes dim light, shorter trajectory

Test 16 39.2 0.091 24.3 0.057 no dim light, shorter trajectory

Test 17 41.9 0.112 14.1 0.038 no bright light, shorter trajectory

156

Table 7.13: IoU (no units) of the tightly/loosely coupled methods

Exp.
Experiments details

Loosely coupled Tightly coupled Occlusion Exist? More information

Test 14 0.440 0.763 no bright light, longer trajectory

Test 15 0.529 0.816 yes dim light, shorter trajectory

Test 16 0.531 0.830 no dim light, shorter trajectory

Test 17 0.511 0.845 no bright light, shorter trajectory

Table 7.14: The failure rate (no units)of the tightly/loosely coupled methods

Exp.
Experiments details

Loosely coupled Tightly coupled Occlusion Exist? More information

Test 14 0.61 0.06 no bright light, longer trajectory

Test 15 0.37 0.00 yes dim light, shorter trajectory

Test 16 0.36 0.04 no dim light, shorter trajectory

Test 17 0.48 0.00 no bright light, shorter trajectory

Figure 7.13: Comparison of the estimated positions in the x and y directions.

157

The estimated trajectory of the robot, particles, and the error ellipses for the tightly coupled method

(Test 16) is shown in Figure 7.14. This experiment includes some failure rates (see where the uncertainty

increases). The two failure cases in these experiments are mainly due to background clutter, but overall,

failure cases happen infrequently. Further, as can be seen in Figure 7.14, the solution can recover one or

two epochs after the failure. On the other hand, the loosely coupled method, unfortunately, fails many

times along the trajectory (as can be seen in Figure 7.15).

Figure 7.14: Particles and uncertainty ellipsoid of the trajectory for tightly coupled method.

158

Figure 7.15: Particles and uncertainty ellipsoid of the trajectory for loosely coupled method.

The performance of the loosely and tightly coupled solutions for the different particle numbers is

provided in Table 7.15. Based on these results, to achieve a comprise between the accuracy and the

computational time for the tightly coupled approach, approximately 15000 particles can be used. Similar

to the previous results (Table 7.11), increasing particles increases the IoU values of the tightly coupled

method. Unfortunately, increasing the particles for the loosely coupled achieves improvements up to 5000

particles. Increasing the particles beyond these numbers does not seem to result in improvements.

159

Table 7.15: The results for different numbers of particles

Particle

number

Experiments details

Loosely coupled Tightly coupled

EV

(cm)

IoU

no units

Time

(s)

Fail

rate.

EV

(cm)

IoU

No units

Time

(s)

Fail

rate.

3500 124.6 0.349 55.8 0.78 94.8 0.592 260.9 0.32

5000 62.6 0.456 65.8 0.63 23.8 0.764 399.4 0.00

7500 63.9 0.461 80.2 0.58 14.2 0.806 529.7 0.00

10000 42.2 0.506 104.7 0.51 21.6 0.794 717.7 0.00

12500 59.6 0.409 126.5 0.56 20.2 0.811 927.9 0.02

15000 40.7 0.538 146.7 0.49 15.3 0.831 1061.6 0.00

17250 56.7 0.482 175.6 0.56 13.1 0.837 1172.7 0.00

20000 66.3 0.414 199.9 0.54 14.9 0.830 1402.2 0.00

40000 58.6 0.442 524.2 0.36 15.7 0.849 2933.9 0.02

In order to investigate how the errors in the motion model can influence the accuracy of the pose

estimations, distortions are added to the odometry measurements. The odometer’s reading can provide

linear and angular velocities (as explained in Section 3.5). The distortions (denoted as ∆𝑉𝑑) are added to

linear velocity (the unit is in cm/s) every epoch that an odometry reading becomes available. This type of

distortion can be interpreted as a bias error. Figure 7.16 summarizes these results. The magnitude of the

distortion ranges from 0 to 30 cm/s. The IoU values decrease as the distortions increase. However, IoU

stays relatively high up to 15 cm/s error; therefore, it can be concluded that the developed method has a

certain level of robustness to systematic errors in odometry readings.

160

Figure 7.16: IoU for a range of distortions added to the wheel odometry.

7.6 Assessment of the Object-level Solution Using the Handheld Device (for a single object)

In this section, the result of tightly and loosely coupled object-level with IMU/monocular camera

fusion is provided. The ground truth is measured as the distance between the initial and the final position

of the device (see Chapter 6). The experiments are performed in two different indoor environments where

the object of interest is placed on a table, and the device is moved around the object, capturing it from

different viewpoints. The performance of the methods has been studied under different illumination

conditions, levels of background clutter, and distances of the camera to the object of interest. The IMU

measurements are captured at 50 Hz, and the images are captured at 2-3 Hz for these experiments. The

image segmentation is performed in each image (for the loosely coupled method, the pose estimation is

performed in each image, while for the tightly coupled method, the pose is estimated only in one image).

There are key differences between the handheld device and the wheeled robot. Unlike wheeled robots, a

handheld device can suffer from the distortions caused by human hand vibrations. Further, the motion

estimated from MEMS-based IMU is often less accurate than the wheel odometry as the duration of the

trajectory increases. Finally, unlike wheeled robots, which have a motion constrained to a plane (the robot

is moving on a floor), the handheld device’s motion is not restricted to a plane. Due to these sources of

161

distortions and higher degrees of freedom, it is possible that more particles will be required. This can lead

to an increase in the computations. The effect of particle number is studied in this section as well.

In the following experiments, two approaches are used to generate the proposal distribution using

IMU mechanization. One approach is to add uncertainty to the raw readings from the accelerometers and

the gyroscope. In this approach, the additive noise is sampled from a Gaussian distribution with a known

variance. This variance is obtained for each accelerometer/gyroscope axes in an offline calibration

process. The second approach is to add the noise to the estimated attitude and the velocity of the camera’s

trajectory after the pose is estimated using mechanization. Unlike the first method, it is not clear how the

variance for the noise can be set for this approach, and often tuning is required. In the experiments, both

approaches are used to include noise.

In order to compare the tightly and loosely coupled methods, three experiments are performed.

The number of particles for both cases is set to 25000. The errors are shown in Table 7.16 (in cm) and

Table 7.17 (ratio to total trajectory length). The shorter range approximately corresponds to 50 cm while

the longer corresponds to 100 cm. Overall, the tightly coupled outperforms the loosely coupled. Based on

these experiments, the tightly coupled solution has an error of approximately 5.4 cm to 13.0 cm using EV

for the position estimation (error ratio of 0.013 to 0.028). Further, an error of approximately 2.8 to 11.2

cm is obtained using MAP for the position estimation (error ratio of 0.006 to 0.039). The experiments

indicate that the camera’s overall distance from the object of interest did not have a deterministic effect

on the errors. Further trajectory duration does not increase the error, indicating the solution is not drifting

over time. The method in (Chermak et al., 2019) utilized a similar solution to the SLAM problem using

IMU/ camera fusion and achieved an error of approximately 0.01 to 0.037 (ratio to the total length of

trajectory). These errors are very similar to the results obtained in this thesis. Further, their approach relies

on a stereo camera.

162

Table 7.16: The error (cm) in the estimated position of the tightly and loosely coupled using the handheld device

Exp.

Experiments details

Loosely coupled Tightly coupled Range More information

EV

(cm)

MAP

(cm)

EV

(cm)

MAP

(cm)

Test 18 54.6 17.2 7.6 11.2 short low clutter, shorter trajectory

Test 19 170.9 6.1 5.4 9.7 long low clutter, longer trajectory

Test 20 11.5 9.7 13.0 2.8 long low clutter, longer trajectory

Table 7.17: The error (ratio) in the estimated position of the tightly and loosely coupled using the handheld device

Exp.

Experiments details

Loosely coupled Tightly coupled Range More information

EV/DT

(no units)

MAP/DT

(no units)

EV/DT

(no units)

MAP/DT

(no units)

Test 18 0.191 0.060 0.026 0.039 short low clutter, shorter trajectory

Test 19 0.426 0.015 0.013 0.024 long low clutter, longer trajectory

Test 20 0.024 0.021 0.028 0.006 long low clutter, longer trajectory

Four more experiments were conducted using the tightly coupled method. The results of these

experiments are summarized in Table 7.18 (error in cm) and 7.19 (error over the total distance travelled).

The obtained error ranges from 4.1 to 13.1 cm. Further, the error is about 0.005 to 0.021 of the total

distance travelled (see EV/DT). Similar to the previous experiments. in these experiments, the solution

did not experience drifts. And it can be expected to achieve similar results for much longer motions. The

distance of the camera from the object of interest also seems not to affect the accuracy. However, a lower

163

cluttered environment results in smaller errors, as expected. The failure rate is 0.00 (see Table 7.20), and

thus, it was possible to update the weights for every image. The IoU is reported to be in a range from

0.805 to 0.821. Overall, no degradation of the performance for the handheld device in comparison to the

wheeled robot is observed.

Table 7.18: The error (cm) in the estimated position of tightly coupled using the handheld device

Exp.

Experiments details

Tightly coupled Range More information

EV

(cm)

MAP

(cm)

Test 21 7.8 22.4 short lower clutter, shorter trajectory

Test 22 4.1 18.9 long lower clutter, shorter trajectory

Test 23 12.3 35.7 medium higher clutter, longer trajectory

Test 24 13.1 32.7 medium higher clutter, longer trajectory

Table 7.19: The error (ratio) in the estimated position of tightly coupled using the handheld device

Exp.

Experiments details

Tightly coupled Range More information

EV/DT

(no units)

MAP/DT

(no units)

Test 21 0.015 0.043 short lower clutter, shorter trajectory

Test 22 0.005 0.023 long lower clutter, shorter trajectory

Test 23 0.018 0.052 medium higher clutter, longer trajectory

Test 24 0.021 0.052 medium higher clutter, longer trajectory

164

Table 7.20: The IoU and the failure rate of tightly and loosely coupled using the handheld device

Exp.

Experiments details

Tightly coupled Range More information

IoU

(no units)

Fail rate

(no units)

Test 21 0.805 0.00 short lower clutter, shorter trajectory

Test 22 0.805 0.00 long lower clutter, shorter trajectory

Test 23 0.819 0.00 medium higher clutter, longer trajectory

Test 24 0.821 0.00 medium higher clutter, longer trajectory

The trajectory of the device, as estimated during the experiments, is shown in Figure 7.17 (Test

21), Figure 7.18 (Test 24), and Figure 7.19. Figure 7.17 (a) shows the EV (expected value of the particles)

and the trajectory in green and red, respectively. In this experiment, the handheld device is moved around

the object (shown in blue) while capturing it from different poses. The device is moved up and down while

the range of the camera to the object is kept approximately the same. The errors are estimated by measuring

the distance between the start and the end positions (and compared to the ground truth value). From the

particles and the corresponding error ellipsoids (see Figure 7.17 (b)), it can be seen the uncertainty is the

highest in the direction from the camera to the object. This is similar to the results obtained using the

wheeled robot in the previous section and it is due to the scale ambiguity of the camera.

The errors follow a similar pattern as shown in Figure 7.18 for Test 24. The key difference is that

Test 24 has a longer trajectory than Test 21. Despite this longer trajectory, no significant drifting of the

solution is observed (see error ellipsoids and the particles in Figure 7.18). This is an expected result since

the position of the device is updated within fixed intervals using the images, therefore, mitigating drift.

The solution is expected to not drift for longer trajectories as long as the update using images is available.

165

Figure 7.17: The estimated trajectory and the error ellipsoids of Test 21.

166

Figure 7.18: The estimated trajectory and the error ellipsoids for Test 24.

167

Figure 7.19: The estimated trajectory and the error ellipsoids.

(a)

(b)

168

The performance of the tightly coupled method is tested using different numbers of particles. The

results are summarized in Table 7.21. Based on this table, IoU values have increased consistently with the

increasing number of particles. However, the improvement is marginal (IoU is increased from 0.813 for

5000 particles to 0.837 for 19000 particles). Based on the results shown in Table 7.21, a similar error is

achieved using particle numbers in the range from 5000 to 19000. The error in the range is between 10 to

13.4 cm, and increasing the number of particles from 5000 to 19000 does not show any consistent pattern

in reducing error. The error might be due to other sources that are not addressed by increasing the number

of particles. Such systematic errors can be due to Challenges II and III, as mentioned previously. Based

on the results in this section, it is recommended to limit the number of the particles for the handheld device

to 5000 since the runtime of the algorithm increases as more particles are used (e.g., increasing the number

of particles from 5000 to 19000, approximately increase runtime twice). In the next section, it will be

shown how the runtime can decrease further by using an ultrasonic rangefinder.

