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Abstract 

We have designed and implemented a physics-based adaptive Bayesian pattern 
classification model that uses a passive thermal infrared imaging system to automatically 
characterize non-heat generating objects in unstructured outdoor environments for mobile 
robots. In the context of this research, non-heat generating objects are defined as objects 
that are not a source for their own emission of thermal energy, and so exclude people, 
animals, vehicles, etc. The resulting classification model complements an autonomous 
bot's situational awareness by providing the ability to classify smaller structures 
commonly found in the immediate operational environment. Since GPS depends on the 
availability of satellites and onboard terrain maps which are often unable to include 
enough detail for smaller structures found in an operational environment, bots will 
require the ability to make decisions such as "go through the hedges" or "go around the 
brick wall." A thermal infrared imaging modality mounted on a small mobile bot is a 
favorable choice for receiving enough detailed information to automatically interpret 
objects at close ranges while unobtrusively traveling alongside pedestrians. The 
classification of indoor objects and heat generating objects in thermal scenes is a solved 
problem. A missing and essential piece in the literature has been research involving the 
automatic characterization of non-heat generating objects in outdoor environments using 
a thermal infrared imaging modality for mobile bots. Seeking to classify non-heat 
generating objects in outdoor environments using a thermal infrared imaging system is a 
complex problem due to the variation of radiance emitted from the objects as a result of 
the diurnal cycle of solar energy. The model that we present will allow bots to "see 
beyond vision" to autonomously assess the physical nature ofthe surrounding structures 
for making decisions without the need for an interpretation by humans. 

Our approach is an application of Bayesian statistical pattern classification where 
learning involves labeled classes of data (supervised classification), assumes no formal 
structure regarding the density of the data in the classes (nonparametric density 
estimation), and makes direct use ofprior knowledge regarding an object class's existence 
in a bot's immediate area of operation when making decisions regarding class 
assignments for unknown objects. We have used a mobile bot to systematically capture 
thermal infrared imagery for two categories of non-heat generating objects (extended and 
compact) in several different geographic locations. The extended objects consist of 
objects that extend beyond the thermal camera's field of view, such as brick walls, 
hedges, picket fences, and wood walls. The compact objects consist of objects that are 
within the thermal camera's field ofview, such as steel poles and trees. We used these 
large representative data sets to explore the behavior of thermal-physical features 
generated from the signals emitted by the classes of objects and design our Adaptive 
Bayesian Classification Model. We demonstrate that our novel classification model not 
only displays exceptional performance in characterizing non-heat generating outdoor 
objects in thermal scenes but it also outperforms the traditional KNN and Parzen 
classifiers. 
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Chapter 1 Introduction and Overview 

1.1 Purpose of Dissertation 

The goal of our research is to complement an autonomous robot's situational awareness 

by providing the ability to classify smaller structures commonly found in the immediate 

operational environment. These are structures that cannot be assessed in enough detail by 

GPS and onboard terrain mapping systems currently configured on hots. Situational 

awareness is the bot's interpretation of objects and physical processes in its internal 

representation of the environment. Mobile hots operating independently in unstructured 

outdoor environments must maintain situational awareness to permit sound decisions. 

The bot's internal representation of the environment is formed by the synthesis of prior 

knowledge and information obtained from sensors. The bot develops an interpretation by 

detecting, segmenting (or distinguishing), and classifying objects and physical processes 

within its internal representation. Based on this interpretation, the bot can decide on how 

to respond to situations and what actions are necessary to accomplish a given task. 

Autonomous hots will require the ability to make decisions such as "go through the 

hedges" or "go around the brick wall." To carry out these types of actions, the bot must 

have the ability to classify the unknown object as being either hedges or a brick wall. 

Therefore,.,our interest is in the situation where the bot has already detected and 

segmented a non-heat generating object but now needs to classify the object in a highly 

unstructured outdoor environment, especially during conditions of limited visibility like 

those presented in Fig. 1.1. 
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We envision mobile bots that unobtrusively travel alongside pedestrians at a walking 

pace in an unstructured environment. It is important that small mobile robots, with 

wheels, legs, and/or tracks, normally travel at the same speed as the pedestrian traffic, 

even if they traverse to quickly move down a vacant alley to conduct a reconnaissance or 

slow down to characterize an obstacle, because people resent having to go around a slow 

bot while they are also startled by machines such as Segways and golf carts that overtake 

them without warning. Furthermore, the type of sensors used to afford the bot with 

situational awareness is tied to the speed of the bot. A thermal infrared imaging modality 

mounted on a mobile robot is a favorable choice for receiving enough detailed 

information to automatically interpret objects at close ranges relevant to walking speeds. 

The technology necessary for thermal imaging has just recently become sufficiently 

portable and inexpensive enough to mount on small robotic platforms. Furthermore, 

passive thermal infrared imaging modalities do not pose a risk to humans like one might 

have with laser-based sensors, such as LADAR. Our use of a thermal infrared imaging 

modality will not only afford the ability to identify targets during conditions of limited 

visibility but it will also eliminate the need for a light source mounted on a bot to 

illuminate targets for classification that could disclose the bot's location. For example, 

illuminating the fence in Fig. 1.2a with a visible light source as in Fig. 1.2b would reveal 

the tactical position of the bot and perhaps compromise any reconnaissance missions. On 

the other hand, the thermal infrared imaging system that simultaneously captured the 

image of the fence in Fig. 1.2c acts as a passive system that does not emit any visible 

signatures for enemy detection. The thermal infrared imaging sensor is a passive system 

since there is no need for an onboard artificial illumination source to operate. The only 



source required for the fence to emit thermal energy is the sun that provides solar energy 

during the daylight hours. 
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The objective of this dissertation is to design and implement a physics-based pattern 

classification model to characterize non-heat generating outdoor objects in thermal scenes 

for autonomous robots. The classification of indoor objects and heat generating objects is 

a solved problem. However, a missing and essential piece in the literature is research 

involving the automatic characterization of non-heat generating objects in outdoor 

environments using a thermal infrared imaging modality for mobile robotic systems. 

Seeking to classify non-heat generating objects in outdoor environments using a thermal 

infrared imaging system is a complex problem due to the variation of radiance emitted 

from the objects as a result of the diurnal cycle of solar energy. Our desired model will 

allow bots to "see beyond vision" to autonomously assess the physical nature of the 

surrounding structures as well as report classes of objects while performing security or 

reconnaissance missions. We will design a classification model that retains the original 

physical interpretation of the information in the signal data throughout the classification 

process. This emphasis will result in a framework that allows the human analyst to 

understand the reason for a bot's classification of an unknown object by associating the 

final classification decision with the thermal-physical properties found in the original 

signal data. Additionally, our approach will afford bots with the intelligence to 

automatically interpret the information in signal data to make decisions without the need 

for an interpretation by humans. 

The research presented in this dissertation evolved from a broader work, by the 

Nondestructive Evaluation Laboratory at The College of William & Mary, to automate 
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the fusion and interpretation of data streams from various active and passive sensor 

systems to enable autonomous mobile robot operations in a wide variety of unstructured 

outdoor environments. We feel that it is the fusion of an active sensor, such as sonar (air­

coupled ultrasound), and a passive sensor, such as thermal infrared and RGB video, 

systems that has the potential for the greatest advancements because of the 

complementary nature of the modalities. Two mobile robots, displayed in Fig. 1.3, are 

currently being used to collect systematic ultrasonic and infrared imagery data streams 

about The College of William & Mary campus, the adjacent colonial area, York County, 

Virginia, in a village and on a farm outside of Buffalo, New York, and on mountainous 

terrain in Eleanor, West Virginia. We have used these large data sets to explore the 

behavior of features generated from the signal data of classes of outdoor objects and 

design single-sensor classification algorithms that afford mobile robots the ability 

characterize outdoor objects. The research presented in this dissertation is an extension 

to our previous work involving sonar sensor interpretation by mobile robots [1]. This 

research involves the design of algorithms to distinguish outdoor objects such as trees, 

poles, fences, walls, and hedges based on features generated from backscattered sonar 

echoes. Our novel model involving thermal infrared imagery presented in Chapter 5 of 

this dissertation affords a complementary technique to classify the same types of objects. 

Since both ultrasound and infrared are independent of lighting conditions, they are 

appropriate for use both day and night. In Chapter 6, we will discuss our future research 

that is aimed towards designing a framework that fuses information from the bot's 

thermal infrared imaging and ultrasonic sensors to perform intelligent actions, such as 

decision-making and leaming. 
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1.2 Non-Heat Generating Objects 

Non-heat generating objects are defined as objects that are not a source for their own 

emission of thermal energy, and so exclude people, animals, vehicles, etc. Non-heat 

generating objects can be natural or human-made. Our choices of natural objects that do 

not generate their own thermal energy include trees and bushes. Human-made objects 

include brick walls, wood walls, fences, and steel poles. Consequently, the ability of 

non-heat generating objects to display a thermal signature depends partly on the thermal 

energy received from heat generating sources in the environment. The primary heat 

generating source is the sun. However, there may also exist other objects in the local 

environment that generate and emit their own thermal energy and/or reflect thermal 

energy emitted from other sources. The ability for a non-heat generating object to 

display a thermal signature also depends on its physical composition. We will discuss the 

thermal emission characteristics of non-heat generating objects in Chapter 3. 

Identifying heat generating objects in thermal scenes, using pattern classification 

techniques, has become relatively trivial because infrared imaging cameras are very 

sensitive to detecting the thermal contrast between the object and surrounding surfaces. 

For instance, the human walking on the sidewalk and squirrel running from behind the 

tree in Fig. 1.4 can be identified by generating geometric features from various points on 

the body such as those presented in Fig. 1.5a. Features are unique representations of an 

object class that are generated from an object's signal received by a sensor. These 

features are used by a pattern classification model to distinguish one object class from 

another and provide class assignments to unknown objects. Geometric features can also 

be generated from tires and different segments of vehicle surfaces for class assignments 
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as displayed in Fig. 1.5b. However, generating features from the thermal image of a non-

heat generating object like the trees and steel poles in Fig. 1.4 for classification is a more 

subtle process due to the variation in thermal radiance of objects in the scene primarily 

caused by the diurnal cycle of solar energy. We will provide a detailed discussion on 

techniques used to generate features for heat and non-heat generating objects in Chapter 3 

and present various classifiers used in classification models in Chapter 4. In Chapter 5, 

we will present our novel classification model that outperforms the traditional classifiers 

when characterizing non-heat generating objects in outdoor environments. 

1.3 Autonomous Robotic Systems 

Robots have many uses in the military, industry, health care services, and neighborhood 

homes. A general summary of the current uses of robots is provided in [ 4]. Robots 

categorized as unmanned ground, marine, and aerial vehicles are normally found in the 

military. In industry, robots are commonly used~on assembly lines in automotive and 

food processing plants ... These robots are usually in the category of machine vision and 

used to assemble products and/or detect defects in the products. In health care, robots are 

now used to assist during surgical procedures. Robotic devices are also starting to be 

used to assist elderly people, particularly in Japan. We can also find robots in homes in 

the form of vacuum cleaners and even lawn mowers. Each type of robot operates at 

specific level of autonomy. The level of autonomy afforded to robots usually depends on 

the size and mobility capabilities of the bot and level of risk in harming humans and pets. 

Though the Roomba vacuum cleaner in Fig. 1.6 is semi-autonomous, we would have no 

problem with letting it roam anywhere around the house since the bot is ankle high. On 
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the other hand, we would expect the robotic lawn mower in Fig. 1. 7 to have a higher level 

of intelligence so the neighbor's favorite tulips are not misclassified as a blade of grass. 

Our objective is to design the intelligence algorithms required by mobile autonomous 

bots to correctly make decisions regarding non-heat generating objects that exist in their 

path. 

A mobile autonomous robotic system is a ground, marine, or aerial vehicle consisting 

of all the integrated components (mobility platform, sensors, computers, and algorithms) 

required to perceive, learn, and adapt in the environment to make intelligent decisions for 

navigating, communicating, and accomplishing required tasks. A historical background 

on advances in the state of the art for unmanned ground vehicles from 1959 to 2002 is 

presented in [ 5]. The focus of our research is to support autonomous unmanned ground 

vehicles; however, the framework of our classification model presented in Chapter 5 

could be applied to marine and aerial vehicle applications as well. 

The robotic platform design is not an issue anymore. Whether the robot will serve the 

military or be a part of the civilian workforce, the platform will be designed to support 

the required application. For instance, Fig. 1.8a presents a robotic platform that could be 

used for military reconnaissance missions, Fig. 1.8b shows a robotic platform designed 

for ambulatory applications, and Fig. 1.8c shows a robotic platform designed for 

monitoring and surveillance applications. However, the greatest challenge is how to 

design the inteliigence software that will allow the bot to use relevant sensors to learn and 

make decisions. We obviously hope that the autonomous military reconnaissance vehicle 

would make the correct classification and decision to go through hedges and not a 

misclassification that results in the bot attempting to go through a six meter high brick 
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wall. Furthermore, we would expect that an unmanned ambulatory vehicle will extract 

injured personnel from a burning building and not garbage cans due to misclassifications. 

Analogous to living organisms using their senses to understand the environment, 

autonomous bots will have to interpret information received by their sensors to detect, 

segment, and classify natural and human-made objects. Sensors used to detect, segment, 

and classify objects are either active or passive sensors. Active sensors require an 

external or onboard source to transmit a signal that is reflected by the target and then 

received by the bot's sensor. Passive sensors do not require an active onboard source to 

transmit energy at a target. Thus, passive sensors receive signal information that is 

naturally emitted from an object's surface. Detection involves comparing signals . 
received within a sensor's field of view to determine whether an object is present. Once 

detected the object is segmented to distinguish it from the surrounding environment. The 

segmented object is then assigned to a specific object class based on the bot's assessment 

of the object and previous knowledge about the local area of operation. The autonomous 

bot can then make a decision pertaining to the classified object depending on the required 

task or mission. For instance, if the object is a trash can, the bot may be required to 

report the trash can and quietly go around it when on a reconnaissance mission or pick it 

up and empty the can in the dumpster when performing janitorial duties. In any case, the 

autonomous bot must have the intelligence to classify non-heat generating objects. 



