1,745 research outputs found

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions

    Invariant Scattering Transform for Medical Imaging

    Full text link
    Invariant scattering transform introduces new area of research that merges the signal processing with deep learning for computer vision. Nowadays, Deep Learning algorithms are able to solve a variety of problems in medical sector. Medical images are used to detect diseases brain cancer or tumor, Alzheimer's disease, breast cancer, Parkinson's disease and many others. During pandemic back in 2020, machine learning and deep learning has played a critical role to detect COVID-19 which included mutation analysis, prediction, diagnosis and decision making. Medical images like X-ray, MRI known as magnetic resonance imaging, CT scans are used for detecting diseases. There is another method in deep learning for medical imaging which is scattering transform. It builds useful signal representation for image classification. It is a wavelet technique; which is impactful for medical image classification problems. This research article discusses scattering transform as the efficient system for medical image analysis where it's figured by scattering the signal information implemented in a deep convolutional network. A step by step case study is manifested at this research work.Comment: 11 pages, 8 figures and 1 tabl

    Radar and RGB-depth sensors for fall detection: a review

    Get PDF
    This paper reviews recent works in the literature on the use of systems based on radar and RGB-Depth (RGB-D) sensors for fall detection, and discusses outstanding research challenges and trends related to this research field. Systems to detect reliably fall events and promptly alert carers and first responders have gained significant interest in the past few years in order to address the societal issue of an increasing number of elderly people living alone, with the associated risk of them falling and the consequences in terms of health treatments, reduced well-being, and costs. The interest in radar and RGB-D sensors is related to their capability to enable contactless and non-intrusive monitoring, which is an advantage for practical deployment and users’ acceptance and compliance, compared with other sensor technologies, such as video-cameras, or wearables. Furthermore, the possibility of combining and fusing information from The heterogeneous types of sensors is expected to improve the overall performance of practical fall detection systems. Researchers from different fields can benefit from multidisciplinary knowledge and awareness of the latest developments in radar and RGB-D sensors that this paper is discussing

    A Systematic Survey of Classification Algorithms for Cancer Detection

    Get PDF
    Cancer is a fatal disease induced by the occurrence of a count of inherited issues and also a count of pathological changes. Malignant cells are dangerous abnormal areas that could develop in any part of the human body, posing a life-threatening threat. To establish what treatment options are available, cancer, also referred as a tumor, should be detected early and precisely. The classification of images for cancer diagnosis is a complex mechanism that is influenced by a diverse of parameters. In recent years, artificial vision frameworks have focused attention on the classification of images as a key problem. Most people currently rely on hand-made features to demonstrate an image in a specific manner. Learning classifiers such as random forest and decision tree were used to determine a final judgment. When there are a vast number of images to consider, the difficulty occurs. Hence, in this paper, weanalyze, review, categorize, and discuss current breakthroughs in cancer detection utilizing machine learning techniques for image recognition and classification. We have reviewed the machine learning approaches like logistic regression (LR), Naïve Bayes (NB), K-nearest neighbors (KNN), decision tree (DT), and Support Vector Machines (SVM)

    Classification of non-heat generating outdoor objects in thermal scenes for autonomous robots

    Get PDF
    We have designed and implemented a physics-based adaptive Bayesian pattern classification model that uses a passive thermal infrared imaging system to automatically characterize non-heat generating objects in unstructured outdoor environments for mobile robots. In the context of this research, non-heat generating objects are defined as objects that are not a source for their own emission of thermal energy, and so exclude people, animals, vehicles, etc. The resulting classification model complements an autonomous bot\u27s situational awareness by providing the ability to classify smaller structures commonly found in the immediate operational environment. Since GPS depends on the availability of satellites and onboard terrain maps which are often unable to include enough detail for smaller structures found in an operational environment, bots will require the ability to make decisions such as go through the hedges or go around the brick wall. A thermal infrared imaging modality mounted on a small mobile bot is a favorable choice for receiving enough detailed information to automatically interpret objects at close ranges while unobtrusively traveling alongside pedestrians. The classification of indoor objects and heat generating objects in thermal scenes is a solved problem. A missing and essential piece in the literature has been research involving the automatic characterization of non-heat generating objects in outdoor environments using a thermal infrared imaging modality for mobile bots. Seeking to classify non-heat generating objects in outdoor environments using a thermal infrared imaging system is a complex problem due to the variation of radiance emitted from the objects as a result of the diurnal cycle of solar energy. The model that we present will allow bots to see beyond vision to autonomously assess the physical nature of the surrounding structures for making decisions without the need for an interpretation by humans.;Our approach is an application of Bayesian statistical pattern classification where learning involves labeled classes of data (supervised classification), assumes no formal structure regarding the density of the data in the classes (nonparametric density estimation), and makes direct use of prior knowledge regarding an object class\u27s existence in a bot\u27s immediate area of operation when making decisions regarding class assignments for unknown objects. We have used a mobile bot to systematically capture thermal infrared imagery for two categories of non-heat generating objects (extended and compact) in several different geographic locations. The extended objects consist of objects that extend beyond the thermal camera\u27s field of view, such as brick walls, hedges, picket fences, and wood walls. The compact objects consist of objects that are within the thermal camera\u27s field of view, such as steel poles and trees. We used these large representative data sets to explore the behavior of thermal-physical features generated from the signals emitted by the classes of objects and design our Adaptive Bayesian Classification Model. We demonstrate that our novel classification model not only displays exceptional performance in characterizing non-heat generating outdoor objects in thermal scenes but it also outperforms the traditional KNN and Parzen classifiers
    • …
    corecore