Table 7.21: Summary of the performance of the tightly coupled method using different numbers of particles.

Particle

number

Experiments details (Tightly coupled)

EV

(cm)

EV/DT

(no units)

IoU

(no units)

Time

(s)

Fail rate.

(no units)

5000 12.4 0.018 0.813 6149.2 0.00

7000 11.4 0.020 0.821 8577.4 0.00

9000 10.9 0.019 0.824 9291.8 0.00

13000 10.8 0.018 0.830 11015.2 0.00

17000 13.4 0.022 0.835 12488.7 0.00

19000 11.0 0.018 0.837 13390.3 0.00

169

7.7 Assessment of the Tightly Coupled Object-Level SLAM with Ultrasonic Rangefinder

In this section, the results using the fusion of a monocular camera and an ultrasonic sensor are

provided. With the help of a sensor such as an ultrasonic rangefinder, the initialization can be achieved

without delays. Further ultrasonic sensors provide additional depth information that can help eliminate

many particles that do not fall within a valid uncertainty region around the distance from the observed

object. The elimination of the particles (though assigning low weights) will greatly decrease the

computational cost of the developed algorithm. This was discussed in Chapter 3 extensively.

Ultrasonic rangefinder’s transmitted waves have a chance of missing the target objects. This issue

happens when the camera observes the object of interest, but the ultrasonic sensor is not facing the object.

Therefore, the wave can hit another object. In order to detect this, a simple test is designed in this thesis

(see Section 3.6). The test measures the overlapping area between the projected uncertainty region of the

ultrasonic observation (onto the image) with the segmented object. If this overlapping area passes a certain

threshold (𝜇), then it is more likely that the ultrasonic wave is reflecting from the object of interest. If the

threshold value is set high, it might lead to false negatives; if set low, it can lead to false positives.

In order to test the developed method, the threshold has varied between 0.1 to 0.9. Further, the

beam angle of the ultrasonic rangefinder is assumed to be between 10° to 20° (the nominal beam angle of

the sensor used in the experiments is 15°). The results are provided in Figure 7.20. Figure 7.20 (a) shows

that for a higher beam angle (16°to 20°) and a threshold larger than 0.4, a precision of 1 can be achieved.

Figure 7.20 (b) shows that for lower beam angle values (10° to 16°) and a wide range of thresholds (0.2

to 0.8), the recall value remains in the range from 0.7 to 0.8. Since it is important to avoid false positives,

attaining higher precision is preferable. Based on this discussion, it seems that a beam angle of about 14

to 16° (very close to the nominal beam angle) and a threshold of 0.4 to 0.8 can be utilized for the task of

170

object-level SLAM. Such a large range of possible values for the threshold shows the ease of tuning the

developed method.

Figure 7.20: Precision(a) and recall (b) using different thresholds and beam angle values.

171

As mentioned, fusion with an ultrasonic rangefinder can improve computation efficiency. For the

comparison, the runtime and other performance metrics of the IMU/camera tightly coupled method with

and without fusion with an ultrasonic sensor are provided in Table 7.22. Based on this table, no significant

improvement in the performance has been obtained in terms of accuracy using fusion with the ultrasonic

sensor. However, a significant reduction in the runtime of the algorithm is obtained.

Table 7.22: Comparison of the tightly coupled method with (w) and without (w/o) ultrasonic rangefinder.

Exp.

Experiments details

Tightly coupled (W/O Ultrasonic) Tightly coupled (W Ultrasonic)

EV

(cm)

IoU

(no units)

Time

(s)

Fail rate

(no units)

EV

(cm)

IoU

(no units)

Time

(s)

Fail rate

(no units)

Test 25 6.5 0.815 9753.3 0.02 9.4 0.747 4107.3 0.03

Test 26 16.2 0.810 8036.9 0.04 13.4 0.722 3922.3 0.04

Test 27 10.0 0.846 5879.7 0.03 8.0 0.768 2786.4 0.03

7.8 Assessment of the Tightly Coupled Object-level SLAM (for multiple objects)

In the previous sections, all the experiments relied on a single object. In real-life scenarios, relying

on a single object for the localization of the camera is disadvantageous. The object of interest can be

occluded frequently, and therefore, the particle filter will fail to perform weighting and resampling. The

lack of possibility to update the particle weights using observations will force the algorithm to rely on the

motion model to estimate the trajectory of the robot/device. However, this motion model is based on dead

reckoning and under such circumstances, it is possible that the accuracy of the solution will degrade due

to the accumulation of the error.

172

A possible approach to address this issue is to rely on more than a single object during the

navigation. In multiple object-based solutions, it is more likely to find one or more objects that are not

occluded. In this section, the developed tightly coupled method is used with multiple objects. The main

algorithmic difference between using multiple objects instead of a single object is the requirement to

perform an initialization anytime a new object is observed.

Throughout the navigation, the developed algorithm tests if any of the objects are observed in the

image. Based on the number of objects identified in the image, two possible scenarios can occur. In the

first scenario, only one object is observed in the image. In this case, a data association is performed to

determine which object the observation belongs to. The weighting and resampling steps for this scenario

are the same as it was for a single object. In the second scenario, more than one object is found in the

image. In this case, the IoU for each object can be estimated separately (for a particle), and the maximum

value can be used to estimate the weight. It is important to note that this is not the only possible approach

to weigh the particles. However, since the developed method is affected by Challenge II most frequently

(which occurs during the occlusions), using a single object with higher IoU can be more advantageous

(since the occluded objects will result in lower IoU and it is more advantageous not to rely on these objects

in the weight update process.)

The results for the test with two objects are provided in Table 7.23. Based on this table, the error

is reported to be 9.1 cm (0.012 of the total path traversed by the handheld device) using EV as the metric

of assessment and 17.3 cm (0.023 of the total path traversed by the handheld device) using MAP as the

metric of assessment. These results are very similar to the previous studies using a single object. Therefore,

no significant improvement or degradation of the accuracy has been observed using the two objects.

Further, the IoU is reported to be 0.815, which is also very similar to the results obtained using a single

object, as provided in the previous sections.

173

Table 7.23: The results are obtained using two objects. Based on this table, no significant improvement or degradation

of the accuracy is observed using two objects.

Exp

Experiments details

EV

(cm)

MAP

(cm)

EV/DT

(no units)

MAP/DT

(no units)

IoU

(no units)

Fail rate

(no units)

Test 28 9.1 17.3 0.012 0.023 0.815 0.03

7.9 Boresight Calibration of Monocular Camera and IMU

The fusion of an IMU and a monocular has been used throughout this chapter to provide a solution

to the object-level SLAM. A requirement for such fusions is to find the boresight calibration parameters

between the two sensors. This section will follow the methodology explained in Chapter 5 to find the

boresight calibration parameters. The developed method relies on estimating the normal vector to the floor

in the camera’s frame. This normal can be assumed to be antiparallel with gravity vector to great accuracy

(and can be checked if it is so with a simple levelling device). Finally, the correspondence between the

two vectors (normal and the gravity vector) can be used to find the boresight calibration parameters.

The experiments are performed using two devices. One of these is the handheld device introduced

earlier. This device includes an Xsens IMU and an Arducam camera. The reference solution for the

boresight calibration parameters is based on CAD models. The second device is a smartphone. The ground

truth boresight calibration for the smartphone is obtained with the help of the method that is developed in

Section 6.5. Experiments are conducted in four indoor environments. The environments of the

experiments are shown in Figure 7.21. These images were captured at the University of Calgary. The

synchronization of the IMU measurements and the images is achieved using UTC timestamps.

174

Figure 7.21: The four scenes where the boresight calibration is performed.

The accuracy of the developed method depends on correctly identifying the VPs. These VPs are

divided into vertical (VVP) and horizontal (HVP) ones (see Section 5.3). In Table 7.24, the following

notations are used for brevity. Stage 1 refers to HVP detection, and Stage 2 refers to VVP detection. Stage

1 (successful) denotes a successful detection, and Stage 1 (failed) denotes failed detection. Both stages

can fail due to numerous reasons. For instance, a failure in VVP detection can be due to falsely identifying

a VP corresponding to the horizontal structure (such as the boundary of the floor segment). A correct or

incorrect identification is determined based on human judgment. Further, the error is measured using the

inner product of the corresponding vectors to the estimated and the reference VVP. The reference VVP is

found by identifying two edges corresponding to vertical structures (such as the edges of a wall) and

intersecting lines corresponding to these edges.

(a) (b)

(c) (d)

175

The results (Table 7.24) show that the success rate of both stages simultaneously is 0.62 (Stage1

(successful) and Stage2 (successful)). Further, from Table 7.24, it can be demonstrated that whenever

Stage 1 is successful, Stage 2 rarely fails (Stage 1 (successful) and Stage 2 (failed) only occur with a rate

of 0.01). This indicates that removing the majority of the line segments that correspond to the HVP

increases the success rate of detecting VVP. Finally, in the case that Stage 1 fails, Stage 2 is only successful

at a rate of 0.22. This indicates that directly attempting to detect VVP is a more difficult task to achieve.

The case Stage1 (failed) and Stage2 (failed) is not included in Table 7.24 for brevity. Based on Table 7.24,

the accuracy of the detected VVP is overall very high (the inner product is about 0.98 with a maximum of

1).

Table 7.24: The success rate of stages 1 and 2 and the accuracy of VVP detection

Exp.

Experiment’s details

occurrence rate

(no units)

inner product

(of estimated and reference VVP)

stage1 (successful) and stage2 (successful) 0.62 0.98

stage1 (successful) and stage2 (failed) 0.01 0.02

stage1 (failed) and stage2 (successful) 0.22 0.99

In order to measure the accuracy of the boresight calibration, the rotation matrix (corresponding

to the orientation parameters of the boresight calibration) is decomposed into three Euler angles, and the

Euclidean distance between the ground truth and the estimated angles is used to report the error. The

results are provided in Table 7.25 for the handheld device. This table shows that the orientation error

depends on the scene. The main reason for this dependence is the difference in precision and recall values

achieved for the floor segmentation in each scene (the results are not provided here). Further, Table 7.25

shows that increasing the number of images improves the accuracy, and the best results are obtained by

176

combining the images from scenes b and c (3.49° error). The obtained results also outperform Kalibr

(Furgale et al., 2013), a well-known method of the boresight calibration of IMU and monocular cameras

that require checkerboards. It is also important to note that Kalibr requires initialization of the parameters.

The accuracy of the developed calibration does not strictly increase with the addition of more images. To

investigate this issue, the accuracy is measured for a subset of images in each scene. The subsets are

created by randomly removing one image at a time and estimating the calibration parameters. A boxplot

summarizing the results is provided in Figure 7.22. Further, Table 7.26 provides a summary of the median,

25th and 75th percentile for the error in the estimated orientation. Table 7.26 shows that the median error

is 1.19° for images in scenes b & c, which is an improvement over using all the images (as shown in Table

7.25). The results indicate that the developed method lacks robustness to outliers. One possible solution

is to use techniques robust to outliers (e.g., RANSAC) which is discussed in Chapter 8.

Table 7.25: The error in the orientation angles for the boresight calibration of IMU and camera (handheld device)

Exp.

Experiment details

Euler angles(degrees) Error(degrees) Number of images

scene a [160.12, 21.36, -80.13] 19.72 28

scene b [179.54, 22.81, -87.94] 3.62 66

scene c [175.46, 22.75, -88.09] 4.93 74

scene d [151.44 26.08, -63.08] 39.37 21

scene b & c [179.84,22.80, -86.51] 3.49 140

Kalibr [178.57, 22.5, -86.50] 3.80 199

reference solution [180.00, 22.94, -90.00] N/A N/A

177

Figure 7.22: Boxplot of the measured error in each scene

Table 7.26: The obtained errors in the estimated orientation parameters using only a subset of the images.

Exp.

Scenes

Scene a Scene b Scene c Scene d Scene b&c

Error (75th quartile) (degrees) 26.82 31.41 3.30 52.40 3.40

Error (median) (degrees) 22.07 4.74 1.19 37.63 1.19

Error (25th quartile) (degrees) 18.68 3.69 0.14 26.67 0.35

Figure 7.23 shows the error of the developed method using different numbers of images for

individual tests in more detail for scenes b & c. The accuracy is eventually improving by adding more

images. However, the minimum (reported as 0.0031°) is not achieved using all the images, while using

all the images results in 3.4926° error. The median error, as mentioned, is 0.1952°.