1.3.1 Detect the Object 

Detection of obstacles by bots is quite trivial nowadays. For instance, with an active 

sensor system, a source simply transmits some pulse of energy from the robot's platform 

and onboard sensors receive the energy after being reflected from an object in the path. 

The bot's intelligence software analyzes contrasting information in the reflected signals 

received within the field of view of the sensor to determine the ranges, sizes, and 

locations of objects. Consequently, detection usually coincides with obstacle avoidance. 

Thus, the bot simply knows the location and size of an unknown object in its path and 

travels around the object to avoid a collision. The Defense Advanced Research Projects 

Agency (DARPA) Grand Challenge, that took place in the Mojave Desert of 

southwestern United States on 8 October 2005, proved that sophisticated semi­

autonomous robots are able navigate along a grueling route by using multiple sensors to 

detect obstacles and map the terrain [www.darpa.mil]. Active sensors normally used by 

bots to detect objects include laser detection and ranging (LADAR), synthetic aperture 

radar (SAR), ultrasound, and infrared sensors. An advantage ofLADAR is that it has 

exceptional resolution; however, a disadvantage is that it is affected by dust and smoke 

that may be interpreted as an object in the bot's path [5]. Additionally, certain tactical 

situations may limit the use ofLADAR due to its potential risks to humans. Although 

SAR performs well in the presence of obscurants, it lacks spatial resolution and may not 

detect non-metallic objects depending on their moisture content [5]. Ultrasound 

transducers display exceptional performance in detecting objects during conditions of 

limited visibility and in the presence of obscurants such as dust, smoke, and fog at short 
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ranges. Furthermore, ultrasound does not have any safety concerns like those associated 

with LADAR. An example of how ultrasound sensors can be used to detect and avoid 

obstacles is given in [6]. An infrared sensor performing in an active role requires a 

transmitter to emit energy at an object and the sensor to receive the energy reflected from 

the object's surface. For instance, the infrared detection and range sensor system in Fig. 

1.9 transmits a pulse of infrared energy from an emitter that is a fixed distance from the 

detector. If the energy hits an object, reflected waves are received by a specific portion 

of a linear charge-coupled device (CCD) array in the detector based on the angle of the 

wave. The .angles in the triangle formed by the emitter, point of reflection, and detector 

vary based on the distance to the object. Thus, the sensor uses the reflected wave's point 

of impact on the CCD array to complete the triangle and estimate the distance to the 

object. A method for detecting and estimating distances to objects using ultrasound and 

active infrared sensors is discussed in [7]. An emerging active sensor that operates at 110 

GHz to 10 THz, between microwaves and the infrared bands, in the electromagnetic 

spectrum involves terahertz-pulsed imaging. Research interests using terahertz-pulsed 

imaging involve applications such as detection of concealed weapons and explosives [8]. 

An advantage of using terahertz radiation for these applications is that metals are opaque 

to the radiation. Additionally, terahertz radiation poses no health risk to humans. A 

limiting factor is that most non-metals, such as non-heat generating wooden fences, are 

transparent to terahertz and propagation distance is limited at the higher frequencies. 

However, this limitation could be abated by the terahertz band's sensitivity to the 

presence of water, which may be of use for not only detecting (and characterizing) the 

disease statt:s of human tissue [9] but also other living objects such as trees and bushes. 
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Passive sensors include red, green, blue (RGB) vision cameras and thermal infrared 

detectors. RGB cameras provide excellent resolution but are limited to operation during 

times when no obscurants are present and the target is illuminated with light. In a passive 

role, the infrared sensor is usually a focal plane array (FPA) ofthermal (or long-wave) 

infrared detectors that operate at 7 to 14 f.1 m in the electromagnetic spectrum. Unlike the 

!-dimensional array used by the active infrared range sensor, the passive thermal infrared 

sensor consists of a 2-dimensional FP A of detectors. Thermal radiance emitted by an 

object and received on the FPA is converted to an analog signal. This analog signal is 

then converted to a digital signal for display as a thermal image. Objects are detected 

using the thermal infrared imaging sensor by analyzing thermal contrasts in the signal 

information received passively from the surrounding environment within the field of 

view ofthe sensor. A comparison ofthennal infrared detection algorithms is found in 

[10]. Since the thermal infrared imaging sensor is used in our current research, we will 

delay our discussions of the characteristics of this sensor until Section 1.4 and subsequent 

chapters in this book. To complement a bot's ability to detect objects, the intelligence 

algorithm normally uses more than one type of sensor. Object detection and avoidance 

methods using vision and ultrasonic sensors for mobile bots are discussed in [ 11, 12, 13]. 

A technique for detecting objects using ultrasound and passive infrared sensors is 

discussed in [ 14]. 



12 

1.3.2 Segment the Object 

Once a target is detected by displaying a signal difference from other objects in the 

sensor's field of view, it is segmented from its surroundings and prepared for 

classification by the bot's intelligence algorithm. Discussions on the detection and 

segmentation of objects in infrared images are found in [15, 16]. Techniques for 

segmentation of objects in general images are discussed in [17]. Preparing the segmented 

signal information for the classification phase involves preprocessing to minimize the 

effects of temporal and spatial signal degradations. The preprocessing must avoid the use 

of filters that would lead to loss of relevant signal information used in the classification 

phase. We provide a detailed discussion on acquisition and preprocessing of thermal 

infrared images in Chapter 2. 

1.3.3 Classify the Object 

After segmenting and preprocessing the unknown object, the bot uses its intelligence 

algorithms to classify the object. The autonomous bot can then make a decision 

pertaining to the classified object depending on the required task or mission. The design 

of the classification model continues to be the most challenging phase for any 

intelligence system. In this research we will assume that the bot has already detected and 

segmented an unknown object. Therefore, our objective is to design and implement a 

model that will allow the bot to classify the unknown object. Two approaches can be 

used to design a model that will assign a class to an unknown object- theoretical models 

(analytical or numerical) and observational models. Theoretical models normally involve 
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the use of differential equations to compute the estimated value of physical variables 

associated with unknown objects for comparison with measured values from known 

objects. Class assignment is determined by the computed values' closeness to the 

measured values. Theoretical models usually require at least one measured value for the 

parameters in the model. These measured values are obtained by using an instrument that 

makes contact with the object. One possibility for obtaining physical measurements from 

an unknown object is by equipping a bot with touch sensors [18]. However, a bot that 

can classify objects using non-contact sensors is more practicable. We will continue our 

discussion on a specific theoretical model known as the multi-mode heat transfer model 

in Section 1.4. 

Our method of choice for designing a classification algorithm is the observational 

model approach. An observational model estimates class assignments ofunknown 

objects based on inferences made from empirical knowledge and prior knowledge. The 

empirical knowledge is obtained by observing information received by the sensors. The 

prior knowledge is based on observations regarding the presence of objects existing in the 

bot's area of operation before entering the area. The empirical knowledge and prior 

knowledge are combined to produce posterior knowledge that yields a class assignmen~ 

for the unknown object. Observational models are used in the field of pattern 

classification (or recognition). Pattern classification is the process of characterizing an 

unknown object based on an assessment of attributes (also called features or patterns) that 

are generated from the object's signal received by a sensor. The class assignment of the 

unknown pattern is made by a classification model consisting of a classifier and features 

that uniquely represent each object class requiring classification. The success of a 



14 

classification model relies primarily on the selection of features that provide the most 

favorable distinction between each object class. However, a poor choice of feature types 

and/or generating features that are not representative of objects in the bot's area of 

operations will result in ambiguity with separation of object classes and ultimately an 

increase in the misclassification rate. We will provide a detailed discussion on choices 

for features and approaches for pattern recognition in Chapters 3 and 4, respectively. 

While designing our classification model, presented in Chapter 5, we will make 

considerable effort to provide guidance on how to analyze features to understand their 

underlying physics and select most favorable sets of features that minimize the 

misclassification of unknown objects. Additionally, our approaches to feature selection 

and classification will retain the original physical interpretation ofthe information in the 

signal data throughout the classification process. 

Our classification of non-heat generating objects (brick walls, hedges, picket fences, 

wood walls, steel poles, and trees) in outdoor environments could be placed in the 

category of terrain classification. There are many approaches found in the literature that 

effectively use various sensors to classify objects in outdoor environments. The design of 

algorithms to distinguish outdoor objects such as trees, poles, fences, walls, and hedges 

based on features generated from backscattered sonar echoes for interpretation by mobile 

robots is discussed in [1]. Discussions on LADAR sensors and object recognition 

approaches using 3-dimensional LADAR and SAR imagery are presented in [9]. Terrain 

classification using LADAR to distinguish surfaces (ground surface, rocks, large tree 

trunk), linear structures (wires, thin branches, small tree trunks), and porous volumes 
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(foliage, grass) for autonomous robot navigation is discussed in [19]. Terrain 

classification methods using a color vision camera and LADAR to discriminate between 

soil, vegetation, tree trunks, and rocks for autonomous off-road navigation is presented in 

[20]. A method for terrain classification involving inertial, motor, ultrasonic, active 

infrared, microphone, and wheel encoder sensors to classify gravel, sand, asphalt, grass, 

and dirt is discussed in [21]. The ultrasonic and infrared range sensors were mounted on 

the robotic platform and aimed downward to the ground to classify the terrain based on 

the periodogram of the reflected signal (in the frequency domain) and range signal (in the 

time domain). 

The LADAR, SAR, sonar, terahertz-pulsed imaging, and RGB vision modalities 

presented above all have the capability to complement a bot's intelligence algorithm that 

is designed to classify objects at close ranges (~2-3 meters) relevant to walking speeds. 

A thermal infrared imaging modality mounted on a mobile robot is also a favorable 

choice for receiving enough detailed information to automatically interpret objects at 

close ranges relevant to walking speeds. However, as we will further discuss in Chapter 

3, a missing and essential piece in the literature is research involving the automatic 

characterization of non-heat generating objects in outdoor environments using a thermal 

infrared imaging modality for mobile robotic systems. Seeking to classify non-heat 

generating objects in outdoor environments using a thermal infrared imaging system is a 

complex problem due to the variation of radiance emitted from the objects as a result of 

the diurnal cycle of solar energy. Our approach of using a thermal infrared imaging 

camera for pattern classification makes use of concepts found in the fields of 

nondestructive evaluation, remote sensing, and digital image processing. Our novel 



16 

classification model will provide an approach that can make use of thennal infrared 

imagery as a stand-alone sensor or in combination with other existing sensors to 

complement the intelligence of a bot. Additionally, the framework of our classification 

model could also be used in other applications requiring the characterization of unknown 

objects based on features that witness variations due to natural cyclic events. A 

somewhat more speculative extension would be an application to autonomous Lunar or 

Martian rovers, since the diurnal heating effects that we are exploring do not require an 

atmosphere. On the other hand, ultrasound sensors would not support applications in this 

environment since nobody can hear you "scream" on the moon or Mars. 

1.4 Infrared Thermography 

Thermography is the study of internal and/or surface heat distributions of a structure 

using various instruments that measure thermal energy. Such instruments could require 

contact techniques such as a probe to measure surface temperatures on the structure. On 

the other hand, non-contact techniques afford the ability to study heat distributions by 

measuring the thermal radiation emitted from the surface of the structure using an 

infrared detector. These noninvasive techniques are used in infrared thermography, 

which is the foundation for our research presented in this dissertation. 

The techniques of infrared thermography are used in the field of nondestructive 

evaluation (NDE) or thermographic nondestructive testing (TNDT or NDT) to 

noninvasively assess the behavior of what is at the subsurface of an object. Infrared 

thermography is widely used in NDE to examine the nature of objects for suitability and 

quality. Applications are found in areas of preventive maintenance for aircraft (to include 



space launch vehicles), electrical utilities, and building construction [22, 23]. 

Applications involving infrared thermography in NDE are also being researched in the 

field of medicine [24]. Infrared thermography is also used in surveillance operations 

involving the military, law enforcement, and search and rescue [23 ]. 

17 

The applications mentioned in the previous paragraph normally involve a human 

operator assessing the thermal image of an object. As we will discuss in great detail in 

Chapter 3, many techniques exist using pattern recognition methods to automatically 

classify a target without the need for a human operator. In the military, these approaches 

are normally referred to as automatic target recognition (ATR) algorithms. However, the 

majority of the methods available in the literature, using thermal infrared imaging to 

classify objects, involve heat generating targets. The only use of thermal infrared 

imaging to classify non-heat generating objects in outdoor environments was found in the 

area of remote sensing to discriminate between vegetation and soil. We have not 

identified any previous research in the literature involving the assignment of classes to 

non-heat generating objects in outdoor environments using a thermal infrared imaging 

sensor for autonomous robotic systems. 

1.4.1 Active vs. Passive Thermography 

Analogous to the active and passive functions that the sensors described in Section 1.3 

have, a thermal infrared imaging system can have either an active or passive role. As 

mentioned previously, active systems have an external or onboard source to transmit 

signal energy that is reflected by the target and then received by the sensor. In active 

thermal infrared imaging, thermal energy from a source is directed towards the specimen 
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being inspected to create differences in the thermal image that identify anomalies in the 

structure and/or analyze the diffusion of thermal waves to estimate the physical properties 

of the material. The active heat source used to estimate thermal properties of a given 

material are formally the boundary conditions that we will present in Section 1.4.3 

involving the heat transfer model. Methods used to stimulate a specimen with an external 

source include pulsed thermography, step heating, lock-in thermography, and 

vibrothermography [22]. 

Passive thermography does not require an active source to transmit thermal energy at a 

target. Thus, passive thermal infrared imaging sensors receive thermal radiance that is 

naturally emitted from an object's surface. The research presented in this dissertation 

uses passive thermal infrared thermography where the only mandatory source of thermal 

energy is the sun that provides solar energy during the daylight hours. 