178

Figure 7.23: The error in the orientation parameters using different numbers of the images.

An important aspect of an estimation is to evaluate the uncertainty of the parameters. Such

evaluation can be readily achieved using the known equations of error propagation (see Section 5.3 for

more information). The developed boresight calibration estimates the nine elements of the rotation matrix

(𝑟1: 𝑟9) corresponding to the orientation between the two sensors (IMU and monocular camera). The

estimated parameters, the uncertainty and the reference parameters are provided in Figure 7.24. The

ground truth parameter is shown in a dashed red line, and the estimated parameter for a given number of

images is shown in the solid red lines. The range of three standard deviations (-3𝜎,3𝜎) is shown in blue.

It can be seen that all the elements are within the estimated uncertainty expect for 𝑟5. These results indicate

that increasing the number of images indeed helps some of the estimated parameters converge to the

reference. This can be observed best by inspecting 𝑟1, 𝑟2, 𝑟3 and 𝑟6 .However, systematic errors also exist

(see 𝑟5 and 𝑟9).

179

Figure 7.24: The estimated parameters and their uncertainty for different numbers of images.

Finally, the boresight calibration parameters obtained using a smartphone are provided in Table

7.27. The obtained result using the smartphone overall has a larger error due to the fewer images utilized.

Table 7.27: The error of the orientation angles for the boresight calibration of IMU and camera (smartphone)

Exp.
Experiments

Euler angles (degrees) Error(degrees) Number of images

scene a [90.9,16.3,167.5] 14.4 10

scene b [98.6, -15.92,165.5] 28.2 10

scene c [91.3,13.2,168.3] 12.4 13

scene d fail fail N/A

ground-truth [97.89,9.37,178.07] N/A N/A

180

7.10 Extrinsic Calibration of a Monocular Camera and an Ultrasonic Rangefinder

Extrinsic (boresight and lever arm) calibration of a monocular camera and a rangefinder, such as

an ultrasonic sensor with low angular resolution, is a difficult task. Classical methods rely on 20-30 points

to be detected on a planar target (such as a checkerboard) with the rangefinder. Failure to detect such a

number of points can result in a decrease in the accuracy of the extrinsic calibration. In Section 5.4, a

novel method for the calibration of an ultrasonic rangefinder and a monocular camera is introduced. This

approach relies on a 2D line-based map of an indoor manmade environment. Such maps can be built using

state-of-the-art techniques designed for wheeled robots equipped with ultrasonic rangefinders. These line

segments can be matched to the back-projected floor segment’s boundary, detected in the image.

In this section, the results of the estimation of the orientation parameters are provided. The

developed method is exhaustive and can be implemented in two different approaches. The first approach

is a step-by-step optimization (sequential) of the parameters, and the second is a simultaneous estimation

of the parameters. Due to the exhaustive nature of the developed algorithm, simultaneous optimization of

all the angles is computationally very costly. The errors of the estimated extrinsic calibration parameters

are provided in Table 7.28. It can be seen that the estimated orientation parameters are less than one degree

for both sequential and simultaneous methods. Further, no significant improvement is achieved by

estimating all the parameters at once.

The estimated parameters for extrinsic calibration can vary using different cost functions for the

optimization. One of the main contributors to this difference in the results is how the features from the

back-projected floor segment’s boundary (identified in the image) are matched to the line segments in the

map. In this section, two error functions, 𝑒1 and 𝑒2, with different matching strategies are tested (see

Section 5.4). Based on Table 7.28, for the simultaneous estimation of all the angles, no difference can be

seen using these functions. However, for the sequential approach, 𝑒2 offers a lower error.

181

Table 7.28: The error in the orientation angles of the boresight calibration of the ultrasonic rangefinder and camera

Method
Experiment information

Euler angles (degrees) Error (degrees)

Sequential (e1) [-10.1, -0.8, -0.9] 0.94

Sequential (e2) [-10.1, -0.8, -0.4] 0.86

Simultaneous (e1) [-10.1, -0.33, -1.3] 0.92

Simultaneous (e2) [-10.1, -0.33, -1.3] 0.92

Ground truth [-9.8, 0.0, -0.5] N/A

In order to further assess the developed extrinsic calibration, structures in the indoor environment

observed by the camera are utilized for the qualitative analysis. In Figure 7.25, white-dotted line segments

in the 2D map frame (built by the ultrasonic rangefinder) are projected onto the camera. The line segments

are expected to be parallel to the edges of the parquet. In the image, one example of such an edge is

highlighted with the red line segment. Further, the line segment corresponding to the wall at the end of

the hallway has a known distance in the 2D map (and white-dotted line segments are selected up to this

wall). If the extrinsic calibration parameters are accurate, the projection of these points onto the image

would as well extend to the wall (the corresponding edge is shown as a green line in Figure 7.25 (a and

b)). The projection after the extrinsic calibration can be seen in Figure 7.25 (a). Figure 7.25 (b) shows the

projection without extrinsic calibration, which exhibits a large error. Even though the edges and white-

dotted lines are approximately parallel, due to the larger error in the initial extrinsic calibration parameters,

white points stopped before the green line segment.

In Figure 7.25 (c), the points with known coordinates in the map frame are projected onto the

image. This figure shows the projected points using developed and ground truth calibration parameters in

red and green, respectively.

182

Figure 7.25: Qualitative analysis of the errors in the extrinsic calibration of the ultrasonic rangefinder and the

monocular camera.

1

2

1

1

1

2
(a)

(b)

(c)

183

 Chapter 8: Summary and Future Work

8.1 Overview of the Developed Object-level SLAM

The growing body of research in recent years has paved the path to move away from classical

geometrical primitive-based solutions to more modern object-based solutions to the SLAM problem. The

advent of such solutions is due to the successful replacement of classical object tracking and object

detection with more accurate and robust DL-based alternatives. Using objects to solve the SLAM problem

has several advantages over the classical methods. Object-level solutions are more suitable for intelligent

interactions of the robot with its environment. Such intelligent interactions can depend on tasks such as

finding, grabbing, and moving objects. Some modern-day systems depend on such tasks. These include

robots in warehouses, robots in assembly lines, and more. Besides these robots, object-level approaches

offer an alternative solution to the SLAM problem used in many handheld devices such as smartphones.

In recent decades, the RGB camera has been the most important sensor for many solutions to

SLAM. This sensor can offer an abundance of radiometric information about a robot’s surroundings (or a

device), and many lower-cost devices and robots include this sensor nowadays. Unfortunately, relying on

a single sensor to perform a complicated task such as object-level SLAM is very difficult. Therefore, in

many state-of-the-art solutions, data fusion has become an important topic. Data fusion can improve

accuracy by taking advantage of observations received from different types of sensors, such as IMUs.

Similar to monocular cameras, IMUs are integrated into most navigation systems.

In this thesis, a solution to the SLAM problem is developed using the fusion of a monocular

camera, an IMU and a 2D rangefinder. This solution is one of the first to implement RBPF to address

object-level SLAM. RBPF is a type of PF; therefore, there is no requirement for the linearization of the

observation and motion models. Furthermore, the Gaussian error assumption is not necessary for this type

of DBN as well. These two advantages of RBPF are very important in the context of object-level SLAM.

184

For example, the pose uncertainties of the symmetrical objects and uncertainties that arise due to object

occlusions can best be represented using non-gaussian distributions under most circumstances. The

developed method also relies on the silhouette of the object rather than features on the surface of the object

(the silhouette is closely related to the shape). Thus, objects that lack texture on their surface can also be

incorporated into the solution. Object-level SLAM is based on many induvial components. These

components are integrated into a mapping and localization framework. In the following, a summary of the

gaps and the obtained results using the developed object-level framework as well as individual

components, are provided.

8.2 Summary of the Main Results (Object-level Framework)

The current solutions to object-level SLAM can be categorized into two groups. The first group

uses semantic knowledge derived from objects to add constraints to the SLAM problem. Such constraints

can help the solution by, for example, identifying false data associations. However, this category is an

extension of the classical solution to SLAM and cannot be used to help the robot to perform object-level

tasks. The second category of solutions is based on directly building the map and localizing sensors with

respect to the objects. The map includes objects (with their 6DoF) and thus can be used to perform object-

level tasks. Unfortunately, the state-of-the-art techniques in the second category rely on an initial

estimation of the map and the trajectory using classical methods (such as ORB-SLAM) and suffer from

the disadvantages associated with such methods.

In this thesis, a novel object-level RBPF-based solution to the SLAM problem using the fusion of

an IMU and monocular camera is developed. RBPF-SLAM includes three main steps: particle proposal,

particle weighting, and particle resampling. State-of-the-art object-level solutions often rely on heuristic

motion estimation (such as constant velocity) for particle proposal; however, the developed approach

utilizes IMU mechanization, which allows for more accurate motion estimation in a short time. Further,

185

the landmarks (here objects) are initialized in the map in an undelayed fashion in the developed solution.

The undelayed initialization will provide the possibility of immediate weight update and resampling.

Without such initialization, the trajectory should rely on a standalone IMU solution (for the initialization

period), which will often result in large errors.

In this thesis, two novel particle weighting approaches are developed. In the tightly coupled

approach, particles are weighted based on observation likelihood defined using IoU (of the predicted and

observed object boundary). This approach does not require point-to-point matching and thus does not

suffer from false correspondence typical of such methods. Further, the tightly coupled method does not

require direct pose estimation of the objects. The loosely coupled approach provides a less accurate but

computationally more efficient alternative to the tightly coupled approach. The particles are weighted

using a technique that does not depend on distance measurement from the object. This technique is

important since obtaining such distances using a monocular camera is not possible. After extensive studies

of different aspects of the developed methods, the following results are obtained using the differential-

drive robot:

1. The tightly coupled method achieved an error of approximately 12.7 to 46.2 cm using EV for

the position estimation (the ratio of the error to the total path length is from 0.03 to 0.06). The

error of approximately 27.7 to 46.9 cm is obtained using MAP for the position estimation (the

ratio of the error to the total path length is from 0.04 to 0.07). The tightly coupled method

achieves a high IoU between 0.76 to 0.89. Failure in weight update has rarely been encountered

using tightly coupled methods (the failure rate is in most experiments 0). Based on the

experiment, the length of the trajectory and, occlusions, and illumination conditions did not

significantly impact the performance.

186

2. The loosely coupled method achieves an error of approximately 10.1 to 41.9 cm using EV for

the position estimation (the ratio of the error to the total path length is from 0.01 to 0.11). The

error of approximately 19.6 to 92.4 cm is obtained using MAP for the position estimation (the

ratio of the error to the total path length is from 0.05 to 0.13). The loosely coupled method

achieves IoU between 0.44 to 0.73. The failure in weight update for the loosely coupled method

is between 0.20 to 0.61. Overall, based on IoU, and failure rate, the loosely coupled method

performs worse than the tightly coupled method. Also, the detailed analysis of the robot’s

trajectory confirms this. However, the runtime of loosely coupled is much less than that of

tightly coupled. Based on the experiment, the trajectory length, occlusions, and illumination

conditions did not significantly impact the performance.

3. The number of particles has an impact on the accuracy of the solution for both tightly coupled

and loosely coupled methods. For the tightly coupled approach, based on the results, it seems

increasing particles above 12500 does not introduce any significant reduction in the errors in

the position. The improvements in the IoU are also small. The loosely coupled approach seems

to have the best solution for approximately the same number of particles.

The following results are obtained using the handheld device:

1. The tightly coupled method achieves an error of approximately 4.1 to 13.1 cm using EV for

the position estimation. The ratio of the error to the total path length is from 0.005 to 0.028.

The error of approximately 2.8 to 35.7cm is obtained using MAP for the position estimation.

The ratio of the error to the total path length is from 0.006 to 0.052. The tightly coupled method

achieves a high IoU between 0.805 to 0.821. In our experiment, no failure rate has been

observed for the tightly coupled method using a handheld device.

187

2. The loosely coupled method achieves an error of approximately 11.5 to 170.9 cm using EV for

the position estimation. The ratio of the error to the total path length is from 0.024 to 0.426.

The error of approximately 6.1 to 17.2cm is obtained using MAP for the position estimation.

The ratio of the error to the total path length is from 0.015 to 0.060. Overall, based on IoU, the

failure rate of the loosely coupled method is worse than the tightly coupled method. However,

the runtime of the loosely coupled is much less than the tightly coupled method.

3. Based on the experiments, increasing the number of particles from 5000 to 19000 did not

significantly improve the performance of the tightly coupled. Therefore, for the handheld

device, it is recommended to use 5000-6000 particles.

One of the challenges of the object-level SLAM problem is object initialization. As mentioned,

initialization without a rangefinder (which was the case for the previously summarized experiments) can

only be achieved by using a larger uncertainty. In this thesis, a novel fusion of an ultrasonic rangefinder

with a monocular camera has been developed. One challenge with the fusion of a rangefinder with a

monocular camera is the fact that only a sparse set of pixels in the image can be assigned with a depth

observation. Thus, such data fusion is not very advantageous for classical point-based methods. However,

in the context of the developed object-level solution, the image of an object occupies many pixels, and it

is highly possible that a rangefinder (such as ultrasonic) will return depth estimation corresponding to a

few of the pixels belonging to the object segment. In addition, using this fusion, a new technique is

developed that identifies particles with highly inaccurate poses in the early stage without a requirement to

calculate the observation likelihood. This can reduce the computational cost of the algorithm substantially

for the tightly coupled approach. For the fusion of the ultrasonic sensor with the monocular camera, the

following results have been obtained:

188

1. The developed ultrasonic-based fusion approximately reduced the runtime by half. No significant

improvement or degradation of accuracy was observed.

2. The developed approach of data association (which identifies if the ultrasonic sensor reading is

received from the back background clutter or the object of interest) achieves high precision and

recall in a wide range of values for threshold 𝜇 (between 0.4 to 0.8). This wide range shows the

ease of tuning such hyperparameters in real-world applications.

3. The best result in terms of both precision and recall has been achieved when the angular resolution

is assumed to be close to the nominal value (this range is between 14° to 16°, while 15° is the

nominal value).

All the previously mentioned algorithms are tested in many experiments. These experiments

include different illumination conditions (such as dim or bright room lights), different camera distances

from the object, and different trajectory lengths. Based on these results, it seems that the developed tightly

coupled method can perform well in different conditions. The abovementioned results have summarized

the key findings of the developed object-level framework. These solutions depend on the success of some

of its components. In the following, the results for each component are provided.

8.3 Summary of the Results of Object-segmentation, Representation and Pose Estimation.

One of the most important components in an object-level solution is the object

detection/segmentation. Classical computer vision object detection/segmentation has recently been

replaced with DL methods. A disadvantage of most DL-based approaches is the requirement for massive

training data. In order to address this, data synthesizing is considered in the past. The hybrid method is

one of many approaches for synthesizing images, which requires the least amount of human labour. In the

hybrid method, only some of the aspects of the environment or the object are synthesized. In this thesis,

189

thousands of training images are generated using this hybrid method for object segmentation. The

summary of the results is provided in the following.

1. The developed object segmentation has achieved high precision and recall in many different indoor

scenes (scenes different in the level of background clutter). The highest precision and recall have

been achieved using a training set of 180k images and an image resolution of 256 by 256 pixels.

In five out of seven tests, a precision above 94% and a recall above 85 % have been achieved.

2. It is shown that it is very important to include realistic viewpoints, illumination conditions and

image backgrounds in the synthesized training set.

Another important component of an object-level SLAM is object representation. In the past, most

methods represented objects using feature points, which required texture on the objects. Other methods

using an object's shape could be divided into 3D and 2D shape representations. The 3D representation

cannot directly be matched to the silhouette of the object in the image (since the image provides a 2D

contour of the object). In 2D methods, object shape is represented with the help of shape-prior sets. Such

a set captures the shape of an object from different viewpoints as images. Unfortunately, image-based

shape priors are not robust to in-plane translation, rotation, and scale variations. These variations will be

required in the matching process. In order to address this issue in this thesis, the 2D contour of the object

is represented using explicit parameterization. The advantage of this shape-prior set is in the following.

1. This shape-prior can be directly matched to the observed contour of the object in the image.

Further, the shape-prior set is organized. Therefore providing a means for fast matching.

2. This shape-prior captures the object from a different viewpoint, thus, possessing invariance to 3D

shape variations. Further in-plane rotation, in-plane translation, and scale variations can be applied

easily in the matching process.

3. This shape-prior set can provide a coarse pose estimation.

190

The last component of an object-level SLAM is object pose estimation. The current one-step (end-

to-end) DL methods require large training sets and/or cannot produce one-to-many solutions in

circumstances where objects are symmetrical. For the two-step approaches, the features are detected in

the first step, and in the second step, the pose is estimated with respect to these features. The pose

estimation in the past is achieved with the help of a PnP algorithm. One drawback of this approach is the

assumption that the salient features on the object’s surface can be detected. In this thesis, in order to

address this problem, a contour-based coarse-to-fine pose estimation is developed. In the coarse step, a

set of closest shapes in the shape-prior set to the observed contour of the object in the image is found. In

the pose refinement, the projected 3D model and the observed contour of the object are used to establish

a point-to-point correspondence. Finally, the pose of the camera is solved by a PnP method. The following

highlights the pose estimation results.

1. The error of the estimated pose is about 9.96° to 10.31°

2. The refined pose estimation achieves 7.96 to 8.22 pixels errors (with blunder cases included) and

IoU of 0.44 to 0.67.

3. The pose estimation exhibits a certain level of robustness to the occlusions.

8.4 Summary of the Results of Extrinsic Calibration

Tightly and loosely coupled methods depend on known extrinsic calibration parameters. In the

past, the boresight calibration of an IMU and a monocular camera were estimated using special devices

such as turntables. Unfortunately, These types of equipment are unavailable on-site in most circumstances.

In this thesis, instead of relying on special equipment, the structure of the manmade indoor environment

is used to derive extrinsic parameters. The developed approach is based on finding the normal to-floor

plane in the camera’s frame. If this vector is assumed to be antiparallel to the gravity vector’s direction, a

correspondence between this vector and the gravity vector sensed by the accelerometers in an IMU unit

191

can be established. Finally, such correspondence can be used to find the boresight calibration parameters.

The developed boresight calibration method has been tested in four indoor scenes. Further, it is compared

the known methods of boresight calibration. The following results are obtained:

1. The accuracy of the parameter estimation depends on the scene and the image number. In most

tests, the data sets with a larger number of images result in higher accuracy. However, as will be

explained in the following, the accuracy does not always increase by adding more images. The

error using 140 images is reported as 3.49°. This error is smaller than the known Kalibr method

(with an accuracy of 3.80°).

2. The detection of HVP was very important in achieving such accuracy. In almost every case that

the HVP is detected, VVP is also detected with very high accuracy.

The extrinsic calibration is also performed using an ultrasonic rangefinder and camera. This

method is designed for the wheeled indoor robot capable of building 2D maps of the environment. Similar

to the IMU and camera calibration, the floor segmentation in the image is used for the calibration. The

developed method matches the back-projected pixels on the floor-segment boundary to the line segment

built by the ultrasonic sensor. Based on the results, the developed sequential and simultaneous methods

can both achieve a similar accuracy of less than 1°. However, the sequential approach is much faster.

8.5 Future Work and Limitations

The following limitations of this research should be addressed in the future:

• The tightly coupled RBPF-SLAM produced an accurate estimation of the trajectory. However, the

computational cost of this algorithm is high. The high computational cost is mainly due to the

requirement to estimate a boundary around the projected points of the object (onto the image). In

the future, a possible approach that can replace this step with a faster boundary detection algorithm

can significantly reduce the overall computational cost.

192

• The loosely coupled RBPF-SLAM has produced lower accuracy results in most scenarios

compared to the tightly coupled method. One challenge with loosely coupled is the high failure

rate which is directly related to the pose estimation from a single image. Therefore, improving

pose estimation will be very beneficial for this method.

• The developed object representation is based on the shape of the object, and it can be used in

circumstances where the objects do not have texture on their surface. Further representation is

organized, which facilitates matching. Despite this, the matching process is still slow. This is

because the different hypotheses should be tested in order to find the most likely in-plane rotation

between the observed shape and the shapes in the shape-prior set. Each of these hypotheses

requires measuring one IoU. In the future, IoU can be replaced with other methods of measuring

such distance to improve the speed of the algorithm.

• The developed object pose estimation is a coarse-to-fine technique that yields accurate results.

However, this estimation is not robust to severe occlusions. The main reason for this is due to the

errors in the segmentation and in the coarse pose estimation (which includes matching the observed

contour of the object to the shape-prior set). Thus, improving the performance of those two steps

will also improve the overall accuracy of pose estimation.

• The uncertainty region for the ultrasonic sensor’s readings is assumed to be spherical. However, a

better approximation of this region can be considered. For example, the uncertainty in the depth

(in the direction from the ultrasonic sensor to the observed point) is governed by the precision in

the range, while the uncertainty in the direction perpendicular to this is governed by the angular

precision (beam angle).

193

• The developed IMU-camera boresight calibration is designed for indoor manmade environments.

One of the shortcomings of this method is the susceptibility to blunders. In the future, it is

recommended to apply RANSAC-based robust estimators to address this issue.

• The developed extrinsic calibration of an ultrasonic rangefinder and a monocular is tested on a

robot equipped with wheel odometry. The developed method of calibration depends on 2D line-

based maps of the indoor environment built using ultrasonic rangefinders. However, this method

cannot be used easily for other platforms. In the future, a 3D plane-based mapping algorithm can

be developed using IMU and ultrasonic rangefinder. Such maps can be used with a similar

technique to estimate the extrinsic calibration parameters.

• In the experiments, the influence of the distance of the camera from the object on the accuracy of

the trajectory estimation is investigated. However, due to the difficulty of an accurate estimation

of such distance from the object (while the device is moving), a qualitative assessment is provided.

In the future, this distance should be measured quantitatively.

References

Abadi, I., & El-Sheimy, N. (2022). Manhattan World Constraint for Indoor Line-based Mapping Using

Ultrasonic Scans. 2022 IEEE 12th International Conference on Indoor Positioning and Indoor

Navigation (IPIN), 1–8.

Ahn, S., Choi, M., Choi, J., & Chung, W. K. (2006). Data association using visual object recognition for

EKF-SLAM in home environment. IEEE International Conference on Intelligent Robots and

Systems, 2588–2594. https://doi.org/10.1109/IROS.2006.281936

Asl Sabbaghian Hokmabadi, I. (2018). Localization on Smartphones Using Visual Fingerprinting.

Master’s thesis, University of Calgary, Calgary, AB, Canada.

Asl Sabbaghian Hokmabadi, I., & El-Sheimy, N. (2022). Probabilistic Silhouette-Based Close-Range

Photogrammetry Using a Novel 3d Occupancy-Based Reconstruction. ISPRS - International

Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43B2, 343–350.

https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-343-2022

Avidan, S. (2004). Support Vector Tracking. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 26(8), 1064–1072. https://doi.org/10.1109/TPAMI.2004.53

Badue, C., Guidolini, R., Carneiro, R. V., Azevedo, P., Cardoso, V. B., Forechi, A., Jesus, L., Berriel, R.,

Paixao, T. M., Mutz, F., & others. (2020). Self-driving cars: A survey. Expert Systems with

Applications, 113816.

Bailey, T. (2003). Constrained initialisation for bearing-only SLAM. 2003 IEEE International Conference

on Robotics and Automation (Cat. No. 03CH37422), 2, 1966–1971.

Bentley, J., & Friedman, J. (1979). Data Structures for Range Searching. ACM Computing Surveys, 11(4),

397–409. https://doi.org/10.1145/356789.356797

Bentley, J. L. (1979). Decomposable searching problems. Information Processing Letters, 8(5), 244–251.

https://doi.org/10.1016/0020-0190(79)90117-0

Berenguel-Baeta, B., Guerrero-Viu, M., Nova, A., Bermudez-Cameo, J., Perez-Yus, A., & Guerrero, J. J.

(2020). Floor Extraction and Door Detection for Visually Impaired Guidance. 2020 16th

International Conference on Control, Automation, Robotics and Vision (ICARCV), 1222–1229.

https://doi.org/10.1109/ICARCV50220.2020.9305464

Bernreiter, L., Gawel, A., Sommer, H., Nieto, J., Siegwart, R., & Lerma, C. C. (2019). Multiple hypothesis

semantic mapping for robust data association. IEEE Robotics and Automation Letters, 4(4), 3255–

3262.