1.4.2 Advantages & Disadvantages of Thermal Infrared Imaging 

Every sensor has its own advantages and disadvantages. A major advantage of using a 

thermal infrared imaging sensor is that it provides the ability to identify objects during 

conditions of limited visibility. Conditions oflimited visibility such as night and the 

presence of obscurants (smoke, light dust, and light haze) have a minimal attenuating 

effect on long-wave infrared waves. Our choice of a thermal (long-wave) infrared 

detector yields an operating band of 7 to 14 f.1 m in the electromagnetic spectrum. Long-

wave infrared has an advantage over the other bands in the infrared region: near infrared 

(0.7- 1.1 f.1 m), short-wave infrared (1.1 -2.5 J1 m), and mid-wave infrared (2.5- 7.0 
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f.1 m). Fig. 1.10 displays the spectral radiance of a perfect emitter of thermal radiation 

(blackbody) across a band of wavelengths in the electromagnetic spectrum and at various 

surface temperatures of the blackbody as described by Planck's law. As we can see, the 

long-wave infrared band (denoted by the blue shaded region) yields the highest thermal 

radiance for the range of ambient and non-heat generating object surface temperatures 

encountered by an autonomous mobile robotic system on Earth. Consequently, a thermal 

infrared imaging camera will maximize the detection of thermal radiance emitted by an 

object compared to detectors that operate in the near, short-wave, and mid-wave infrared 

spectral bands. 

We will discuss more details of the limitation ofusing a thermal infrared imaging 

sensor in Chapter 6. However, we will note a few disadvantages of using this sensor 

right now. A minor disadvantage is that the thermal infrared imaging camera cannot 

discriminate between the radiance detected at each wavelength. Thus, in contrast to how 

the human eye can distinguish the colors red and blue, the thermal infrared imaging 

camera only "sees" a total radiance from the entire long-wave band of wavelengths. 

However, this deficiency is tolerated for our application since the FP A of detectors in the 

thermal infrared imaging camera receives different levels of radiance across the 2-

dimensional array to yield a thermal image with related gray-level values. We will 

discuss the characteristics of the thermal infrared imaging camera in Chapters 2 and 3. 

Since our application takes place outdoors, environmental conditions will exist where 

the surfaces of a target and surrounding objects will emit approximately the same level of 

thermal radiance. This phenomenon, known as thermal crossover [23], results in minimal 

thermal contrast between the surfaces of objects and the surrounding environment within 
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the thermal infrared camera's field of view. Thus, these periods of thermal crossover 

could result in a limitation in our ability to classify non-heat generating objects in an 

outdoor environment using a thermal imaging sensor. We will revisit the phenomenon of 

thermal crossover again in Chapters 4, 5, and 6. 

One possible critical disadvantage ofusing a thermal infrared imaging camera for 

autonomous mobile robotic applications is that glass is opaque to infrared radiation. 

Consequently, a bot will not be able to detect objects that are behind glass. We will 

revisit this ability of objects to emit thermal energy when we discuss the thermal property 

known as emissivity in Chapter 3. 

The disadvantages found with any sensor obviously provide the reason why multi­

sensor data fusion systems are normally more successful in classification applications 

than systems with a single sensor. Thus, the interpretations of relevant information 

received by different types of sensors used in a multi-sensor framework are fused to 

complement the overall performance of the classification process. We will discuss our 

plans for integrating our current pattern classification model using thermal infrared 

imagery into a multi-senor data fusion framework in Chapter 6. 

1.4.3 Multi-Mode Heat Transfer Model 

A multi-mode heat transfer equation is a differential equation, along with the 

corresponding initial and boundary conditions, that models the flow of heat energy by 

conduction, convection, and radiation. Thus, the multi-mode heat transfer equation is a 

theoretical model. The governing multi-mode heat transfer model for an anisotropic 

object with no internal heat source is given as [25]: 
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where Tis the temperature of the object and Ta is the ambient temperature; p and Care 

the density and specific heat of the object, respectively; K x, K Y , and K z are the in-plane 

and transverse thermal conductivity of the object; t, is the relaxation time; n is the 

vector normal to the object's surface; Q is the heating flux; he is the free convection 

coefficient; & is the object's emissivity; O" is the Stephan-Boltzmann coefficient; indices 

sand d specify the object specimen and defect, respectively; and indices cd, en, and r 

specify conductive, convective, and radiative heat transfer mechanisms, respectively. Eq. 

1.2 is the initial condition; Eq. 1.3 describes heating and cooling at the object's surface 
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boundary; Eqs. 1.4 and 1.5 represent the continuity of temperature and heat flux at the 

boundaries between inner layers, including defects. 

To make use ofthis theoretical model, given by Eqs. 1.1-1.5, in an autonomous 

robotic application for categorizing objects we would first solve the model for some 

physical variable for comparison with measured values from known objects. Class 

assignment is determined by the computed values' closeness to the measured values. 

However, this model is nonlinear and rather complicated. As we can see, Tis a function 

of many variables, T(t, p, & , C, Q, K). The problem becomes even more involved with 

the fact that variables such as conductivity, specific heat, and emissivity may be 

dependent on time, position, and the object's temperature. Thus, distinct classes of 

objects heat up and cool at different rates based on their thermal-physical properties. For 

instance, the surface temperature oflow specific heat objects, such as the leaves on 

hedges, tend to track the availability of solar energy [23]. On the other hand, objects with 

a high specific heat, such as a birch tree trunk (~2.4 kJ ·kg -l.o c-1
) [22], will tend to heat 

up more slowly with increasing solar energy and cool more slowly.-as the amount of solar 

·-
energy begins to decrease in the late afternoon (around 1600 hrs.). Furthermore, for 

outside objects, windy conditions may influence convective heat transfer. 

Simplified model versions of Eqs. 1.1-1.5 are usually used to directly solve for a 

unique temperature solution using the initial and boundary conditions. There are 

numerous texts that provide methods to solve the direct problem, two classic texts are 

[26, 27]. One could also use simplified models to estimate the thermal-physical 

parameters, which is called the inverse problem. Methods involving inverse problems 

can be found in [22, 28]. A review of both direct and inverse heat transfer methods is 
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found in [29]. These excellent references provide both analytical and numerical methods 

to solve simplified heat transfer problems. However, when seeking to generate features 

from signal data produced by a given object in an unstructured outdoor environment, we 

must consider the complexities of the real world. Consequently, we must consider the 

multi-mode heat transfer model and the fact that the thermal-physical variables are 

dependent upon time, space, and the object's temperature. Rather than attempting to 

solve the direct or inverse problems mentioned above, we will use the observational 

model approach to design a pattern classification model that generates thermal-physical 

features from an objects thermal image. As we will see in Chapter 3, our thermal­

physical features are generated from information in the thermal image that encompasses 

the thermal-physical properties of the object that depend on the diurnal cycle of solar 

energy. 

1.5 Overview of the Dissertation 

The primary objective of this dissertation is to design and implement a pattern 

classification model used by an intelligence algorithm to characterize non-heat generating 

outdoor objects in thermal scenes for autonomous robotic systems. Our approach to meet 

this objective is outlined in the model design cycle illustrated in Fig. 1.11. The 

dissertation chapter that discusses each step is noted in this design cycle flowchart. Since 

the goal in designing a classification model is to assign unknown objects to classes with 

minimal classification errors, the results of the evaluation may require repeating certain 

steps to achieve acceptable performance by the model. In Chapter 2 we will present our 

robotic thermal imaging system and methodology used to preprocess the thermal signals 
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received by the thermal infrared imaging camera. We will also discuss our procedures to 

acquire representative data sets for non-heat generating objects to assist in designing and 

assessing the performance of our classification models. We will present a literature 

review on feature types and our approach to generating thermal features in Chapter 3. A 

classification model is defined by at least one classifier and set of features. The 

performance of a classifier is a function of the feature set. Consequently, the evaluation 

of classifiers and selection of feature sets are done simultaneously as indicated by the 

flowchart for the model design cycle. In Chapter 4 we will provide a literature review on 

approaches to pattern classification and discuss our methodology for selecting thermal 

features. We will select our most favorable sets of features using the traditional Bayesian, 

K-Nearest-Neighbor, and Parzen classifiers. In Chapter 5 we will present our Adaptive 

Bayesian Classification Model that outperforms these traditional classifiers for our 

application. In Chapter 6 we will offer some conclusions and discuss future research 

directions. 

A possible intelligence algorithm that could be supported by our model is illustrated in 

Fig. 1.12. The steps with the regions shaded in yellow highlight this dissertation's 

contributions to the intelligence process. A thermal infrared imaging sensor receives 

thermal energy emitted from an unknown object's surface. The signal received by the 

sensor is preprocessed to minimize the effects of temporal and spatial degradations and 

dead pixels that would have a negative impact on the bot's ability to generate relevant 

features from the thermal image and classify unknown objects. The object is detected 

and segmented in the thermal scene by identifying its thermal contrast with other surfaces 

in the surrounding environment within the camera's field of view. Features are generated 
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from the segmented object and used by the classification model to assign the unknown 

object to a specific class with a given degree of confidence represented by the respective 

posterior probability. 1fthe classification model's decision satisfies specific rules, the 

class assignment is accepted for post-processing. Otherwise, the class assignment is 

rejected and the bot is required to capture another image to classify the unknown object. 

The post-processing step uses the classification model's accepted output to decide on the 

bot's next required action [report the object and/or (if the object is a hedge, go through 

the object or if the object is a brick wall, go around the object or if the object is a trash 

can, pick up the object)]. 



Fig. 1.1 Unstructured environments as potential areas of operation for 
autonomous robots. [www.flickr.com] 
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(a) 

(b) 

(c) 

Fig. 1.2 Visible and thermal images of a wooden fence. (a) visible image of the fence 
during the day, (b) visible image captured at 2030 hrs on 7 September 2007 with light 
source illuminating on the fence, (c) thermal image ofthe fence captured at the same 
time as the visible image in (b) and at an ambient temperature of71.9° F. 
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Fig. 1.3 Mobile robotic 3D sonar scanning system, rWilliam (on right) and thermal imaging system, rMary (on 
left). 
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Fig. 1.4 Thermal scene consisting of heat and non-heat generating objects. Heat generating 
objects include the human walking on the sidewalk and squirrel running from behind the tree. 
Non-heat generating objects include the trees and steel pole used by the street light. 
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(a) 

(b) 
Fig. 1.5 Geometric measurements generated from thermal images of heat generating objects 
for classification. (a) measurements generated to classify people [2] . (b) measurements generated 
to classify vehicles [3] 
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Fig. 1.6 Roomba vacuum cleaning robot [iRobot, www.irobot.com]. 

Fig. 1.7 Automower™ Solar Hybrid [Husqvarna, www. husqvarna.com]. 

http://www.irobot.com
http://husqvarna.com
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(a) 

(b) 

(c) 

Fig. 1.8 Autonomous unmanned ground vehicle platforms designed to support various 
military and commercial applications. (a) military reconnaissance application 
[www.globalsecurity.org], (b) Battlefield Extraction and Retrieval Robot 
[Vecna Robotics, www.vecnarobotics.com] for ambulatory applications, (c) remote 
monitoring and surveillance applications [PatrolBot, MOBILEROBOTS, Inc., 
www.mobilerobots.com]. 

http://www.globalsecurity.org
http://www.vecnarobotics.com
http://www.mobilerobots.com


Fig. 1.9 Infrared range sensor with detection range from 
1 to 5.5 m. [Sharp, www.acroname.com] 
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Fig. 1.11 Pattern classification model design cycle. 
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Fig. 1.12 Intelligence algorithm with pattern classification model. 
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Chapter 2 Data Acquisition 

2.1 Introduction 

In this chapter, we will present the first step in our pattern classification model design 

process -data acquisition. We will first introduce our robotic thermal imaging system. 

This system consists of the hardware and software that is used to acquire the image data. 

We will also discuss the methodology used to preprocess and collect our representative 

data set prior to the feature generation step discussed in the next chapter. 

2.2 Robotic Thermal Imaging System 

2.2.1 Hardware 

The hardware for our robotic thermal imaging system is displayed in Fig. 2.1. Fig. 2.1 a 

shows the front view of the robot platform. A metal container encloses the thermal 

camera to ensure the camera is on a stable platform and protected from the outside 

environment. The underside of the adjustable lid on the metal container consists of a 

polished aluminum plate to reflect thermal radiance emitted from a target to the thermal 

camera. The polished aluminum plate is a good reflector of thermal radiation due to its 

low emissivity value (approximately 0.09 for wavelengths of 8-14 Jim at 212 'F) [23]. 

Consequently, the combination of the thermal camera, metal container, and polished 

aluminum plate act as a periscope. A Futaba remote control module (displayed in the 

bottom right comer of Fig. 2.1 a) is used to navigate the robot platform. 
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The thermal camera secured at the bottom of the metal container and displayed in Fig. 

2.1c is a Raytheon Control!R 2000B long-wave (7-14 micron) infrared thetmal imaging 

video camera with a 50 mm focal length lens. The key specifications of the Raytheon 

Control!R 2000B include: 320 X 240 pixel resolution, 30Hz frame rate, 18 ° x 13.5 ° field 

of view (with 50 mm lens), and ferroelectric staring focal plane array detector type. As 

discussed in Chapter 1, Planck's blackbody radiation law tells us that the magnitude of 

the radiation emitted by an object varies with wavelength for a given temperature. A 

perfect emitter (or blackbody) with a surface temperature in the interval from 32 to 

100 ° F radiates a greater magnitude ofthermal energy in the wavelength interval of7-14 

microns compared to shorter wavelengths. Therefore, radiation emitted from non-heat 

generating objects outdoors will peak in the long-wavelength range. In the context of this 

research, non-heat generating objects are defined as objects that are not a source for their 

own emission of thermal energy, and so exclude people, animals, vehicles, etc. 

Consequently, a thermal imaging camera that is sensitive to long-wave thermal radiation 

is an ideal sensor for our classification application involving non-heat generating objects. 