Bertinetto, L., Valmadre, J., Henriques, J. F., Vedaldi, A., & Torr, P. H. S. (2016). Fully-convolutional

siamese networks for object tracking. European Conference on Computer Vision, 850–865.

Bhat, G., Johnander, J., Danelljan, M., Shahbaz Khan, F., & Felsberg, M. (2018). Unveiling the power of

deep tracking. Proceedings of the European Conference on Computer Vision (ECCV), 483–498.

Bolme, D. S., Beveridge, J. R., Draper, B. A., & Lui, Y. M. (2010). Visual object tracking using adaptive

correlation filters. Proceedings of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, 2544–2550. https://doi.org/10.1109/CVPR.2010.5539960

Bolme, D. S., Draper, B. A., & Beveridge, J. R. (2009). Average of synthetic exact filters. 2009 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition Workshops, CVPR

Workshops 2009, 2009 IEEE, 2105–2112. https://doi.org/10.1109/CVPRW.2009.5206701

Bowman, S. L., Atanasov, N., Daniilidis, K., & Pappas, G. J. (2017). Probabilistic data association for

semantic slam. 2017 IEEE International Conference on Robotics and Automation (ICRA), 1722–

1729.

Caccamo, S., Ataer-Cansizoglu, E., & Taguchi, Y. (2017). Joint 3D reconstruction of a static scene and

moving objects. 2017 International Conference on 3D Vision (3DV), 677–685.

Calisi, D., Farinelli, A., Iocchi, L., & Nardi, D. (2007). Autonomous exploration for search and rescue

robots. WIT Transactions on the Built Environment, 94. WIT Press, Southampton, UK.

Camposeco, F., & Pollefeys, M. (2015). Using vanishing points to improve visual-inertial odometry. 2015

IEEE International Conference on Robotics and Automation (ICRA), 5219–5225.

Caselles, V., Kimmel, R., & Sapiro, G. (1997). Geodesic Active Contours. International Journal of

Computer Vision, 22(1), 61–79. https://doi.org/10.1023/A:1007979827043

Castle, R. O., Klein, G., & Murray, D. W. (2010). Combining monoSLAM with object recognition for

scene augmentation using a wearable camera. Image and Vision Computing, 28(11), 1548–1556.

https://doi.org/10.1016/j.imavis.2010.03.009

Chan, T. F., & Vese, L. A. (2001). Active contours without edges. IEEE Transactions on Image

Processing, 10(2), 266–277. https://doi.org/10.1109/83.902291

Chen, H., Yang, Z., Zhao, X., Weng, G., Wan, H., Luo, J., Ye, X., Zhao, Z., He, Z., Shen, Y., &

Schwertfeger, S. (2020). Advanced mapping robot and high-resolution dataset. Robotics and

Autonomous Systems, 131, 103559. https://doi.org/10.1016/J.ROBOT.2020.103559

Chermak, L., Aouf, N., Richardson, M., & Visentin, G. (2019). Real-time smart and standalone

vision/IMU navigation sensor. Journal of Real-Time Image Processing, 16(4), 1189–1205.

https://doi.org/10.1007/s11554-016-0613-z

Chollet, F. (2021). Deep learning with Python. Manning. Shelter Island, New York,

Choudhary, S., Trevor, A.J., Christensen, H.I. and Dellaert, F., (2014), September. SLAM with object

discovery, modeling and mapping. In 2014 IEEE/RSJ International Conference on Intelligent Robots

and Systems (pp. 1018-1025). IEEE.

Civera, J., Gálvez-López, D., Riazuelo, L., Tardós, J. D., & Montiel, J. M. M. (2011). Towards semantic

SLAM using a monocular camera. 2011 IEEE/RSJ International Conference on Intelligent Robots

and Systems, 1277–1284.

Cohen, L. D. (1991). On active contour models and balloons. CVGIP: Image Understanding, 53(2), 211–

218. https://doi.org/10.1016/1049-9660(91)90028-N

Cox, I. J. (1991). Blanche-an experiment in guidance and navigation of an autonomous robot vehicle.

IEEE Transactions on Robotics and Automation, 7(2), 193–204.

Cremers, D. (2002). Statistical shape knowledge in variational image segmentation. PhD

thesis. University of Mannheim.

Daum, F., & Huang, J. (2003). Curse of dimensionality and particle filters. 2003 IEEE Aerospace

Conference Proceedings (Cat. No. 03TH8652), 4, 4_1979–4_1993.

Davison, A. J., Reid, I. D., Molton, N. D., & Stasse, O. (2007). MonoSLAM: Real-time single camera

SLAM. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6), 1052–1067.

Dellaert, F., & Kaess, M. (2006). Square Root SAM: Simultaneous localization and mapping via square

root information smoothing. The International Journal of Robotics Research, 25(12), 1181–1203.

Deng, X., Mousavian, A., Xiang, Y., Xia, F., Bretl, T., & Fox, D. (2021). Poserbpf: A rao–blackwellized

particle filter for 6-d object pose tracking. IEEE Transactions on Robotics, 37(5), 1328–1342.

Dharmasiri, T., Vincent, L., & Drummond, T. (2016). MO-SLAM: Multi Object SLAM with Run-Time

Object Discovery through Duplicates. https://doi.org/10.13140/RG.2.2.33667.50727

Doherty, K., Fourie, D., & Leonard, J. (2019). Multimodal semantic slam with probabilistic data

association. 2019 International Conference on Robotics and Automation (ICRA), 2419–2425.

Dong, W., & Isler, V. (2018). A novel method for the extrinsic calibration of a 2D laser rangefinder and

a camera. IEEE Sensors Journal, 18(10), 4200–4211.

Dwibedi, D., Misra, I., & Hebert, M. (2017). Cut, paste and learn: Surprisingly easy synthesis for instance

detection. Proceedings of the IEEE International Conference on Computer Vision, 1301–1310.

Eade, E., & Drummond, T. (2006). Scalable monocular SLAM. Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, 1, 469–476.

https://doi.org/10.1109/CVPR.2006.263

Eade, E., & Drummond, T. (2009). Edge landmarks in monocular SLAM. Image and Vision Computing,

27(5), 588–596.

Edward A., and Shreiner D. (2012). Interactive Computer Graphics. 6th ed. USA: Addison-Wesley,

Pearson.

Elfes, A. (1989). Using occupancy grids for mobile robot perception and navigation. Computer, 22(6),

46–57. https://doi.org/10.1109/2.30720

Elloumi, W., Treuillet, S., & Leconge, R. (2014). Real-time camera orientation estimation based on

vanishing point tracking under Manhattan World assumption. Journal of Real-Time Image

Processing, 13, 669–684.

Emami, P., Pardalos, P. M., Elefteriadou, L., & Ranka, S. (2020). Machine Learning Methods for Data

Association in Multi-Object Tracking. ACM Computing Surveys, 53(4), 1–33.

https://doi.org/10.1145/3394659

Felzenszwalb, P. F., Girshick, R. B., McAllester, D., & Ramanan, D. (2009). Object detection with

discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 32(9), 1627–1645.

Foulonneau, A., Charbonnier, P., & Heitz, F. (2009). Multi-reference shape priors for active contours.

International Journal of Computer Vision, 81(1), 68.

Furgale, P., Rehder, J., & Siegwart, R. (2013). Unified temporal and spatial calibration for multi-sensor

systems. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1280–1286.

Gakne, P. V., & O’Keefe, K. (2017). Monocular-based pose estimation using vanishing points for indoor

image correction. 2017 International Conference on Indoor Positioning and Indoor Navigation

(IPIN), 1–7.

Gallagher, A. C., & C., A. (2005). Using Vanishing Points To Correct Camera Rotation In Images. The

2nd Canadian Conference on Computer and Robot Vision (CRV’05), 460–467.

https://doi.org/10.1109/CRV.2005.84

Gálvez-López, D., Salas, M., Tardós, J. D., & Montiel, J. M. M. (2016). Real-time monocular object

SLAM. Robotics and Autonomous Systems, 75, 435–449.

https://doi.org/10.1016/j.robot.2015.08.009

Gao, X.-S., Hou, X.-R., Tang, J., & Cheng, H.-F. (2003). Complete solution classification for the

perspective-three-point problem. IEEE Transactions on Pattern Analysis and Machine Intelligence,

25(8), 930–943.

Georgakis, G., Mousavian, A., Berg, A. C., & Kosecka, J. (2017). Synthesizing training data for object

detection in indoor scenes. ArXiv Preprint ArXiv:1702.07836.

Gomez-Ojeda, R., Briales, J., Fernandez-Moral, E., & Gonzalez-Jimenez, J. (2015). Extrinsic calibration

of a 2D laser-rangefinder and a camera based on scene corners. 2015 IEEE International Conference

on Robotics and Automation (ICRA), 3611–3616.

Gordon, N. J., Salmond, D. J., & Smith, A. F. M. (1993). Novel approach to nonlinear/non-Gaussian

Bayesian state estimation. IEE Proceedings F (Radar and Signal Processing), 140(2), 107–113.

Gouiaa, R., & Meunier, J. (2014, May). 3D Reconstruction by Fusioning Shadow and Silhouette

Information. Proceedings - Conference on Computer and Robot Vision, CRV 2014.

https://doi.org/10.1109/CRV.2014.58

Grisetti, G., Stachniss, C., & Burgard, W. (2005). Improving grid-based slam with rao-blackwellized

particle filters by adaptive proposals and selective resampling. Proceedings of the 2005 IEEE

International Conference on Robotics and Automation, 2432–2437.

Harris, C., & Stephens, M. (1988). A Combined Corner and Edge Detector. Procedings of the Alvey Vision

Conference 1988, 23.1-23.6. https://doi.org/10.5244/C.2.23

Hartley, R. I. (1997). In defense of the eight-point algorithm. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 19(6), 580–593. https://doi.org/10.1109/34.601246

Hartley, R., & Zisserman, A. (2003). Multiple view geometry in computer vision. Cambridge university

press. doi:10.1017/CBO9780511811685

He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. Proceedings of the IEEE International

Conference on Computer Vision, 2961–2969.

Hinterstoisser, S., Lepetit, V., Ilic, S., Holzer, S., Bradski, G., Konolige, K., & Navab, N. (2013). Model

based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes.

Computer Vision–ACCV 2012: 11th Asian Conference on Computer Vision, Daejeon, Korea,

November 5-9, 2012, Revised Selected Papers, Part I 11, 548–562.

Hosseinzadeh, M., Latif, Y., Pham, T., Suenderhauf, N., & Reid, I. (2018). Structure aware SLAM using

quadrics and planes. Asian Conference on Computer Vision, 410–426.

Hu, Y., Fua, P., Wang, W., & Salzmann, M. (2020). Single-stage 6d object pose estimation. Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2930–2939.

Huang, W., & Liu, H. (2018). Online initialization and automatic camera-IMU extrinsic calibration for

monocular visual-inertial SLAM. 2018 IEEE International Conference on Robotics and Automation

(ICRA), 5182–5189.

Huang, Z., Gu, N., Lin, C., Shen, J., & Chang, J. (2018). Real time vanishing points detection on

smartphones under Manhattan world assumption. Pattern Recognition Letters, 115, 117–127.

Ivanov, R. (2021). Accuracy analysis of BLE beacon-based localization in smart buildings. Journal of

Ambient Intelligence and Smart Environments, 13(4), 325–344.

Jensfelt, P., Ekvall, S., Kragic, D., & Aarno, D. (2006). Augmenting slam with object detection in a service

robot framework. ROMAN 2006-The 15th IEEE International Symposium on Robot and Human

Interactive Communication, 741–746.

Jin, Z., Li, Y., Yang, Z., Zhang, Y., & Cheng, Z. (2023). Real-Time Indoor Positioning Based on BLE

Beacons and Pedestrian Dead Reckoning for Smartphones. Applied Sciences, 13(7), 4415.

Joshi, N., Sharma, Y., Parkhiya, P., Khawad, R., Krishna, K. M., & Bhowmick, B. (2018). Integrating

objects into monocular slam: Line based category specific models. Proceedings of the 11th Indian

Conference on Computer Vision, Graphics and Image Processing, 1–9.