Fig. 2.1 b displays the rear view of the robot platform. Two metal lockers with hinged 

doors are stacked behind the "periscope." A Barnant 90 Digital Thermometer is attached 

to the top locker to allow the operator to record the ambient temperature. The bottom 

locker provides storage for field supplies while the top locker holds a Samsung Tablet PC 

and Powerbank (Fig. 2.1 e). Samsung Tablet PC has an Intel Celeron 900 MHz processor, 

504MB of RAM, and Microsoft Windows XP Tablet PC Edition operating system. The 

Powerbank extends the table PC's battery life by allowing the operator to continuously 

capture thermal images for up to approximately 2.5 hours. 
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The process of capturing a thermal image of a specific target begins with the detectors 

in the camera's Focal Plane Array (FPA) receiving the thermal radiation emitted from all 

of the surfaces of objects within the thermal scene. The thermal scene consists of all 

objects within the camera's field of view, which includes the target of interest and objects 

in the foreground. In the context of this research, we will define foreground as the region 

in the scene consisting of objects behind the target of interest and within the thermal 

camera's field of view. Background is defined as the region either in front or to the side 

of the target consisting of thermal sources that emit thermal energy onto the target's 

surface. The source emitting this thermal energy may or may not be in the camera's field 

ofview. The thermal radiation received by the FPA is converted to an analog signal with 

a 320X240 pixel resolution. This analog signal is transmitted from the camera through a 

harness cable assembly to a Voyetra Turtle Beach Video Advantage USB Video Capture 

device (see Fig. 2.1d) that is attached to the Samsung Tablet PC. The Voyetra Turtle 

Beach Video Advantage USB Video Capture device converts the composite analog signal 

from the camera to a digital signaL The tablet PC receives the digital signal and a 

thermal image is displayed on the screen using the VideoAdvantage software that is 

installed on the tablet PC, discussed below. A camera control cable also connects the 

camera to the Samsung Tablet PC. The Control IR Manager software installed on the 

tablet PC, discussed in the following section, uses this cable to make modifications to the 

camera's memory. During thermal image capturing sessions, the door on the top locker 

is closed to prevent glare on the tablet PC's display screen caused by the sun. With the 

door shut, the operator views the thermal image on the tablet PC's display screen through 
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the black eyepiece and captures thermal images with the VideoAdvantage software using 

the mouse, both located on the top locker (see Fig. 2.1b). 

2.2.2 Signal Preprocessing 

In this section, we will discuss the software used to capture and preprocess a thermal 

image of an object prior to generating features. The significance of preprocessing a 

thermal image is evident when we view the thermal image in Fig. 2.2. The quality of this 

thermal image is affected by temporal and spatial signal degradations and dead pixels. If 

the magnitude of these typical degradation processes is not minimized, they will have a 

negative impact on our ability to generate relevant features from the thermal image and 

characterize unknown objects. 

2.2.2.1 Signal Degradations 

Signal degradations consist of temporal and spatial signal degradations and dead pixels. 

Temporal signal degradations consist of a temporal fluctuation in the signal at a low 

frequency (drift), mechanical vibrations due to the movement of camera system relative 

to the target (jitter), and noise (electronic, optical, and structural) [30, 22]. The spatial 

signal degradations are displayed as the fine horizontal and vertical lines over-layed on 

the thermal image in Fig. 2.2. These spatial signal degradations are due to the non-

uniformities in the responsivity ofthe detectors in the FPA [30, 22]. We can also see 

dead pixels (white specks throughout the image) resulting from a defect in the 
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instrumentation caused by events such as heat deterioration or a high incidence of static 

electricity on a detector [31]. 

The Control IR Manager is software used to control the functionality of the Raytheon 

Control!R 2000B infrared thermal imaging video camera. The software is used to make 

modifications to the camera's memory that will preprocess the thermal images and 

minimize the effects of the degradation processes. We will discuss the key software 

features used to preprocess our thermal images. Fig. 2.3 displays the main menu of the 

Control IR Manager software. The polarity switch in the upper left comer is set to White 

Hot to imply objects with apparent high temperature (hot) surfaces, relative to other 

objects in the camera's field of view, to yield gray-scale values of255 (white). On the 

other hand, objects that have an apparent low temperature (cold) surface, relative to other 

objects in the camera's field of view, will yield gray-scale values 0 (black). 

Consequently, the thermal radiance from surfaces of objects in the entire scene could 

result in various gray-scale values in the interval [0, 255]. This topic will lead us to an 

important discussion on AC coupling and the AGC circuit that we will cover shortly. 

We will now discuss the adjustments in the software to suppress the temporal and 

spatial signal degradations and dead pixels. By selecting the Video icon from the Control 

IR Manager software's main menu (Fig. 2.3) we get the Video Settings menu (Fig. 2.4). 

By enabling Frame Integration with 16 frames, we can reduce the effects of temporal 

signal degradations by taking a frame-to-frame average of the scene over 16 frames (the 

Raytheon Control!R 2000B has a frame rate of 30 Hz). Moving back to the main menu 

(Fig. 2.3) and selecting the Advanced icon, we go to the Advanced Video Settings menu 

(Fig. 2.5). By enabling Normalization Correction in the Normalization Options menu, we 
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are able to treat the spatial signal degradations due to the non-uniformity of the detectors 

in the FP A. Our system uses a single-point non-uniformity correction method (Private 

conversation with Field Application Engineer, L-3 Communications Infrared 

Products, 27 January 2007) that normalizes (makes equal) the outputs for the individual 

detectors over a uniform thermal scene. In single-point correction, the average of 

multiple images of a uniform thermal scene (single thermal input intensity or temperature 

reference) is subtracted from live video to remove the non-uniformity [30, 22]. Also 

within the Normalization Options menu (Fig. 2.5), we can enable Pixel Substitution to 

store locations of dead pixels in the FP A and substitute the dead pixels with the mean 

value of horizontally adjacent good pixels. After suppressing the temporal and spatial 

signal degradations and dead pixels found in Fig. 2.2, we obtain the resulting thermal 

image in Fig. 2.6. Table 2.1 presents the procedure to normalize the camera and store the 

reference in the camera's memory to perform non-uniformity correction on subsequent 

thermal image frames. 

2.2.2.2 AC Coupling 

As mentioned earlier, the polarity for the Raytheon Control!R 2000B was set so the 

thermal radiance of the surfaces of objects in the entire scene could map to various gray-

scale values in the interval [0, 255] where the extremes 0 (black) and 255 (white) imply 

apparent cold and hot surfaces, respectively. Furthermore, we mentioned that the gray­

scale values of an object in a thermal image are assigned relative to other objects in the 

camera's field of view. This is a characteristic ofthermal cameras with FPA known as 

AC coupling. AC coupling is integrated into the Raytheon Control!R 2000B so that small 
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variations of the surface radiance of objects in a scene can be amplified [23]. Also, a 

thermal image is AC coupled horizontally along the rows in the image array. A 

consequence of AC coupling is that a specific target in a scene with a constant thermal 

radiance could be assigned a large or small gray-scale value depending on the other 

surfaces in the surroundings within the camera's field of view. Furthermore, a target can 

only be seen in a thermal image when a thermal contrast exists between the target and 

other objects in the camera's field of view. Consequently, useful feature values to 

distinguish objects can only be generated when a thermal contrast exist in the thermal 

scene. Of course, this makes the objective to classify non-heat generating objects even 

more challenging since these objects depend highly on prior solar energy absorption in 

order to emit thermal radiation. 

As a result of AC coupling, a target is not radiometrically correct (i.e., the gray-level 

value is not a linear function of the apparent surface temperature). Fig. 2.7 shows an 

example of AC coupling similar to one illustrated in [23]. Fig. 2. 7a simulates a scene 

with uniform thermal physical surface properties (i.e., emissivity, specific heat, etc.) but 

with different temperature regions. Fig. 2.7b displays the resulting thermal image of this 

scene after AC coupling. As we can see, the ambient region maintains a constant 

temperature of76° F. However, with AC coupling applied horizontally along the rows 

in the image, the regions in each row are assigned gray-levels relative to other objects in 

the same row. As a result, the upper half of the ambient region appears "hot" in Row 1 

and the lower half of the ambient region appears "cold" in Row 2. 
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2.2.2.3 Automatic Gain Control 

The effects of AC coupling alone will not hinder our ability to generate features to 

distinguish objects. However, problems do arise when the amplifications of the gray­

level values for an object at a constant temperature become extreme. This issue exists 

when the Raytheon Control!R 2000B's automatic gain control (AGC) circuit is enabled. 

The AGC is an image enhancer that is designedto.afford the operator with comfortable 

image viewing. The AGC automatically adjusts the gain (and offset) to ensure the 

signals are within the camera's dynamic range to minimize saturation of objects in the 

scene [30]. As a result ofthe AGC, the thermal image of a bright object may be darker 

and dark object may be brighter. Thus, the AGC amplifies the effects of AC coupling. 

Similar to AC coupling, the AGC results in gray-level values assigned to objects relative 

to other objects within a given window. The effects of the ACG circuit are illustrated in 

Fig. 2.6. Even though the actual surface of the pole is approximately uniform in thermal 

properties (to include temperature), its thermal image displays an apparent temperature 

difference between the bottom portion of the pole (with the building in the foreground) 

and top portion of the pole (with the sky in the foreground). 

To investigate the affects ofthe AGC circuit further, we analyzed variations in gray­

level values of a cardboard tube with a constant surface temperature adjacent to a 

cardboard tube that is heated to a given temperature and allowed to cool. The cardboard 

tubes were secured in a thermally insulated box with an opening in the front and a 

thermal insulator separating the tube on the left (at a constant temperature) from the tube 

on the right (that was heated). The experiment was conducted in a controlled 

environment with a constant surrounding radiance and ambient temperature of 
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approximately 59.3 ° F. The left cardboard tube with a constant surface temperature was 

maintained at approximately 86.5 ° F. The surface of the right cardboard tube was heated 

to 110.8 ° F and allowed to cool to 65.8 ° F. Ten images of the scene consisting of the 

two tubes were captured at increments of approximately 5 ° F based on the right 

cardboard tube that was cooling. The mean gray-level values were recorded on the same 

segments of the two tubes for each image captured. Fig. 2.8 illustrates the experimental 

results with the AGC enabled. Fig. 2.8a and 2.8b display the first (right tube at 110.8 ° F) 

and tenth (right tube at 65.8 ° F) images captured, respectively. By comparing Fig. 2.8a 

and 2.8b, we can see that the tube on the left (maintained at a constant temperature) 

varies in gray-levels due to the AGC. Fig. 2.8c displays the variations of the gray-levels 

for the constant and heated tubes as a function of temperature. With the AGC enabled, 

the constant tube has a standard deviation of 13.84 and range of 44.98 in the gray-levels. 

Consequently, these extreme variations in gray-level values for the constant tube would 

hinder our ability to generate relevant features to distinguish objects. Fortunately, we can 

make modifications to the Raytheon Contro!IR 200GB's memory, using the Control IR 

Manager software, to disable the AGC by following the procedure presented in Table 

2.2. 

We conducted another experiment under the same conditions as described above with 

the cardboard tubes, with the exception that the AGC was disabled. Once again, the left 

cardboard tube with a constant surface temperature was maintained at approximately 

86.5 ° F. The surface of the right cardboard tube was heated to 110.4 ° F and allowed to 

cool to 65.8 ° F. Ten images of the scene consisting of the two tubes were captured at 
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increments of approximately 5° F based on the right cardboard tube that was cooling. 

Fig. 2.9 illustrates the experimental results with the AGC disabled. Fig. 2.9a and 2.9b 

display the first (right tube at 110.4 ° F) and tenth (right tube at 65.8 ° F) images 

captured, respectively. By comparing Fig. 2.9a and 2.9b, we can see that the tube on the 

left (maintained at a constant temperature) appears to have minimal variation in gray­

levels when the AGC is disabled. Fig. 2.9c displays the variations of the gray-levels for 

the constant and heated tubes as a function of temperature. With the AGC disabled, the 

constant tube has a standard deviation of2.16 and range of7.22 in the gray-levels. Thus, 

by disabling the AGC, the variations in the gray-level values for the constant tube are 

only due to AC coupling. Furthermore, by disabling the AGC on Fig. 2.6, we can now 

obtain acceptable results for the variation of gray-levels on the pole as displayed in Fig. 

2.10. Therefore, with the AGC disabled we can now generate relevant features from the 

thermal images of object that will assist us in classifying objects. 

At this point it is appropriate to mention the halo effect around the bottom portion of 

the pole in Fig. 2.6. The halo effect is common with ferroelectric FP As where accurate 

imagery is assisted by a mechanical chopper wheel within the camera. As discussed in 

[32], capturing a thermal image of a target is a cyclic process. Suppose the target is 

emitting more thermal radiation than any other neighboring object in the scene (either 

directly adjacent or behind the target). To capture a thermal image, the target first emits 

radiation onto the back ofthe chopper wheel and the FPA obtains a charge reading from 

the wheel. Next, the FPA obtains a charge directly from the actual target emitting the 

thermal radiation. Lastly, the system electronically subtracts the charges with and 

without the chopper wheel to produce the thermal image. However, the thermal radiation 
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from the hot target that leaks through the camera's chopper wheel is unfocused, leaving a 

larger radiation imprint on the FP A than that of the actual target. When the system 

subtracts the charges with and without the chopper wheel, a halo is created around the 

"hot" target in the image that is darker than the "cold" foreground. As we will see in 

Chapter 3, a "cold" target and "hot" foreground will result in a halo around the "cold" 

target that is a lighter shade than the "hot" foreground. Fortunately, the halo effect will 

not interfere with our ability to generate thermal features for classifying objects. As a 

matter of fact, we will discuss in Chapter 6 how we may be able to use the halo effect to 

facilitate the segmentation of targets [33]. 

2.2.2.4 Filters 

One of our goals in preprocessing is to suppress degradations in the signal without 

degrading information that would assist in classifying objects in the scene. 

Consequently, we will avoid filters that would lead to loss of relevant information used to 

distinguish object classes. For example, in the Video Settings menu (Fig. 2.4) of the 

Control IR Manager software we will disable Peaking since this functionality performs a 

high-pass filter on the thermal image. Figs. 2.11 a and b display thermal images of the 

same segment of a brick wall without and with a high pass filter, respectively. As we can 

see in Fig. 2.11 b, applying a high pass filter results in a loss of relevant information that 

could be used by thermal features to classify objects. 
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2.2.2.5 Capturing Thermal Imagery 

After the analog signal from Raytheon Control!R 2000B is converted to a digital signal 

by the Voyetra Turtle Beach Video Advantage USB Video Capture, the Samsung Tablet 

PC receives the digital signal and a thermal image is displayed on the screen using the 

VideoAdvantage software. Fig. 2.12 illustrates a scenario with the robotic thermal 

imaging system capturing an image of a segment of a wood fence. The VideoAdvantage 

software displays live video and is capable of capturing continuous or still frames. Our 

current research will focus on classifying non-heat generating objects in thermal images 

using still frames. However, we intend to extend our research to classify objects using 

continuous frames as discussed in Chapter 6. The final preprocessing step before the 

feature generation phase is to convert the RGB (red, green, blue) image captured by the 

VideoAdvantage software to a gray-scale image using MATLAB. 

2.3 Data Collection 

We now present the methodology used to collect the data used to train and evaluate our 

pattern classification model. We will assume that the robot already makes use of 

algorithms to detect and segment a specific target. In Chapter 6, we will discuss possible 

techniques for automated detection and segmentation of objects that we intend to 

integrate into our future research. Consequently, in the current research we will manually 

segment our targets. 

Thermal imagery was captured on a variety of non-heat generating outdoor objects 

during a nine-month period, at various times throughout the days and at various 
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illumination/temperature conditions. The ambient temperature (in degrees Fahrenheit) 

was recorded during each session. The images were captured using a Raytheon 

ControliR 2000B long-wave (7-14 micron) thermal infrared imaging video camera with a 

50 mm focal length lens at a distance of2.4 meters from the given objects. The analog 

signals with a320X240 pixel resolution were converted to digital signals using a Voyetra 

Turtle Beach Video Advantage USB Video Capture device attached to a Samsung Tablet 

PC, all mounted on board a mobile robotic platform displayed in Fig. 2.1. The resulting 

digital frames were preprocessed as discussed in Section 2.2. 

The image data was divided into two categories: extended objects and compact 

objects. The extended objects consist of objects that extend beyond the camera's field of 

view. Our classes of extended objects consist of brick walls, hedges, wood picket fences, 

and wood walls. The compact objects consist of objects that are within the camera's field 

of view. Our classes of compact objects consist of steel poles and trees. The image data 

collected was partitioned into three mutually exclusive sets: training data, test data, and 

blind data. The training data was used to design our pattern classification model. The 

performance of the model was assessed using the test and blind data sets. Since the test 

set was used as a validation set to tune the pattern classification model, it was part of the 

training process and not being used to provide an independent error estimate. Therefore, 

the blind data set was used for our independent performance evaluation of the pattern 

classification model. 

Our objective is to design a pattern classification model that displays exceptional 

performance in classifying unknown non-heat generating objects in an outdoor 

environment. To satisfy this objective, the data that we collect must completely and 
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accurately represent the real world problem by consisting of all the meaningful variations 

of field data instances that the system is likely to encounter. Thus, our representative 

data was collected under diverse environments (climates), temperatures, solar energy 

conditions, and viewing angles. 

Figs. 2.13 and 2.14 display the visible and typical thermal images of extended and 

compact objects, respectively, used for our training data that was collected from 15 
-· 

March to 22 June 2007 about The College of William & Mary campus. The strips of 

black electrical tape shown in the visible images and displaying a high thermal radiance 

in some of the thermal images are used as a reference emitter for generating the thermal 

features that we will discuss in Chapter 3. During each of the 55 sessions, the thermal 

images were captured on each object from two different viewing angles: normal 

incidence and 45 degrees from incidence. Table 2.3 and Fig. 2.15 present the frequencies 

of the object classes and ambient temperature distribution for the training data, 

respectively. 

The thermal images used for the test data consisted of the same objecfs used in the 

training data (Figures 2.13 and 2.14). The thermal images were captured at the same 

viewing angles as the training data. However, the test data was collected over nine 

sessions from 25 June to 3 July 2007. Table 2.3 and Fig. 2.15 present the frequencies of 

the object classes and ambient temperature distribution for the test data, respectively. 

The blind data set was collected over 14 sessions from 6 July to 5 November 2007. 

The thermal images used for the blind data set consisted of the same classes and were 

captured at the same viewing angles as the training data but were not the same objects. In 

addition to some blind data being collected on The College of William & Mary campus, 
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data was also collected throughout York County, Virginia, in a village and on a farm 

outside Buffalo, New York, and on mountainous terrain in Eleanor, West Virginia. Table 

2.4 presents the frequencies ofthe objects in the blind data set as well as the locations 

that the data was collected. Fig. 2.15 displays the ambient temperature distribution of the 

blind data set. Additionally, to evaluate the classification model's response when 

confronted with other blind objects, to include objects outside the classes in the training 

data set, we included data consisting of a brick wall with moss on the surface, concrete 

wall, bush, gravel pile, steel picket fence, wood bench, wood wall of a storage shed, 

square steel pole, aluminum pole for a dryer vent, concrete pole, knotty tree, telephone 

pole, 4x4 wood pole, and pumpkin. 

2.4 Summary 

In this chapter, we discussed the first step in our pattern classification model design 

process - data acquisition. We introduced our robotic thermal imaging system consisting 

of the hardware and software used to acquire thermal data. We will also discuss the 

methodology used to preprocess and collect our representative data set. The 

methodologies used in our data acquisition are implemented prior to the feature 

generation step discussed in the next chapter. 



(a) (b) 

(c) (d) (e) 

Fig. 2.1 Robotic thermal imaging system hardware: (a) robot platform front view, 
(b) robot platform rear view, (c) Raytheon thermal imaging video camera, 
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(d) VideoAdvantage USB video capture device, (e) Samsung tablet PC w/ Power bank. 
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Fig. 2.6 Thermal image with preprocessing on temporal/spatial signal degradations and dead pixels. 
AGC is enabled. VI 
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(l)Setup the Raytheon Control!R 2000B approximately 2.5 meters 
from a smooth, non-shiny, surface with a low thermal reflectivity 
(i.e., high emissivity), such as plywood with black spray paint on the 
surface. This uniform surface must take up the entire scene in the 
camera's field ofview. 

(2) Select the Factory icon (Fig. 2.3) and disable Norm Threshold in 
the Factory Options menu. 

(3) At the main menu (Fig. 2.3), disable Digital Zoom. 

( 4) Select the Advanced icon (Fig. 2.3) and the Normalization icon in 
Advanced Video Settings (Fig. 2.5). Enable Normalization 
Correction and Pixel Substitution in the Normalization Options menu. 

( 5) In the Normalization Options menu (Fig. 2.5), select the Full 
Norm icon under Normalize System. Run Full Norm for at least 5 
minutes and then select Stop. 

(6) At the main menu (Fig. 2.3), enable Digital Zoom. 

(7) Again, in the Normalization Options menu (Fig. 2.5), select the 
Full Norm icon under Normalize System. Run Full Norm for at least 
5 minutes and then select Stop. 

(8) Select the Factory icon (Fig. 2.3) and enable Norm Threshold in 
the Factory Options menu. 
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Table 2.1 Procedure to normalize the camera and store the reference in the camera's 
memory to perform non-uniformity correction on subsequent thermal image frames 
[Private conversation with Field Application Engineer, L-3 Communications Infrared 
Products, 27 January 2007]. 



"COLD" "COLD" 
(75 deg F) (75 deg F) 

"AMBIENT" 
(76 deg F) 

"HOT" "HOT" 
(77 deg F) (77 deg F) 

(a) 

Rowl 

Row2 

(b) 

Fig. 2.7 AC coupling. (a) Scene with different temperature regions, 
(b) Gray-level shades of regions in thermal image. 
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Gray-level Variations with AGC Enabled 
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Fig. 2.8 Enabled AGC experiment with cardboard tubes (left tube at constant 
temperature of ~86.5 deg F and right tube heated to 110.8 deg F and allowed to 
cool to 65.8 deg F). (a) Image of tubes with right (heated) tube at 110.8 deg F, 
(b) Image oftubes with right (heated) tube at 65.8 deg F, (c) Variations of 
gray-levels of constant and heated tubes as a function oftemperature. 
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(1) In the Video Settings menu (Fig. 2.4), select the Contrast 
icon to display the Gain Control Settings. Set the Digital 
Gain equal to 1, AGC Count Select to 6144 counts, and AGC 
Window to 80 Rows. 

(2) In the Video Settings menu (Fig. 2.4), select the 
Brightness icon to display Brightness Control Settings. 
Disable the Brightness Control. 

(3) In the Control IR Manager main menu (Fig. 2.3), set the 
Contrast Mode to Manual with a Value of255 and 
Brightness Mode to Manual with a Value of 25002. 

Table 2.2 Procedure to disable AGC by making modifications in the Raytheon 
Control!R 2000B's memory using the Control IR Manager software 
[Private conversation with Field Application Engineer, L-3 Communications 
Infrared Products, 27 January 2007]. 
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Fig. 2.9 Disabled AGC experiment with cardboard tubes (left tube at constant 
temperature of ~86.5 deg F and right tube heated to 110.4 deg F and allowed to 
cool to 65.8 deg F). (a) Image of tubes with right (heated) tube at 110.4 deg F, 
(b) Image of tubes with right (heated) tube at 65.8 deg F, (c) Variations of 
gray-levels of constant and heated tubes as a function of temperature. 
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Fig. 2.10 Thermal image with preprocessing on temporal/spatial signal degradations and dead pixels. 
AGC is disabled. 0\ 
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(a) 

(b) 

Fig. 2.11 Thermal image of segment of brick wall: (a) without high pass filter, 
(b) with high pass filter. 
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(a) 

(b) 
Fig. 2.12 (a) Robotic thermal imaging system capturing an image of a wood fence. 
(b) Thermal image of the wood fence displayed with VideoAdvantage software. 
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(b) 

(d) 

Fig. 2.13 Visible and thermal images of extended objects from the training data set. 
(a) brick wall, (b) hedges, (c) wood picket fence, and (d) wood wall. 
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(a) (b) (c) 

(d) (e) (f) 

Fig. 2.14 Visible and thermal images of compact objects from the training data set. Steel poles: (a) brown painted 
surface, (b) green painted surface, (c) octagon shape w/ aged brown painted surface. Tree: (d) basswood tree, 
(e) birch tree, (f) cedar tree. 
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Table 2.3 Distribution of training and test data collected from 15 March to 3 July 2007. 
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Table 2.4 Distribution of blind data collected from 6 July to 5 November 2007. 
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Chapter 3 Thermal Feature Generation 

3.1 Introduction 

In Chapter 2 we discussed the procedures for acquiring our thermal images. We will now 

present the second step in our pattern classification model design process - thermal 

feature generation. These features are unique representations of a non-heat generating 

object that are derived from the given object's thermal image. In the context ofthis 

research, non-heat generating objects are defined as objects that are not a source for their 

own emission of thermal energy, and so exclude people, animals, vehicles, etc. Our goal 

is to generate thermal features that not only assist in distinguishing one object class from 

another but also have a physical interpretation. We will discuss three types of features -

meteorological, micro, and macro. We will also present a curvature algorithm that will 

allow us to distinguish compact objects from extended objects. Compact objects consist 

of objects that are within the thermal camera's field of view, such as steel poles and trees. 

Extended objects consist of objects that extend beyond the thermal camera's field of 

view, such as brick walls, hedges, picket fences, and wood walls. By generating feature 

values from the thermal images of non-heat generating objects, we will witness how 

trying to interpret the effects of the outdoor environment and thermal properties of 

objects on these feature values is a subtle process. In the next chapter, we will evaluate 

the features' classification performance and select the most favorable set of features. 
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3.2 "Ugly Duckling" Features 

Our thermal-physical features are generated from an object's signal data received by a 

Raytheon ControliR 2000B long-wave infrared thermal imaging video camera. Through 

the process of feature generation, the underlying physics of the information in the thermal 

signal produced by a given object is analyzed to generate unique representations of the 

object. These features are used to distinguish one object class from another. Ideally, 

features are chosen that have minimal variation with changes in the viewing angle and/or 

distance between the object and sensor, temperature, and visibility. Since our objects do 

not generate their own heat energy, their thermal signature depends on their thermal 

properties and external heat sources such as the sun and other objects in the surrounding 

environment. As a result, the amount of thermal radiation emitted from our objects 

during conditions of limited visibility will depend on the time history of radiation 

received from external sources. Consequently, the complexity of our application 

increases due to the variation in thermal radiance of objects in the scene primarily caused 

by the diurnal cycle of solar energy. 

Thermal feature generation is a crucial step in our quest to design a pattern 

classification model that will allow us to classify non-heat generating objects in an 

outdoor environment. As we will see in Chapter 4, the performance of a classifier is a 

function of the feature set. According to the Ugly Duckling Theorem [34], there is no 

problem independent, universal, or "optimal" set of features. If a set of features appears 

to perform better in a classification model than another, it is a result of its fit to the 

particular pattern classification application. In our case, not only do we desire a set of 



features that maintain their discriminating information, we also seek features that retain 

their physical interpretation. 

There are many choices for the type of features to use in a classification model. 
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Reviews of the various types of features are found in [17, 35, 36, 37, 38, 39]. Two 

popular types of features used in pattern recognition are moment invariants and Fourier­

Mellin descriptors. Moment invariants are geometric features that were first introduced 

to the pattern recognition community by Hu [40]. Hu's seven famous moments were 

derived from the normalized central moments of an object's image [35]. Since then, 

various improvements have been made to Hu's work. Mistakes in Hu's theory were 

corrected by Reiss [41]. Flusser [42] showed that Hu's system of seven moments is not 

independent, implying redundancy in the set of features. Considerable research has 

focused on moments as geometric descriptors that are -invariant with respect to 

translation, rotation, scaling, illumination and blurring of an object in an image [ 43, 44, 

45, 46]. However, moments have a tendency to be sensitive to noise [47]. Another set of 

features that permit objects in images to be classified according to their shapes are the 

Fourier-Mellin descriptors, introduced by Casasent and Psaltis [48,49]. Fourier-Mellin 

descriptors are generated from the frequency domain of an object's image and used for 

invariant pattern recognition [50, 51]. The Fourier-Mellin descriptors are also related to 

Hu's moment invariants [52]. Both moments and Fourier-Mellin descriptors are not a 

desirable choice for our features since they lack physical meaning for cases above the 

third order. 