Kaess, M. (2015). Simultaneous localization and mapping with infinite planes. 2015 IEEE International

Conference on Robotics and Automation (ICRA), 4605–4611.

Kassir, A., & Peynot, T. (2010). Reliable automatic camera-laser calibration. Australasian Conference on

Robotics and Automation, 2010.

Kelly, J., & Sukhatme, G. S. (2009). Visual-inertial simultaneous localization, mapping and sensor-to-

sensor self-calibration. 2009 IEEE International Symposium on Computational Intelligence in

Robotics and Automation-(CIRA), 360–368.

Khalid, S. (2012). Incremental indexing and retrieval mechanism for scalable and robust shape matching.

Multimedia Systems, 18(4), 319–336.

Klein, G., & Murray, D. (2007). Parallel tracking and mapping for small AR workspaces. 2007 6th IEEE

and ACM International Symposium on Mixed and Augmented Reality, ISMAR, 225–234.

https://doi.org/10.1109/ISMAR.2007.4538852

Kwok, N. M., & Dissanayake, G. (2003). Bearing-only SLAM in indoor environments using a modified

particle filter. In Proceedings of the Australian Conference on Robotics and Automation.

http://scholar.google.com/scholar?cluster=15299272901741552295&hl=ar&as_sdt=0,5

Kwok, N. M., & Dissanayake, G. (2004). An efficient multiple hypothesis filter for bearing-only SLAM.

2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.

04CH37566), 1, 736–741.

Kyriacou, T., Bugmann, G., & Lauria, S. (2005). Vision-based urban navigation procedures for verbally

instructed robots. Robotics and Autonomous Systems, 51(1), 69–80.

https://doi.org/10.1016/j.robot.2004.08.011

Lazaros, N., Sirakoulis, G. C., & Gasteratos, A. (2008). Review of stereo vision algorithms: from software

to hardware. International Journal of Optomechatronics, 2(4), 435–462.

Leonard, J. J., Durrant-Whyte, H. F., & Cox, I. J. (1992). Dynamic map building for an autonomous

mobile robot. International Journal of Robotics Research, 11(4), 286–298.

https://doi.org/10.1177/027836499201100402

Lewis, J. P. (2010). Fast normalized cross-correlation, 1995. Vision Interface, 2010, 120–123.

Li, B., Yan, J., Wu, W., Zhu, Z., & Hu, X. (2018). High Performance Visual Tracking with Siamese

Region Proposal Network. Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 8971–8980. https://doi.org/10.1109/CVPR.2018.00935

Lindeberg, T. (1993). Detecting salient blob-like image structures and their scales with a scale-space

primal sketch: A method for focus-of-attention. International Journal of Computer Vision, 11(3),

283–318. https://doi.org/10.1007/BF01469346

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). Ssd: Single

shot multibox detector. Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The

Netherlands, October 11–14, 2016, Proceedings, Part I 14, 21–37.

Lobo, J., & Dias, J. (2007). Relative pose calibration between visual and inertial sensors. The International

Journal of Robotics Research, 26(6), 561–575.

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation.

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3431–3440.

Lowe, D. G. (2004). Distinctive image features from scale invariant keypoints. International Journal of

Computer Vision, 60(2), 91–11020042.

https://doi.org/http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94

Ma, L., & Sibley, G. (2014). Unsupervised dense object discovery, detection, tracking and reconstruction.

European Conference on Computer Vision, 80–95.

MacKay, C. T., & Moh, T.-S. (2021). Learning for Free: Object Detectors Trained on Synthetic Data.

2021 15th International Conference on Ubiquitous Information Management and Communication

(IMCOM), 1–8. https://doi.org/10.1109/IMCOM51814.2021.9377353

Matthews, I., Ishikawa, T., & Baker, S. (2004). The template update problem. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 26(6), 810–815. https://doi.org/10.1109/TPAMI.2004.16

Matthies, L., Maimone, M., Johnson, A., Cheng, Y., Willson, R., Villalpando, C., Goldberg, S., Huertas,

A., Stein, A., & Angelova, A. (2007). Computer Vision on Mars. International Journal of Computer

Vision, 75(1), 67–92. https://doi.org/10.1007/s11263-007-0046-z

Merrill, N., Guo, Y., Zuo, X., Huang, X., Leutenegger, S., Peng, X., Ren, L., & Huang, G. (2022).

Symmetry and uncertainty-aware object slam for 6dof object pose estimation. Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 14901–14910.

Montemerlo, M., & Thrun, S. (2003). Simultaneous localization and mapping with unknown data

association using FastSLAM. Proceedings - IEEE International Conference on Robotics and

Automation, 2(July), 1985–1991. https://doi.org/10.1109/robot.2003.1241885

Montemerlo, M., Thrun, S., Roller, D., & Wegbreit, B. (2003). FastSLAM 2.0: An improved particle

filtering algorithm for simultaneous localization and mapping that provably converges. IJCAI

International Joint Conference on Artificial Intelligence, 1151–1156.

Mourikis, A. I., & Roumeliotis, S. I. (2007). A multi-state constraint Kalman filter for vision-aided inertial

navigation. Proceedings 2007 IEEE International Conference on Robotics and Automation, 3565–

3572.

Mungúia, R., Castillo-Toledo, B., & Grau, A. (2013). A robust approach for a filter-based monocular

simultaneous localization and mappng (SLAM) system. Sensors (Switzerland), 13(7), 8501–8522.

https://doi.org/10.3390/s130708501

Mungu’ia, R., & Grau, A. (2012). Monocular SLAM for visual odometry: A full approach to the delayed

inverse-depth feature initialization method. Mathematical Problems in Engineering, 2012.

Mur-Artal, R., Montiel, J. M. M., & Tardos, J. D. (2015). ORB-SLAM: A Versatile and Accurate

Monocular SLAM System. IEEE Transactions on Robotics, 31(5), 1147–1163.

https://doi.org/10.1109/TRO.2015.2463671

Mur-Artal, R., & Tardós, J. D. (2017). ORB-SLAM2: An Open-Source SLAM System for Monocular,

Stereo, and RGB-D Cameras. IEEE Transactions on Robotics, 33(5), 1255–1262.

https://doi.org/10.1109/TRO.2017.2705103

Murphy, K., & Russell, S. (2001). Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks.

Sequential Monte Carlo Methods in Practice, 499–515. https://doi.org/10.1007/978-1-4757-3437-

9_24

Nettleton, E. W., Durrant-Whyte, H. F., Gibbens, P. W., & Göktogan, A. H. (2000). Multiple-platform

localization and map building. In Sensor fusion and decentralized control in robotic systems III,

international society for optics and photonics.Vol 4196, pp. 337– 347.

Newcombe, R. A., Lovegrove, S. J., & Davison, A. J. (2011). DTAM: Dense tracking and mapping in

real-time. 2011 International Conference on Computer Vision, 2320–2327.

https://doi.org/10.1109/ICCV.2011.6126513

Nguyen, X.-D., You, B.-J., & Oh, S.-R. (2008). A simple framework for indoor monocular SLAM.

International Journal of Control, Automation, and Systems, 6(1), 62–75.

Nicholson, L., Milford, M., & Sunderhauf, N. (2019). QuadricSLAM: Dual quadrics from object

detections as landmarks in object-oriented SLAM. IEEE Robotics and Automation Letters, 4(1), 1–

8. https://doi.org/10.1109/LRA.2018.2866205

Nistér, D., Naroditsky, O., & Bergen, J. (2004). Visual odometry. Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, 1(C).

https://doi.org/10.1109/cvpr.2004.1315094

Noureldin, A., Karamat, T. B., & Georgy, J. (2012). Fundamentals of inertial navigation, satellite-based

positioning and their integration. Springer Science & Business Media. Berlin/Heidelberg, Germany.

Ok, K., Liu, K., Frey, K., How, J. P., & Roy, N. (2019). Robust object-based SLAM for high-speed

autonomous navigation. Proceedings - IEEE International Conference on Robotics and Automation,

2019-May, 669–675. https://doi.org/10.1109/ICRA.2019.8794344

Olson, E. (2011). AprilTag: A robust and flexible visual fiducial system. 2011 IEEE International

Conference on Robotics and Automation, 3400–3407. https://doi.org/10.1109/ICRA.2011.5979561

Oron, S., Bar-Hille, A., & Avidan, S. (2014). Extended Lucas-Kanade tracking. Lecture Notes in

Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 8693 LNCS(PART 5), 142–156. https://doi.org/10.1007/978-3-319-10602-1_10

Parkhiya, P., Khawad, R., Murthy, J. K., Bhowmick, B., & Krishna, K. M. (2018). Constructing category-

specific models for monocular object-slam. 2018 IEEE International Conference on Robotics and

Automation (ICRA), 4517–4524.

Pavlakos, G., Zhou, X., Chan, A., Derpanis, K. G., & Daniilidis, K. (2017). 6-dof object pose from

semantic keypoints. 2017 IEEE International Conference on Robotics and Automation (ICRA),

2011–2018.

Peasley, B., Birchfield, S., Cunningham, A., & Dellaert, F. (2012). Accurate on-line 3D occupancy grids

using Manhattan world constraints. 2012 IEEE/RSJ International Conference on Intelligent Robots

and Systems, 5283–5290.

Petovello, M. G. (2003). Real-time integration of a tactical-grade IMU and GPS for high-accuracy

positioning and navigation. Ph.D. thesis, University of Calgary, Calgary, Canada.

Pillai, S., & Leonard, J. J. (2015). Monocular SLAM supported object recognition. Robotics: Science and

Systems, 11. https://doi.org/10.15607/RSS.2015.XI.034

Pinto, L., Forlani, G., & others. (2002). A single step calibration procedure for IMU/GPS in aerial

photogrammetry. International Archives of Photogrammetry and Remote Sensing, 34(B3), 210–213.

Posada, L. F., Narayanan, K. K., Hoffmann, F., & Bertram, T. (2010). Floor segmentation of

omnidirectional images for mobile robot visual navigation. 2010 IEEE/RSJ International Conference

on Intelligent Robots and Systems, 804–809. https://doi.org/10.1109/IROS.2010.5652869

Prisacariu, V. A., Kähler, O., Murray, D. W., & Reid, I. D. (2013). Simultaneous 3D tracking and

reconstruction on a mobile phone. 2013 IEEE International Symposium on Mixed and Augmented

Reality (ISMAR), 89–98.

Qian, Z., Kartik P., Jie F., and Jing X. (2021). "Semantic slam with autonomous object-level data

association." In 2021 IEEE International Conference on Robotics and Automation (ICRA), pp.

11203-11209. IEEE.

Rad, M., & Lepetit, V. (2017). Bb8: A scalable, accurate, robust to partial occlusion method for predicting

the 3d poses of challenging objects without using depth. Proceedings of the IEEE International

Conference on Computer Vision, 3828–3836.

Rasmussen, I., Kvalsvik, S., Andersen, P.-A., Aune, T. N., & Hagen, D. (2022). Development of a Novel

Object Detection System Based on Synthetic Data Generated from Unreal Game Engine. Applied

Sciences, 12(17). https://doi.org/10.3390/app12178534

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object

detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 779–

788.

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image

segmentation. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th

International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, 234–241.

Rosenhahn, B., Brox, T., & Weickert, J. (2007). Three-dimensional shape knowledge for joint image

segmentation and pose tracking. International Journal of Computer Vision, 73(3), 243–262.

Rother, C., Kolmogorov, V., & Blake, A. (2004). “ GrabCut” interactive foreground extraction using

iterated graph cuts. ACM Transactions on Graphics (TOG), 23(3), 309–314.

Salas-Moreno, R. F., Newcombe, R. A., Strasdat, H., Kelly, P. H. J., & Davison, A. J. (2013). Slam++:

Simultaneous localisation and mapping at the level of objects. Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 1352–1359.

Saleh, F. S., Aliakbarian, M. S., Salzmann, M., Petersson, L., & Alvarez, J. M. (2018). Effective use of

synthetic data for urban scene semantic segmentation. Proceedings of the European Conference on

Computer Vision (ECCV), 84–100.

Siegwart, R., Nourbakhsh, I. R., & Scaramuzza, D. (2011). Introduction to autonomous mobile robots.

MIT press.