The majority of the classification research involving thermal imagery has involved 

generating features based on the radiance emitted from heat generating objects or non-
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heat generating objects that require a thermal excitation in a controlled environment. 

Heat generating objects could include people, ground vehicles, or marine vehicles. The 

classification problems in the literature involving people usually involve identification 

and tracking [2] and facial recognition [53]. Research involving the classification of 

ground vehicles is found in [16, 54]. Fang and Wit [55] approached armored vehicle 

classification by generating geometric features, based on Hu's seven moment invariants, 

from the thermal images of English letters used to represent the contours and wheels of 

armored vehicles. The features were entered into a neural network where final 

recognition of a letter was achieved through repeated computation and learning. 

Classification of ships by comparing their silhouettes against a library of templates is 

discussed in [56]. Common to these referenced applications is that classification is based 

purely on geometric features, rather than thermal-physical features generated from the 

target's surface. 

There have been only a few research studies found in the literature involving thermal­

physical features generated from a target's surface for classification applications. 

Nandhakumar and Aggarwal [57] generated features based on estimated values of surface 

heat fluxes to interpret surfaces in an outdoor scene. Surface temperatures were 

estimated from a thermal image by assuming that all objects in the scene have an 

emissivity of approximately 0.9. A visual image of the same scene was used to estimate 

surface absorptivity and relative orientation of the viewed surface. These estimations 

were used together to estimate the heat fluxes at the surfaces in the scene. The 

assumption of a relatively constant emissivity was continued in follow-on research to 

generate thermo-physical and geometric invariant features from thermal images to 
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classify ground vehicles [3]. Geometric features based on lines and conics were 

generated from a given region in a thermal image to hypothesize the type of ground 

vehicle and its pose. Thermal-physical features are formed from both temperature 

estimates generated from the thermal image and material properties associated with the 

hypothesized vehicle type and pose. The resulting thermal-physical features are 

compared with a model prototype based on features expected from the hypothesized 

vehicle to assess the hypothesized vehicle class. Bharadwaj and Carin [58] generate 

temperature features estimated from the thermal radiance emitted from various regions on 

ground vehicles. Vehicles are classified based on the correlation between the feature 

vectors generated from the different regions on a vehicle and a given template. Maadi 

and Maldague [59] generate features based on temperature estimations and geometries to 

classify people and ground vehicles. A multisensor data fusion system using infrared 

cameras, visual (CCD) cameras, and laser radar sensors for classifying ground vehicles is 

described in [60]. The features used by this system include geometric attributes, 

temperature estimations, and colors generated from the target. 

There are also many machine vision industrial applications that rely on thermal 

features generated from the surface of objects to monitor quality control [22, 61, 62]. 

These applications normally involve feature generation in a controlled indoors 

environment using a thermal excitation to monitor packaging standards and detect 

anomalies in products. For instance, in the food industry thermal features could be 

generated to monitor the seals on food containers [ 63] or detect anomalies in food [31]. 

The feature generating techniques in the previous research discussed above are not an 

appropriate choice for our application. Classification of objects in thermal imagery has 
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mainly involved geometric features, rather than thermal-physical features generated from 

the target's surface. Consequently, classification of objects has traditionally involved 

detecting and segmenting thermal "blobs" in the image and generating shape features that 

are compared to those in database or library of templates. This limitation was mainly a 

result of the state of the art available in thermal image based systems. Thermal imaging 

systems did not have the resolution to obtain detailed information about an object's 

surface. However, our object classes do have a noticeable distinction when comparing 

their surfaces in a thermal image. Thus, itappears that appropriate features for our 

application will consider information about the objects' surfaces found in the thermal 

Image. 

The previous research that did involve the generation of thermal features from an 

object's surface required the visible spectrum and/or included temperature estimates. 

However, to classify non-heat generating objects during conditions oflimited visibility, 

we should not generate features that rely on the visible spectrum. Moreover, thermal 

cameras do not read temperature on an objects surface directly. To generate an estimated 

temperature feature from thermal imagery, one must enter a measured or assumed 

emissivity of the target's surface [64]. Emissivity is a surface property that provides a 

measure of an object's ability to emit thermal energy. Furthermore, emissivity is a 

function ofthe type of material, viewing angle, and the object's surface quality, shape, 

and temperature [23, 65, 66]. The level of radiance presented by an object's surface in a 

thermal image depends on the object's emissivity. Consequently, we should not assume 

an emissivity for an unknown object that we desire to classify. The remote sensing 

community has successfully used emissivity as a feature to assist in discriminating 



between vegetation and bare soil [67]. Therefore, an appropriate choice for a feature 

derived from the thermal image of a non-heat generating object in an outdoor 

environment seems to be emissivity, not an apparent surface temperature. 
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Besides the emissivity feature used in remote sensing, we have not identified any 

other previous research involving the generation of surface features from the thermal 

imagery of a non-heat generating object in an outdoor environment. However, in the 

visible spectrum, discriminating information about an object's surface has been obtained 

using texture features. Weszka, Dyer, and Rosenfeld [68] provide an informative study 

that compares visual texture features for terrain classification in the field of remote 

sensing. They concluded that texture features based on first-order and second-order 

statistics displayed good terrain classification results. The term texture is difficult to 

define and takes on many definitions in the literature. Furthermore, the concept of 

texture has been traditionally motivated by human's visual perception of material 

surfaces [37, 69]. We will adopt the definition oftexture as a feature-dependent on the 

spatial variation in pixel intensities (gray-level values) [37]. Using this definition of 

texture allows us to denote an object's variation in surface radiance as the spatial 

variation in pixel intensities (gray-level values) observed in the object's thermal image. 

Since our object classes do have a noticeable distinction when comparing their surfaces 

in a thermal image, first- and second-order texture features seem to be appropriate for our 

application. 

Since we are working with thermal images of non-heat generating objects, the 

radiance of the objects not only depends on the diurnal cycle of solar energy but also is a 

function of the object's thermo-physical properties. Consequently, features based on 
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emissivity and texture seem appropriate since they are generated from information in the 

thermal image that encompass the thermo-physical properties of the object that depend on 

the diurnal cycle of solar energy. In this research, the generation of these features from 

segmented objects in thermal images are computed offline in MATLAB. 

The remainder of this chapter will proceed as follows. In Section 3.3, we will discuss 

the characteristics of our thermal gray-scale image used for generating features. Section 

3.4 will present our meteorological features consisting of the ambient temperature and a 

rate of change in the ambient temperature. In Section 3.5, we will discuss our micro 

features based on the emissivity of our target's surface. Section 3.6 will present our 

macro features based on first- and second-order texture features. We will provide an 

application involving our meteorological, micro, and macro features in Section 3.7. 

Section 3.8 will present a curvature algorithm that will allow us to distinguish compact 

objects from extended objects. Section 3.9 will provide a summary of the chapter. 

3.3 Thermal Image Representation 

In this section we will define how our thermal gray-scale (or gray-level) images are 

represented throughout our research. Fig. 3.1a displays our robotic imaging system 

capturing a thennal image (Fig. 3.1 b) of a fence segment denoted with the rectangular 

red-solid border. Assuming our object of interest is opaque to thermal radiation, the 

thermal energy leaving the segmented region consists of energy emitted and reflected 

from both the fence's surface and surfaces behind the fence but viewed within the gaps 

between the fence's wood boards. For non-heat generating targets, the amount of energy 

absorbed, emitted, and reflected from the surface depends on the target's thermal and 



physical surface properties and amount of energy received by the surface from thermal 

sources either in front or to the side of the target. The energy received by the target's 

surface from other thermal sources is called irradiance. The energy leaving the target's 

surface regardless ofthe physical cause (emitted plus reflected) is called radiosity. 

Radiosity is a radiant flux defined as the rate at which thermal radiation leaves the 
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surface due to emission and reflection per unit area of the target's surface ( W · m-2 
). 

Radiosity is the thermal energy received by the detectors in the thermal imaging camera. 

However, radiosity is normally expressed as radiance ( W · m -2 
• sr -t) to associate the 

quantity to the thermal camera's response displayed by the thermal image, analogous to 

the human's visual response to luminance [70]. Unless we specify the type of radiance 

(i.e., emitted or reflected), we will assume all radiance received by the thermal camera is 

derived from radiosity. 

We will now define the terms foreground and background of our thermal scenes with 

respect to the thermal camera's position and field of view. Foreground is the region in 

the scene consisting of objects behind the target of interest and within the thermal 

camera's field of view. Due to the opaqueness of our classes of objects, they are not 

normally influenced by the thermal radiance emitted from the objects in the foreground. 

On the other hand, the radiance emitted by the objects in the foreground could have an 

effect on the thermal camera's AC coupling. As discussed in Chapter 2, AC coupling 

could result in a target with a constant thermal radiance being assigned variations in gray­

level values depending on the radiance ofthe foreground. Fortunately, these variations in 

the gray-level values of a target's thermal image will not impact our ability to generate 

features as long as the AGC is disabled. Background is defined as the region either in 
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front or to the side of the target consisting of thermal sources that emit irradiance onto the 

target's surface. The source emitting this irradiance may or may not be in the camera's 

field of view. Referring back to Fig. 3.1, a portion of the total thermal radiance received 

by the camera comes from the foreground radiance emitted from the gaps in wood fence 

(denoted by the orange-dotted arrow) and background irradiance from the vinyl siding on 

the building (yellow-dashed arrow) that is both reflected from the fence's surface 

(yellow-dashed arrow) and absorbed and then emitted from the fence's surface (blue­

solid arrow). 

Fig. 3.lc displays the gray-level array (or matrix) of the thermal image segment 

denoted with the rectangular green-solid border in Fig. 3.lb. The gray-level array 

consists of M rows and N columns such that each pixel element at coordinate (r, c) is 

mapped to a gray-level value from the range [0, 255] by the function I(r, c) that depends 

on the radiance emitted by the surfaces in the thermal image. Thus, a surface emitting a 

high amount of radiance is assigned a higher gray-level value compared to a surface that 

is emitting a lower radiance. In the field of thermography for nondestructive testing 

(NDT) (or nondestructive evaluation (NDE)), a thermal imaging camera is used to record 

the distribution of apparent surface temperatures to assess the structure or behavior of 

what is under the surface [22]. To compute these apparent temperatures of the structure's 

surface, the operator must input the object's emissivity and ambient temperature [64, 23]. 

However, in our application we are seeking to assign a class to an unknown object. 

Therefore, we do not know the target's emissivity. Consequently, we will relate the gray­

level values to the amount of radiance emitted by the objects' surfaces in a thermal 

image, not their apparent surface temperatures. As shown in Fig. 3.lc the values of the 
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gray-levels decrease from left to right indicating a region of higher radiance emission on 

the left and lower emission on the right side ofthe segment in Fig. 3.1b. Moreover, the 

object's radiance input is not linearly related to the thermal camera's digital gray-level 

value output due to AC coupling. 

3.4 Meteorological Features 

Since the thermal properties (such as conductivity, emissivity, and specific heat) of our 

non-heat generating objects primarily depend on solar energy, the amount of thermal 

radiance emitted at the surface is dependent on solar energy as well. Therefore, we can 

estimate current and historical effects of the diurnal cycle of solar energy on the amount 

of radiance emitted from an object's surface by generating features based on the ambient 

temperature. 

3.4.1 Ambient Temperature 

The effects of solar energy on the amount of radiance emitted from an object's surface is 

estimated by the ambient temperature (° F ) feature recorded in same vicinity of the target 

at the time (t) defined by: 

Ta = Tjt] (3.1) 



81 

3.4.2 Ambient Temperature Rate of Change 

The historical effects of solar energy on the amount of radiance emitted from an object's 

surface is determined by a first order backward difference quotient about the current time 

(t) with !1t = 30 minutes. 

3.5 Micro Features 

Tl = Ta [t]- Ta [t - M] 
M 

Micro features are based on the thermal-physical properties of our targets' surfaces. 

(3.2) 

Particularly, we will derive micro features based on the emissivity of an object. The term 

emissivity is assigned to ideal materials and emittance is used to characterize real 

materials with surface defects and irregularities [23]. However, we will use emissivity 

for our real materials to avoid confusion since this term is used most often in the infrared 

community. 

Emissivity is a surface property that provides a measure of an object's ability to emit 

thermal energy. Emissivity is expressed as the ratio of thermal radiation emitted by an 

object's surface to the thermal radiation emitted by a perfect emitter (blackbody) tinder 

the same surface temperatures, viewing angle, and spectral wavelengths [22]. Emissivity 

is a unitless quantity on a scale from 0 to 1. A perfect emitter of thermal radiation has an 

emissivity value of unity while a perfect reflector has an emissivity value of zero. When 

an object is in thermal equilibrium with its local environment, Kirchhoffs law implies 

that the amount of thermal energy emitted by an object's surface is approximately equal 
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to the amount absorbed for a specified wavelength and direction. Therefore, a common 

saying in the thermography community is that a good absorber is a good emitter and a 

poor absorber is a good reflector. 

A material's emissivity is not a constant parameter. Emissivity is a function of the 

type of material, viewing angle, and the object's surface quality, shape, and temperature 

[23, 65, 66, 71, 72, 22]. Emissivity could also vary with wavelength; however, in our 

research we will assume all objects are graybody emitters. If an object is a graybody 

emitter, its emissivity will not depend on wavelength [64]. The amount of thermal 

radiance emitted by a target and detected by a thermal imaging camera depends on the 

emissivity of the target. Thus, the higher an object's emissivity, the more thermal 

radiance it will emit. 