Silpa-Anan, C., & Hartley, R. (2008). Optimised KD-trees for fast image descriptor matching. 26th IEEE

Conference on Computer Vision and Pattern Recognition, CVPR.

https://doi.org/10.1109/CVPR.2008.4587638

Smith, P., Reid, I. D., & Davison, A. J. (2006). Real-time monocular SLAM with straight lines. Proc 17th

British Machine Vision Conference, Edinburgh, Sept 2006

Smith, R. C., & Cheeseman, P. (1986). On the Representation and Estimation of Spatial Uncertainty. The

International Journal of Robotics Research, 5(4), 56–68.

https://doi.org/10.1177/027836498600500404

Solà, J., Monin, A., Devy, M., & Lemaire, T. (2005). Undelayed initialization in bearing only SLAM.

2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 2751–2756.

https://doi.org/10.1109/IROS.2005.1545392

Song, Y., Zhang, Z., Wu, J., Wang, Y., Zhao, L., & Huang, S. (2021). A right invariant extended kalman

filter for object based slam. IEEE Robotics and Automation Letters, 7(2), 1316–1323.

Strickland, W. H., & King, R. H. (1993). Characteristics of the ultrasonic ranging sensors in an

underground environment. Pittsburgh, PA (United States); Bureau of Mines.

https://www.osti.gov/biblio/6128933

Sundermeyer, M., Marton, Z.-C., Durner, M., Brucker, M., & Triebel, R. (2018). Implicit 3d orientation

learning for 6d object detection from rgb images. Proceedings of the European Conference on

Computer Vision (ECCV), 699–715.

Terzopoulos, D., & Szeliski, R. (1993). Tracking with Kalman Snakes. In Active Vision (pp. 3–20). MIT

Press.

Thrun, S., Fox, D., Burgard, W., & Dellaert, F. (2001). Robust Monte Carlo localization for mobile robots.

Artificial Intelligence, 128(1–2), 99–141. https://doi.org/10.1016/S0004-3702(01)00069-8

Torr, P. H. S., & Zisserman, A. (2000). MLESAC: A new robust estimator with application to estimating

image geometry. Computer Vision and Image Understanding, 78(1), 138–156.

Tran, T.-T., Pham, V.-T., & Shyu, K.-K. (2013). Moment-based alignment for shape prior with variational

B-spline level set. Machine Vision and Applications, 24, 1075–1091.

Treiber, M. A. (2010). An introduction to object recognition: selected algorithms for a wide variety of

applications. Springer Science & Business Media.

Tremblay, J., Prakash, A., Acuna, D., Brophy, M., Jampani, V., Anil, C., To, T., Cameracci, E., Boochoon,

S., & Birchfield, S. (2018). Training deep networks with synthetic data: Bridging the reality gap by

domain randomization. Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition Workshops, 969–977.

Tsai, A., Yezzi, A., Wells, W., Tempany, C., Tucker, D., Fan, A., Grimson, W. E., & Willsky, A. (2003).

A shape-based approach to the segmentation of medical imagery using level sets. IEEE Transactions

on Medical Imaging, 22(2), 137–154.

Unnikrishnan, R., & Hebert, M. (2005). Fast extrinsic calibration of a laser rangefinder to a camera.

Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-05-09.

van de Weijer, J., Gevers, T., & Gijsenij, A. (2007). Edge-Based Color Constancy. IEEE Transactions on

Image Processing, 16(9), 2207–2214. https://doi.org/10.1109/TIP.2007.901808

Von Gioi, R. G., Jakubowicz, J., Morel, J.-M., & Randall, G. (2012). LSD: a line segment detector. Image

Processing On Line, 2, 35–55.

Wang, J., Rünz, M., & Agapito, L. (2021). DSP-SLAM: Object oriented SLAM with deep shape priors.

2021 International Conference on 3D Vision (3DV), 1362–1371.

Woods, E. R., & Gonzalez, C. R. (2008). Digital image processing. Pearson Education Ltd. Upper Saddle

River, NJ, USA

Xiang, Y., Schmidt, T., Narayanan, V., & Fox, D. (2017). Posecnn: A convolutional neural network for

6d object pose estimation in cluttered scenes. ArXiv Preprint ArXiv:1711.00199.

Yang, S., & Scherer, S. (2019). CubeSLAM: Monocular 3-D Object SLAM. IEEE Transactions on

Robotics, 35(4), 925–938. https://doi.org/10.1109/TRO.2019.2909168

Zakharov, S., Shugurov, I., & Ilic, S. (2019). Dpod: 6d pose object detector and refiner. Proceedings of

the IEEE/CVF International Conference on Computer Vision, 1941–1950.

Zhang, H., Hu, S., & Zhang, X. (2014). SIFT flow for large-displacement object tracking. Appl. Opt.,

53(27), 6194–6205. https://doi.org/10.1364/AO.53.006194

Zhang, Q., & Pless, R. (2004). Extrinsic calibration of a camera and laser range finder (improves camera

calibration). 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS)(IEEE Cat. No. 04CH37566), 3, 2301–2306.

Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 22(11), 1330–1334.

Zhou, J., & Li, B. (2006). Robust Ground Plane Detection with Normalized Homography in Monocular

Sequences from a Robot Platform. 2006 International Conference on Image Processing, 3017–3020.

https://doi.org/10.1109/ICIP.2006.312972

 Appendices

Appendix A: Discretization of State-space Equations

Equation A.1 holds for the derivative of an exponential. Further, if it is assumed that the solution

to the differential equation in Equation 3.28.1 has the form 𝑒𝐴𝑡, by multiplying both sides in Equation

3.28.1 to 𝑒−𝐴𝑡, Equation A.2 is obtainable.

𝑑𝑒𝐴𝑡

𝑑𝑡
= 𝐴𝑒𝐴𝑡 = 𝑒𝐴𝑡𝐴 (A.1)

𝑒−𝐴𝑐𝑡𝜉̇ = 𝑒−𝐴𝑐𝑡𝐴𝑐𝜉 + 𝑒−𝐴𝑐𝑡𝐵𝑐𝑢 → 𝑒−𝐴𝑐𝑡𝜉̇ − 𝑒−𝐴𝑐𝑡𝐴𝑐𝜉 = 𝑒−𝐴𝑐𝑡𝐵𝑐𝑢 →
𝑑(𝑒−𝐴𝑐𝑡𝜉)

𝑑𝑡
= 𝑒−𝐴𝑐𝑡𝐵𝑐𝑢 (A.2)

In Equation A.2, the right-hand side equation is derived using Equation A.1 and linearity of the

derivation operator. The integral of Equation A.2 (right-most equation) is calculated in Equation A.3.

∫
𝑑(𝑒−𝐴𝑐 𝑡 𝜉)

𝑑𝑡

𝑇

0
𝑑𝑡 = ∫ 𝑒−𝐴𝑐𝑡𝐵𝑐𝑢

𝑇

0
𝑑𝑡 → 𝑒−𝐴𝑐𝑇𝜉(𝑇) − 𝑋(0) = ∫ 𝑒−𝐴𝑐𝑡𝐵𝑐𝑢

𝑇

0
𝑑𝑡 (A.3)

Equation A.3 (rightmost equation) can be reorganized as:

𝜉(𝑇) = 𝑒𝐴𝑐𝑇(𝜉(0) + ∫ 𝑒−𝐴𝑐𝑡𝐵𝑐𝑢
𝑇

0
𝑑𝑡) → 𝜉(𝑇) = 𝑒𝐴𝑐𝑇𝜉(0) + ∫ 𝑒−𝐴𝑐(𝑡−𝑇)𝐵𝑐𝑢

𝑇

0
𝑑𝑡 (A.4)

If 𝑇 = 𝑘∆𝑇 where ∆𝑇 is the step length and k is an index, then Equation A.4 is expanded to

Equation A.5.

𝜉𝑘 = 𝑒𝐴𝑐 𝑘∆𝑇𝜉(0) + ∫ 𝑒−𝐴𝑐(𝑡−𝑘∆𝑇)𝐵𝑐𝑢
𝑘∆𝑇

0
𝑑𝑡 (A.5)

The future step Xk+1 follows Equation A.5 and is shown in Equation A.6 and reorganized in

Equation A.7.

𝜉𝑘+1 = 𝑒𝐴𝑐(𝑘+1)∆𝑇𝜉(0) + ∫ 𝑒−𝐴𝑐(𝑡−(𝑘+1)∆𝑇)𝐵𝑐𝑢
(𝑘+1)∆𝑇

0
𝑑𝑡 (A.6)

𝜉𝑘+1 = 𝑒𝐴𝑐 ∆𝑇[𝑒𝐴𝑐𝑘∆𝑇𝜉(0) + ∫ 𝑒−𝐴𝑐(𝑡−𝑘∆𝑇)𝐵𝑐𝑢
𝑘∆𝑇

0
𝑑𝑡] + ∫ 𝑒−𝐴𝑐(𝑡−(𝑘+1)∆𝑇)𝐵𝑐𝑢

(𝑘+1)∆𝑇

𝑘
𝑑𝑡 (A.7)

The expression in the bracket in the A.7 is Equation A.5, and Equation A.7 simplifies to Equation

A.8.

𝜉𝑘+1 = 𝑒𝐴𝑐 ∆𝑇𝜉𝑘 + ∫ 𝑒−𝐴𝑐(𝑡−(𝑘+1)∆𝑇)𝐵𝑐𝑢
(𝑘+1)∆𝑇

𝑘
𝑑𝑡 (A.8)

The assumptions of the constant 𝐵𝑐 and 𝑢 (for an interval) can be invoked for Equation A.8. Since

these values are constant can be moved out of the integral operator. Furthermore, since 𝐴𝑐 is zero, Equation

A.8 can be simplified to 3.30.1

Appendix B: Infrared Beacons

B.1 Overview of the Beacon System

This appendix explains the positioning system developed to estimate the ground truth for some of

the experiments in Chapter 7. The system of beacons named Indoor Bearing Only Beacons (IBOB)

includes a receiver and several transmitters. This positioning system is based on the Angle of Arrival

(AoA) method. Many classical AoA-based positioning systems measure the direction from the transmitter

to the receiver. This approach can only provide the position and not the receiver’s heading. IBOB measures

the angle from the receiver to the transmitters (the transmitter sends omnidirectional signals). The

approach will allow measuring the heading of the receiver as well. Section B.2 provides the mathematical

derivation leading to the position estimation with the help of the beacons.

The developed beacons can provide approximately a position estimation with an error of 3 to 11

cm, depending on how the transmitters and the receivers are located with respect to each other in the

environment. This accuracy is relatively high in comparison to the state-of-the-art Bluetooth-based

beacons. However, this system can only provide a position estimation if the receiver is in the transmitters’

Line of Sight (LoS). Further, this system is designed for the indoor environment where the interference

from the sunlight is low.

IBOB transmitters itself include three sub-components: a microcontroller, a circuit that includes a

555 Integrated Circuit (IC) timer, and an array of IR Light Emitting Diodes (LED). A microcontroller is

a device that can run simple programs, often in a loop. Here ESP8266 is used as a low-cost microcontroller

which has the capability to send and receive data from the user through Wi-Fi. The microcontroller is

programmed to trigger the timer circuit. Once the timer circuit is triggered, it creates a modulated IR signal

at about 38kHz. The IR LED is a TSAL6400 (Vishay©), compatible with the TSOP32538 (Vishay©)

sensor installed on the receiver. The distance range of the signal is about 45 meters. The beacons can

transmit at a large angle, depending on the number of IR LEDs in the array (photos of the components of

the transmitter are provided in Chapter 6).

The second component of IBOB is the receiver. The receiver includes an IR sensor which is

concealed inside a box. This box has a narrow opening that blocks the light in all directions except the

opening (including modulated 38kHz IR). This box has been mounted on an encoder disk that can rotate

with the help of a servo motor (SG90). The encoder disk is built using 3D printing technology. While the

servo motor causes the platform to rotate, the encoder wheel can block the photo-interrupter. If such a

blocking happens, the photo-interrupter produces a high voltage (and produces a low voltage otherwise).

By counting the number of high and low voltages and knowing exactly the step size of the encoder’s pitch

(about 6°), the angle of rotation can be easily calculated. The receiver module is shown in Figure B.1 on

the robot (designated inside the circle). A closer look at the sub-components inside the receiver is shown

in Figure B.2.

Figure B.9.1: The 3D CAD model (left) and a picture of the robot(right). The receiver component is shown inside the

circle.

Figure B.9.2: The building components of the IBOB receiver.

After every step, the servo motor stops very shortly to let the sensor detect any incoming modulated

IR signals. If an IR signal is received, this will be recorded as a binary value of 1 in an array. Otherwise,

a 0 will be recorded.

This encoder platform has a default pose denoted as the zero position. The zero position

corresponds to the largest pitch on the encoder platform. The pitch can be identified by the microcontroller

(connected to the photo-interrupter), which measures the time the photo-interrupter was blocked. The zero

position can be identified since the corresponding pitch is larger than the others. Thus, the photo-

interrupter will be blocked for a longer time. Once the encoder completes one rotation, it will provide a

binary array as the output. The following known information is used to estimate the angles from the robot

to each beacon using the binary array (the flowchart of the explained process is provided in B.3):

• Each binary number in the array has a known angle from the zero position.

• The relative translation and the rotation of the receiver in the zero position from the robot

coordinate frame are known.

Stepper Motor

Encoder

Encapsulation

Infrared Sensor

(Modulated 38kHz)

Figure B.9.3: This flowchart shows how the receiver records a binary array corresponding to orientation

observations.

B.2 Methodology

In this section, it will be explained how the position can be estimated using the observed angles.

The beacon-based system provides a set of angles from each beacon to the robot, as shown in the simple

schematic in Figure B.4. The observed angle can be mathematically written as Equation B.1. In this

Equation, the observed angle, the position of the beacon (in an inertial frame), the position of the robot (in

an inertial frame), the heading of the robot (in an inertial frame) are denoted as 𝑧𝑏 , [𝑥𝑏
𝑖 , 𝑦𝑏

𝑖]
′
, [𝑥𝑖 , 𝑦𝑖]

′
, and

𝜃𝑖, respectively. The goal is to obtain the unknowns ([𝑥𝑖 , 𝑦𝑖, 𝜃𝑖]
′
) using the known position of the beacons

[𝑥𝑏
𝑖 , 𝑦𝑏

𝑖]
′
 and observed angle (𝑧𝑏).

Reset the timer &

Stop the servo

Any IR

signal is

sensed?

Is interrupter

unblocked?

Did the timer

pass the

threshold?

Append 0 to bAppend 1 to b

Initialize binary output

sequence (b)

start the timer

End: angles

from the robot

to beacons

start

Binary sequence (b) No

Activate the servo

Yes

No

Yes

NoYes

Estimate angles

using binary array

𝑧𝑏 = 𝑎𝑡𝑎𝑛2(𝑦𝑖 − 𝑦𝑏
𝑖 , 𝑥𝑖 − 𝑥𝑏

𝑖) − 𝜃𝑖 (B.1)

Figure B.9.4: Schematic of the observed angles and how it is related to the robot’s pose.

Since the number of beacons is often more than the unknowns (here, there are three unknowns),

the exact solution to this problem, in general, does not exist. In these circumstances, a classical approach

is to rely on least-square estimation, which requires linearization of Equation B.1. Linearized equations

can also help provide the covariance of the estimated position through the known error propagation

techniques. One issue with the least square method is that it requires initialization; more importantly, this

approach cannot provide a global uncertainty estimation of the robot’s pose.

Due to the two problems mentioned above, a novel method for position estimation is developed in

this appendix. This approach evaluates a function that approximates the observation likelihood globally.

Further, this function is robust to errors in the form of bias in the observations.

Inertial frame

Beacon 1
Beacon 2

Robot frame

If the map of the environment is represented as a two-dimensional grid, the robot can assume a

finite set of possible positions. If the position of the robot and the observation are known, it is possible to

estimate the robot’s heading. The estimated heading is shown in Equation B.2, which is just a simple

rearrangement of Equation B.1. The error term (𝜀) represents a bias in the observations. Such bias can

happen due to issues with the zero-positioning of the platform. Also, a subscript 𝑏 is used to denote the

heading(𝜃𝑏) estimated using 𝑧𝑏 and [𝑥𝑏
𝑖 , 𝑦𝑏

𝑖]
′
.

𝜃𝑏
𝑖 = 𝑎𝑡𝑎𝑛2(𝑦𝑖 − 𝑦𝑏

𝑖 , 𝑥𝑖 − 𝑥𝑏
𝑖) − 𝑧𝑏 + 𝜀 (B.2)

The orientation shown in Equation B.2 is in an inertial frame, and if there is more than one beacon

available, it is possible to measure the difference (𝑑𝑗𝑘) as shown in Equation B.3 (where 𝑗 ≠ 𝑘). Here it is

assumed that the 𝜃 is in the range from - 𝜋 to 𝜋 radians. If the total number of available beacons is denoted

as 𝐼, the following error function can be defined in Equation B.4. The value of this function can either be

0 or a positive value. The goal is to minimize Equation B.4. Ideally, if the observations did not have noise

and the robot was situated in one of the corners of the defined grid, all the orientations would agree and

thus, the zero of the function 𝑒(𝑥𝑖 , 𝑦𝑖) can be attained. However, in practice, the noise and distortions can

contaminate the observation. One characteristic of Equation B.4 is that it is not affected by the bias in the

observations (𝜀), as it will be cancelled out in calculating 𝑑𝑗𝑘.

d𝑗𝑘 = {
|𝜃𝑗

𝑖 − 𝜃𝑘
𝑖 |, |𝜃𝑗

𝑖 − 𝜃𝑘
𝑖 | ≤ 𝜋

2𝜋 − |𝜃𝑗
𝑖 − 𝜃𝑘

𝑖 | , |𝜃𝑗
𝑖 − 𝜃𝑘

𝑖 | > 𝜋
 (B.3)

𝑒(𝑥𝑖, 𝑦𝑖) = ∑ d𝑗𝑘𝑘≠𝑗
𝑗,𝑘∈𝐼

 (B.4)

A second characteristic of Equation B.4 is that it can be evaluated for a given cell in the map and

observations without prior information about the heading. Since it was assumed that the map has a finite

number of cells, this function can be evaluated for every cell. Figure B.5 illustrates an example where the

values of 𝜃𝑏
𝑖 (here 𝑏 ∈ {1,2}) are evaluated for each cell given 𝑧1(red vector field) and 𝑧2 (blue vector

field). The function 𝑒 is also calculated in each cell in the map. The lower values are assigned to darker

colours and the higher values are assigned to lighter colours. It can be seen from this figure that when the

estimated heading (𝜃𝑏
𝑖) is closer for both observations (the headings are more aligned), the value of 𝑒 is

smaller. In contrast, when the estimated headings are less aligned 𝑒 becomes larger.

Figure B.9.5: This figure demonstrates the estimated 𝒆 for each cell in a map using observations from two beacons.

Lower Higher

Lower

Higher

Beacon2

Beacon1

The function 𝑒 is related to the observation likelihood. This can be shown by investigating

𝑝(𝑍|𝑥𝑖 , 𝑦𝑖, 𝜃𝑖) (where 𝑍 = [𝑧1, … , 𝑧𝐼]
′), which is the observation likelihood.In order to evaluate

𝑝 (𝑍|𝑥𝑖 , 𝑦𝑖, 𝜃𝑖), one can commence with the residual (𝑣𝑏) shown in Equation B.5. The residual is

computed by measuring the difference between the actual observation (𝑧𝑏) and the estimate of this value

(the term shown inside the bracket in Equation B.5). Since the values are angular, the maximum distance

is expected to be 180°. In order to ensure this, Equation B.6 can be used to define residuals instead. If it

can be assumed that the observations are independent (and they do not have a bias), it can be assumed that

the errors locally follow a Gaussian distribution. If this assumption can be held true; then for a given cell,

Equation B.7 can be used to evaluate the likelihood (where 𝛴𝑣 is a diagonal matrix denoting the covariance

of the observations, |𝛴𝑣| is its determinant, and 𝑉 = [𝑣1 … 𝑣𝐼]
′). Since 𝑒 (Equation B.4) is not

dependent on 𝜃𝑖, the dependency of the likelihood on 𝜃𝑖 can also be removed by using the Maximum

Likelihood Estimation (MLE) as shown in Equation B.8 for each cell. The 𝜃𝑖 can be inserted into

𝑝 (𝑍|𝑥𝑖 , 𝑦𝑖, 𝜃𝑖).

𝑣𝑏 = [𝑎𝑡𝑎𝑛2(𝑦𝑖 − 𝑦𝑏
𝑖 , 𝑥𝑖 − 𝑥𝑏

𝑖) − 𝜃𝑖] − 𝑧𝑏 (B.5)

𝑣𝑏 = {
|𝑣𝑏|, |𝑣𝑏| ≤ 𝜋

2𝜋 − |𝑣𝑏| , |𝑣𝑏| > 𝜋
 (B.6)

𝑝 (𝑍|𝑥𝑖 , 𝑦𝑖, 𝜃𝑖) = (
1

(2𝜋)𝐼/2√|𝛴𝑣|
) 𝑒𝑥𝑝(−

1

2
𝑉′𝛴𝑣

−1𝑉) (B.7)

𝜃𝑖 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝑖 𝑝 (𝑍|𝑥𝑖 , 𝑦𝑖, 𝜃𝑖) (B.8)

The 𝑒 computed in Equation B.3 is related closely to the observation likelihood 𝑝 (𝑍|𝑥𝑖 , 𝑦𝑖, 𝜃𝑖).

This can be shown by first defining function 𝑓(𝑒) in Equation B.9. In Figure B.6; it is shown empirically

that Equations likelihood and B.9 will result in similar probabilities (Figure B.6 (a) shows the evaluation

of Equation B.9, and Figure B.6 (b) shows the evaluation of the likelihood). The red points show 1000

points with the highest values. Based on this figure, 𝑓 is a smoother alternative to the likelihood.

𝑓(𝑒) = (
1

𝜎𝑒√2𝜋
) 𝑒𝑥𝑝(−

1

2𝜎𝑒
2 𝑒2) (B.9)

Figure B.9.6: A comparison of the approximate observation likelihood (a) and the likelihood (b)

(a)

(b)

Based on the illustrations 𝑓(𝑒) can be used to replace the likelihood function. It is important to

note that evaluating 𝑝 (𝑍|𝑥𝑖 , 𝑦𝑖, 𝜃𝑖) requires finding the MLE for each cell over all possible robot

headings. In our computations, this is achieved by discretizing the heading between −180° to 180° using

5° step. This results in approximately 72 times more computations than evaluating 𝑓(𝑒).

Additional to these advantages, the developed method estimates the heading with the highest

likelihood for a given cell. Thus, the dimensionality of the unknown state of the robot has been reduced

from three to two. With the help of the developed approach, particle filter-based positioning systems are

only required to take samples in two dimensions which are more computationally efficient.

In the following, an overview of the characteristics of positioning using the developed beacon

system is explained. As it is known, the position estimation depends on the geometry of the transmitters

and the receivers (geometry here refers to the relative positioning of the transmitter and the receiver in the

map). In order to demonstrate this, Figure B.7 is provided. In this figure, the robot (shown in a light blue

circle) is moving downwards (this is the true position of the robot). Two beacons are used to estimate the

position of the robot (the beacons are shown in yellow labels). The darker blue points show the 1000 cells

with the highest likelihood values. It can be seen that the true position remains close to the points with the

highest likelihood values. However, there is an ambiguity along an arc passing through the beacons and

the robot.

The reason for this can be explained by a simpler schematic shown in Figure B.8, where the robot

is exactly situated on the line from one beacon to the other. Any location along this line will result in the

same observations [𝑧1 = 0°, 𝑧2 = 180°]. Thus, two beacons can only locate the robot up to an ambiguity

along this line, and it is important to place the third beacon not close to this line.

Figure B.9.7: This figure illustrates the estimated position of the robot using the developed likelihood function.

Figure B.9.8: A schematic illustrating the ambiguity of the robot’s position along the line connecting the two beacons.

Finally, an example of the estimated position using three beacons is provided in Figure B.9. In this

figure, the beacons are shown in red, and the estimated position (the best estimate corresponds to MLE)

is shown as a brown point. The cells with the highest likelihood are shown in a darker gray, and the cells

with the lower likelihood are shown in a lighter gray. Three circles are shown in the dashed line. Each

circle passes through two beacons and the position of the robot. Intuitively the position of the robot should

be in the intersected point of all three circles, and it can be seen indeed the intersection point of all three

beacons corresponds to the estimated MLE.

Beacon 1Beacon 2
Position 1 Position 2

Figure B.9.9: This figure illustrates the position estimation using MLE with the help of a developed function using three

beacons.