3.5.1 Emissivity Variation by Material Type 

Emissivity varies by the type of material (metallic or nonmetallic) and type of coating on 

the surface (such as paint, dust, dirt, or corrosion due to oxidation). Polished metallic 

surfaces generally have a low emissivity (appear very reflective), but the amount of 

thermal emission can be increased by the presence of certain paints or oxide layers on the 

surface. As an example of the reflective qualities of a polished metallic surface, consider 

the visible image of the aluminum plate in Fig. 3.2a. The thermal image of the aluminum 

plate in Fig. 3.2b displays the irradiance from a portion of a house in the background 

being reflected off the plate. We may also have to contend with objects that have a high 

emissivity but are also opaque to thermal radiation. For example, consider the plate of 
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glass with an emissivity of approximately 0.92 [23] in front ofthe pine tree log in Fig. 

3.3a. As we can see in Fig. 3.3b, the glass plate is opaque to the thermal radiation 

emitted by the pine tree log displayed in Fig. 3 .3c. The emissivity values of metallic and 

nonmetallic materials are available in many references with topics involving 

thermography and/or radiative heat transfer (23, 22, 71, 72]. 

3.5.2 Emissivity Variation by Viewing Angle 

The variation of emissivity with the viewing angle of the thermal camera with respect to 

the target also depends on the target's surface material. Some typical trends in the 

emissivity of nonmetallic and metallic materials are shown in Fig. 3.4, as given by (72]. 

For nonmetallic materials such as wood and vegetation, the emissivity remains rather 

constant across variations in the viewing angle up to about 50° from normal incidence 

[22]. On the other hand, the emissivity of smooth metallic surfaces tends to be lower at 

normal incidence than at other viewing angles. 

3.5.3 Emissivity Variation by Surface Quality 

The effects of surface quality on the thermal radiance emitted from a target's surface are 

difficult to model since the characteristics of smoothness or roughness may be very 

different from surface to surface. A discussion on models used to measure surface 

roughness is found in [72]. In general, smooth, polished surfaces like the aluminum plate 

in Fig. 3.2a can result in a more specular reflection (lower emissivity) than rough surfaces 

such as bricks that have a diffuse surface (higher emissivity). 
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3.5.4 Emissivity Variation by Shape and Surface Temperature 

When viewing a still frame of a vertically placed cylindrical object with uniform 

irradiance using a thermal imaging camera, we should witness a variation in radiance as 

we scan horizontally from the center to the periphery of the object in the image. This 

variation in radiance is due to the object's directional variation of emissivity. On the 

other hand, we should not see any significant variation in radiance when scanning the 

thermal image of a flat object in the same manner with the camera at normal incidence. 

To demonstrate how emissivity varies with an object's shape (directional variation) and 

surface temperature, black electrical tape was wrapped around a cardboard cylindrical 

tube placed in a position such that the irradiance was constant and uniformly distributed. 

The interior ofthe tube was heated to 114.8 ° F and thermal images were captured at 

increments of 2 a F as the tube cooled to an ambient temperature of 56. 3 ° F. An 

averaged vertical radiance (gray-level) was computed using the thermal radiance from the 

tape in each thermal image. Fig. 3.5 displays how the averaged radiance varies 

horizontally along the segment of tape. Since the irradiance is constant and uniformly 

distributed, the variation in radiance at each temperature increment is due to the 

directional variation of emissivity. However, we must be aware that a higher surface 

temperature does not necessarily yield a higher emissivity. The emissivity of a conductor 

will increase with increasing surface temperature, but the emissivity of a nonconductor 

may either increase or decrease with increasing surface temperature depending on the 

specific material [71]. 
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3.5.5 Other Directional Variation Enhancers 

Vertical cylindrical objects in an unstructured outdoor environment will not only display 

variations in radiance due to the directional variation of emissivity, irradiance from the 

background and solar energy could also have a significant effect on the variation in 

radiance. Thus, the irradiance as well as the surface temperature may not be uniformly 

distributed on the object. For instance, consider an experiment to capture a thermal 

image of a pine tree log with varying irradiance from sources in the background. 

Thermal images of a pine tree log were captured outside on 29 December 2006 with an 

ambient temperature of 66.9 ° F. The thermal imaging camera captured the images 

while facing the center segment of the log at normal incidence, 2.4 meters from the log. 

The surface temperature measurements of the pine tree log at the time the images were 

captured along with the experimental setup is shown in Fig. 3.6a. A building's brick wall 

with a surface temperature of80.2 ° F is located 3.4 meters to the left ofthe log and the 

sun is located in the direction as displayed in Fig 3.6a. Fig. 3.6b shows the thermal 

image of the log with the irradiance from the brick wall. Fig. 3.6c shows the thermal 

image of the log with the irradiance from the wall blocked using a sheet of drywall 

positioned 0.6 meters from the log. Fig. 3.6d compares the gray-level values as we scan 

horizontally along the tape segment on the log of the irradiance from the brick wall and 

the irradiance from the dry wall (brick wall blocked). The scenario presented in Fig. 3.6 

allows us to see the simultaneous effects of solar energy, irradiance from the background, 

and directional variation of the object's surface emissivity. Perhaps we would expect a 

decrease in the radiance on the left side of the log when the irradiance from the brick wall 

was blocked using the sheet of drywall. On the contrary, the sheet of drywall introduced 
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a new and greater source of irradiation. On the other hand, as we scan from the center to 

the right of both images, the radiance remains approximately equal. 

In Chapter 2, we introduced the halo effect commonly viewed in thermal images 

where a strong thermal contrast exists between the target's surface and foreground within 

the camera's field of view. As we discussed, this halo effect is the result of the 

mechanical chopper wheel within the camera during cyclic process of capturing a thermal 

image of an object. Two scenarios will result in a halo appearing around an object in its 

thermal image. First, a "hot" target and "cold" foreground will result in a thermal image 

with a halo around the "hot" target that has a smaller gray-level value (darker shade) than 

the "cold" foreground as displayed in Fig. 3.7a. The second scenario is a "cold" target 

and "hot" foreground resulting in a thermal image with a halo around the "cold" target 

that has a larger gray-level value (lighter shade) than the "hot" foreground as displayed in 

Fig. 3.7b. Consequently, the halo around the target in these two scenarios will also 

influence how the camera's AC coupling will effect the assignment of gray-level values 

at the periphery in the target's thermal image. Thus, the peripheries of the pine tree log 

in Fig. 3.7a are assigned a large gray-level value (lighter shade) due to the neighboring 

halo with a "colder" (smaller gray-level value) apparent temperature than the actual 

foreground. On the other hand, the peripheries of the pine tree log in Fig. 3.7b are 

assigned a small gray-level value (darker shade) due to the neighboring halo with a 

"hotter" (larger gray-level value) apparent temperature than the actual foreground. These 

two scenarios of the halo effect will also contribute to the variations in radiance that 

already exist due to the directional variation of emissivity and irradiance from sources in 

the background. 
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The majority of our compact objects display variations in radiance from the center to 

the peripheries due to the directional variation of emissivity, irradiance from sources in 

the background, and/or halo effect. Since these larger variations in radiance at the 

peripheries caused by irradiance from sources in the background and the halo effect may 

interfere with our ability to generate relevant features, we will generate all our features 

for compact objects using only their center segment in the thermal image. 

3.5.6 Emissivity-based Features 

The amount of thermal radiation emitted by our non-heat generating objects will depend 

on their emissivity and thermal irradiance emitted from external sources in the 

environment. The primary external source of thermal energy for our outdoor, non-heat 

generating objects is the sun. Therefore, features based on emissivity will allow us to 

capture variations in thermal-physical properties that depend on the solar energy and are 

unique to an object class. 

The fundamental equation that allows us to measure the radianc~_ emitted from an 

object's surface is given by [70]: 

L 
0 

( 1: ) == r c 
0 
l (To ) + r ( 1 - c a ) l ( Tb ) + ( 1 - r) l ( Ta ) (3.3) 

where L
0 

is the radiance detected by the camera, L is the total radiance of a blackbody, 

T
0 

is the surface temperature of the object, Tb is the background temperature, Ta is the 

ambient temperature, r is the transmission coefficient of the atmosphere, and c a is the 
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emissivity of the object (the object is assumed to be a graybody emitter and opaque). 

Since we are maintaining a camera to target distance of 2.4 m, we can neglect any effects 

by the atmosphere and assign an atmospheric transmittance of approximately 100% [22] 

so that Eq. 3.3 becomes: 

If we assume an opaque object with a diffuse surface, the distribution function 

( 1- c a )l (Tb) is independent of the incidence reflection angles so that 

(1- c
0 

)l(Tb);::; (1- co) E, where E is the irradiance energy on the target from the 
7r 

surrounding background environment. As noted in [70], E can be evaluated by 
7r 

(3.4) 

measuring the radiance reflected by a diffuse surface, such as crinkled aluminum foil. 

Aluminum foil is a good reflector of thermal radiation due to its low emissivity value 

(approximately 0.04 for a wavelength of 10 f.1 mat 78.8 ° F) [23]. Letting our irradiance 

from the background be estimated by L b ( Tb ) = E , Eq. 3 .4 becomes: 
7r 

(3.5) 

The scenario for the radiance received by the thermal imaging camera from an object's 

surface is displayed in Fig. 3.8a. Fig. 3.8b shows a thermal image of the cedar tree 
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displayed in Fig. 3.8a captured at 0545 hrs (before sunrise) on 17 March 2006. The 

ambient temperature was approximately 45.7 ° F. The mobile robot was positioned as 

displayed in Fig. 3.8a. Not only is the thermal imaging camera able to detect radiance 

coming from the cedar tree but we can also see the influence of irradiance coming from 

the brick wall as indicated by the higher radiance on the right side of the cedar tree in the 

thermal image. 

We will now derive an equation to estimate the emissivity of an object, &
0

, using a 

reference emitter with a known emissivity of &r that is applied to the object so both are at 

the same surface temperature, subject to the same thermal irradiance from the 

background, and opaque. Let the radiance from the object's surface be given by Eq. 3.5 

and the radiance from the reference emitter's surface be given by: 

(3.6) 

We now solve Eqs. 3.5 and 3.6 in terms l(rJ, and algebraically combine the resulting 

equations to eliminate l(rJ. From Eq. 3.5 we have: 

l(TJ= Lo(TJ-(1-eJLb(Tb) (3.7) 
&0 
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From Eq. 3.6 we have: 

l(TJ = L,(TJ- (1- &JL6 (T6 ) (3.8) 
&, 

Combining these results we have: 

(3.9) 

Solving for &
0 

we obtain our desired equation for the emissivity: 

(3.10) 

Madding [64] uses this result to investigate how emissivity measurement accuracy affects 

temperature measurement accuracy. 

For our micro features, we will continue to recognize the surface radiances' 

dependencies on temperature; however, we will simplify our emissivity equation by 

letting La = Lo (To), Lr = Lr (To), and Lb = Lb (4). We will also change our notation for 

emissivity so that Eo = & o. Therefore, our emissivity feature is defined by: 

(3.11) 
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To compute the emissivity feature Eo, the values of L
0 

, L,, and L6 are first derived from 

the mean of the thermal radiance (gray-level values) of surface segments in the thermal 

images of the object, reference emitter, and aluminum foil, respectively. These values 

are then substituted into Eq. 3.11 to obtain our estimate of Eo. As noted earlier, 

emissivity is a function of the type of material, viewing angle, and the object's surface 

quality, shape, and temperature. Since compact objects (particularly cylindrical objects) 

display variations in radiance from the center to the peripheries due to the directional 

variation of emissivity, irradiance from sources in the background, and halo effect, the 

emissivity feature was computed using the center image segment on all compact objects. 

For thermal scenes of extended objects that lack thermal emissions from a foreground, 

such as dense hedges and brick walls, the surface segment used to compute La consists 

of all the constituents that make up the object. For instance, the segment selected on the 

hedges to compute La primarily consists of leaves but also includes branches. The 

segment selected on brick walls to compute La consists of the brick and the mortar 

between the bricks. For thermal scenes of extended objects that display a thermal 

radiance from the foreground, such as wood walls and picket fences, only a segment of 

the extended object's surface is selected in the image to compute L
0

• Crinkled aluminum 

foil with an emissivity of approximately 0.04 [23] was attached to the target afterwards to 

compute the irradiance energy on the object from the surrounding background 

environment, Lb . The aluminum foil must not be attached to the target prior to capturing 

the thermal image to compute L
0 

in order to avoid disturbing the natural radiance being 

emitted by the target. The reference emitter was black electrical tape attached to the 
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object with a known emissivity &r of approximately 0.97 [23]. The black electrical tape 

should be attached to the surface of the target well in advance to capturing thermal 

images of the target to ensure the tape obtains the same surface temperature as the target. 

The segmented region of the target used to compute L
0 

does not include the reference 

emitter. 

As an example of our emissivity feature, thermal images of a steel pole, birch tree log, 

concrete cylinder, hedges, and wood wall (see Fig. 3.9) were captured at various times on 

10 February 2007. The black electrical tape used as the reference emitter is shown 

attached to the targets in each thermal image. All thermal images were captured as 

described in Chapter 2 with a distance of 2.4 meters between the Raytheon Control!R 

2000B long-wave infrared thermal imaging video camera and the object. The thermal 

images were captured with the thermal camera facing the center of each object at normal 

incidence. Table 3.1 provides the ambient temperatures of the environment and surface 

temperatures of the objects at the times the thermal images were captured. The average 

ambient temperatures are noted in Table 3.1 for each time interval. The surface 

temperatures of the objects were recorded at the time the thermal image was captured. 

All objects were influenced by the same solar conditions during each time interval. 

Table 3.2 provides the generated feature values for the objects at the times the thermal 

images were captured. By analyzing Table 3.2, we can notice trends in the emissivity 

feature values that allow us to distinguish one object from another. Furthermore, a 

detailed analysis of both Tables 3.1 and 3.2 reveals how the emissivity feature lets us also 

consider the effects of other thermal properties. For instance, emissivity depends on 

surface temperature (as well as the type of material, viewing angle, and the object's 
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surface quality and shape) and surface temperature depends on the specific heat (as well 

as conductivity and other thermal properties) of the object. The surface temperature of 

low-specific-heat objects, such as the leaves on the hedges, tend to track the availability 

of solar energy [23 ]. When a cloud passes or the sun begins to set, the surface 

temperature of the hedges stays consistent with the lower ambient temperature. 

Moreover, a low level of solar energy available to a low specific heat object results in 

less thermal radiation emitted as indicated by the hedges' consistently low emissivity 

presented in Table 3.2. On the other hand, objects with a high specific heat, such as the 

birch tree log ( ~2.4 kJ ·kg -t. oc-t) [22], will tend to heat up more slowly with the 

increasing solar energy and cool more slowly as the amount of solar energy begins to 

decrease in the late afternoon (around 1600 hrs.). The emissivity ofthe birch tree log 

first increases with the availability of solar radiation in the morning as indicated by the 

positive rate of change in ambient temperature in the morning. As the solar energy 

decreases throughout the afternoon, the emissivity of the birch tree log slightly lowers in 

value as expected. Along with the possibility of some error in the temperature 

measurement, we see no significant change in the surface temperature of the birch tree 

log between 1330 and 1615 hrs. due to the effect of its specific heat. Even though the 

steel pole has a low specific heat ( ~ 0.4 7 kJ ·kg -t ·oc-t) [22], its emissivity consistently 

shows the highest value due to the light coating of black paint ( & ~ 0.96 at 75.2° Fin a 

controlled environment) [23] and oxidation on the surface. An interesting observation is 

that the black electrical tape used as the reference emitter attached to the steel pole (Fig. 

3.9a) emits a slightly higher radiance than the steel pole since the tape's emissivity is 

approximately 0.97. 
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We can also notice that our emissivity values do not necessarily vary between 0 and 1 

as is the case of experiments in a controlled inside laboratory environment. By observing 

Eq. 3.11, we can see that the emissivity values could be quite sensitive to variations in the 

thermal radiance of the object, reference emitter, and aluminum foil. For instance, as the 

radiance of the reference emitter and the aluminum foil approach the same value, the 

denominator in the equation for emissivity will become very small (either positive or 

negative). As a result, the value ofthe emissivity in Eq. 3.11 would take on very large 

values (either positive or negative). We will illustrate in Chapter 4 that these extreme 

value of emissivity are rare and will be treated as outliers. To avoid such extreme feature 

values, we use the following additional micro features derived from the emissivity given 

in Eq. 3.11: 

L 
Lor=--"-­

L, 

L 
Lob=-0 

Lb 

(3.12) 

(3.13) 

(3.14) 

(3 .15) 

(3.16) 
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Lr and Lb are only used in conjunction with features generated from the thermal radiance 

emitted from the target and not used to discriminate targets as stand-alone features. The 

features Lor and Lob were chosen to create a ratio value. Other types of features could be 

used as well; however, additional choices, such as La - Lr or La - Lb, will more likely 

have a strong correlation with our existing features and result in redundancy in the feature 

set. 

3.6 Macro Features 

Macro features provide a unique representation of a target based on the spatial variation 

in radiance (gray-level values) observed in the thermal image. Macro features seek to 

generate descriptors that not only consider radiant patterns found on the target's surface 

but also patterns observed in the entire thermal image of the target within the camera's 

field of view. Thus, macro features may also consider patterns formed by gaps in the 

target that allow the camera to receive radiation emitted from the foreground. For 

instance, macro features allow us to generate features that describe the periodic pattern of 

wood boards on the fence in Fig. 3.1 b. Since compact objects (particularly cylindrical 

objects) display variations in radiance from the center to the peripheries due to the 

directional variation of emissivity, irradiance from sources in the background, and halo 

effect, we will always compute the macro features using the center image segment on all 

compact objects. On the other hand, for our extended objects, we will compute their 

macro features using the entire scene within the camera's field of view. Our macro 

features are derived from first- and second-order texture features. 
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3.6.1 First-order Statistical Features 

First-order statistics provide measures based on the probability of observing a gray-level 

value at a random location in the thermal image. Our first-order statistics are generated 

using a histogram of pixel intensities from an object's thermal image. Our histograms 

and first-order statistics follow from those presented in [17]. The histogram of each 

thermal image has a total of 256 possible intensity levels in the interval [0, 255] defined 

as a discrete function: 

(3.17) 

where rk is the kth intensity level on the interval [0, 255] and nk is the number of pixels 

in the thermal image that have an intensity level of rk . The kth indices take on values 

from 1 to 256 associated with the position of the gray-level value in [0, 255]. The 

probability P(rk) of observing a gray-level value at a random location in the thermal 

image is given by the normalized form of the histogram: 

Ph)= h(rk) 
n (3.18) 

nk = 
n 

where n is the total number of pixels in the thermal image. With this convention, we will 

now define our first-order statistics. 
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3.6.1.1 Object Scene Radiance 

The object scene radiance is the average of the radiance coming from the target's surface 

and any foreground emitters within the field of view of the segmented target. The mean 

for the first-order statistics is defined as: 

256 

Mol= z>k Ph) (3.19) 
bl 

The following two variations of Mo 1 were used to consider the radiance emitted by the 

reference emitter and background, respectively: 

(3.20) 

(3.21) 

Since Lo = Mol for compact objects, Mo 1, Mar 1, and Mob 1 only apply to extended 

objects. 

The mean radiance can also be used to generate texture features based on the nth 

moment about the mean Mo 1: 

256 

J-1 n = L (rk - M o 1 t P(rk ) (3.22) 
k~I 

However, we will limit our moments to order n = 3 so that our features maintain their 

physical interpretations. The following two features are based on the second and third 

moments, respectively. 
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3.6.1.2 Contrastl 

Contrast is a measure of the amount of variation in the radiance of an object in a thermal 

image. The contrast feature is based on the standard deviation of the gray-level values 

about the mean Mo 1 given by: 

(3.23) 256 

Col = L (rk -MolY P(rk) 
k=l 

3.6.1.3 Smoothness 

Smoothness measures the variations in the intensity of the gray-level values of an 

object's thermal image as computed by: 

Sol= 1- ( 2 ) 
1+Col 

1 (3.24) 

Values of So 1 close to zero represent surfaces with a constant gray-level value and values 

close to unity imply surfaces with large deviations amongst its gray-level values. 

3.6.1.4 Third Moment 

The third moment is defined by: 

256 

Tol= L:(rk -Mo1)
3 P(rk) (3.25) 

k=l 
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The third moment measure the skewness of the distribution of gray-level values in the 

histogram. When the histogram is symmetric, the value of the third moment is zero. 

When the histogram is skewed to the right or left about the mean, the value of the third 

moment is accordingly positive or negative, respectively. 

3.6.1.5 Uniformity 

The uniformity feature is defined by: 

256 

Uol = I[Ph)] 2 

(3.26) 
k=l 

The value of uniformity increases as the histogram of gray-level values approaches a 

uniform distribution and is unity for a thermal image of an object with a constant surface 

radiance. 

3.6.1.6 Entropy! 

The entropy feature provides a measure ofrandomness (or complexity) in the intensity 

(gray-level) values of an object's thermal image. The use ofthe term entropy can easily 

cause some confusion since there are continuous debates within the scientific community 

concerning the correct definition of entropy. Therefore, before we present our use of 

entropy and derive an equation for the term, we will first provide some background 

information on entropy. 
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The term entropy was first introduced in classical thermodynamics. However, the 

definition has become rather subjective to fit the needs of other fields of study. Thus, one 

can find different definitions in thermodynamics, chemistry, information theory, and 

other fields. For instance, a search on the internet results in the following definitions: 

entropy is a measure of randomness; entropy is a measure of the probability of a 

particular result; entropy is a measure of the disorder of a system; entropy measures the 

heat divided by the absolute temperature of a body. Some of the names associated with 

the definition of entropy include Clausius, Gibbs, Boltzmann, Szilard, von Neumann, 

Shannon, and Jaynes. Shannon was interested in communication theory and von 

Neumann investigated quantum mechanical entropy. Shannon initiated the use of the 

quantity H = -K,L P; logP; (where K is a positive constant) in information theory as a 

measure of"information, choice, and uncertainty" [73]. However, regarding a name for 

H, Shannon stated [74]: 

My greatest concern was what to call it. I thought of calling it 'information,' but 

the word was overly used, so I decided to call it 'uncertainty.' When I discussed 

it with John von Neumann, he had a better idea. Von Neumann told me, 'You 

should call it entropy, for two reasons. In the first place your uncertainty function 

has been used in statistical mechanics under that name, so it already has a name. 

In the second place, and more important, no one knows what entropy really is, so 

in a debate you will always have the advantage.' 
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As a result, Shannon's entropy was introduced in information theory. In [73], Shannon 

states, "In the discrete case the entropy measures in an absolute way the randomness of 

the chance variable." 

The next step is to find a definition of entropy that is applicable to classifying objects 

in thermal imaging application. An appropriate definition for entropy is found in the 

digital image processing community in the area of texture analysis and pattern 

classification [17, 75, 36, 35, 76, 68, 77]. The entropy used in digital image processing is 

consistent with Shannon. In digital image processing, entropy is defined as a statistical 

measure of randomness in the intensity values of an object's visible image, and used to 

characterize the texture of objects in an image [77.]. For our application, we will adopt 

the same definition; however, we will measure the randomness in the intensity (gray­

level) values pertaining to an object's thermal image. From this definition, we can derive 

our equation for the entropy feature. 

Fallowing the mathematical framework of information theory, our measure of 

randomness in the gray level values is given by: 

(3.27) 

where the choice of the base is consistent with units, in bits, for measuring information. 

Consequently, if only one gray level value, say r1, was present in the thermal image, 

P(k1 ) = 1 and R(k1 ) = 0 so no randomness would occur. From Eq. 3.17, we have nk 
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cases with randomness measure R(rk), the average value of randomness in our object's 

thermal image follows from Eq. 3.18 and 3.27 as: 

(3.28) 

256 

=-2:P(rk) log 2 (P(rk )) 
k=i 

This last quantity, called the entropy, will provide our required measure of randomness in 

the gray-levelvalues of an object's thermal image. Therefore, our entropy feature value 

is computed by: 

256 

Enl =-L P(rk) log 2 (P(rk )) (3.29) 
k=i 

where En 1 increases in value as the randomness in the gray-level values increases in the 

object's thermal image. 

3.6.2 Second-order Statistical Features 

Second-order statistics methods also provide a way to generate features that describe the 

radiant patterns in the thermal image of an object. Thus, second-order statistics features 

are our second type of macro features. However, unlike first-order statistical methods 
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that depend only on individual gray-level values, second-order statistical methods involve 

the interaction or co-occurrence of neighboring gray-level values. Second-order statistics 

provide measures based on the probability of observing pairs of gray-level values with a 

defined spatial relationship in an object's thermal image. The spatial relationship 

consists of a specified direction and distance between a pair of gray-level values. The 

macro features are generated from the spatial relationships that are reported in a gray­

level co-occurrence matrix (GLCM), also known as a gray-level spatial dependence 

matrix. Our second-order statistical features follow from those presented in [77] and are 

based on the pioneering work ofHaralick, Shanmugam, and Dinstein [75]. Other notable 

discussion on second-order statistical features involving the GLCM are found in [68, 76]. 

The GLCM records how often a pixel of interest with a gray-level value of i occurs in 

a specific spatial relationship to a pixel with a gray-level value of} in a thermal image. A 

pixel of interest in a thermal image forms a spatial relationship with one of its 

neighboring pixels defined by a pixel distance D and direction (angle) denoted by a row 

vector with the pixel of interest as the origin as illustrated in Fig. 3.1 Oa. We choose four 

directions (0°, 45°, 90°, and 135°) to afford our macro features the ability to capture 

discriminating information along various directions on a target's surface. Our choice of 

angles assumes that the thermal radiant patterns are symmetric along each direction about 

the pixel of interest. The most favorable pixel distance D is the one that allows a spatial 

relationship that captures an object class's distinctive radiant patterns. We will discuss 

our most favorable pixel distances for both extended and compact objects after we 

present our second-order features below. 
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Suppose Fig. 3.10b illustrates a gray-level array of a thermal image with gray-level 

values ranging from 0 to 3. The four GLCMs for each direction and a distanceD= 1 are 

provided in Figs. 3.1 Oc-f. The shaded regions in each GLCM displays the gray-level 

values of the pixel of interest (i) along the first column and its neighboring pixel's gray­

level values (j) along the first row. As we can see, the number of gray-level values in the 

thermal image determines the size of the GLCM. Each element ( i, j) in the GLCM 

provides the number times that a pixel with gray-level value i occurred in the specified 

spatial relationship with the pixel with gray-level value} in the thermal image. We will 

denote this frequency by f(i, j). For example, ( 1, 0) in Fig. 3.1 Oc presents f(l,O) = 2 

as the number of times that the pixel of interest with gray-level value i = 1 occurred at an 

angle of zero degrees and distance of one pixel away from a pixel with gray-level value j 

= 0. Let R denote the sum of all the frequencies f(i, j) in the GLCM for a specified 

spatial relationship. For a GLCM defined by a particular spatial relationship, the 

probability of observing a pixel of interest with a gray-level value of i in a specific spatial 

relationship to a pixel with a gray-level value of} in a target's thermal image is given by: 

P(i,j) = f~j) (3.30) 

Eq. 3.30 is used to define the following second-order macro features. For each thermal 

image of an object, four GLCMs are created where each matrix is defined by a specified 

relationship (a distance and one of the four angular directions). For each second-order 

feature, feature values are generated for all four GLCMs. The resulting four feature 

values are averaged to ensure invariance under rotation as suggested in [75]. 
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3.6.2.1 Contrast2 

The contrast feature (also known as inertia) is a measure of the amount of radiant 

variations between a pixel and its specified neighbor over the entire thermal image. A 

thermal image with a large amount of radiant variations will have a higher value for the 

contrast feature compared to a thermal image with a small amount of radiant variations. 

In terms of the GLCM, contrast is a measure of the spread of P(i,J) values about the 

main diagonal of the matrix. Contrast becomes larger in value with larger values of 

P(i, j) spreading away from the main diagonal. The contrast feature value is zero for a 

thermal image of an object with a constant thermal radiance (gray-level value) across its 

surface. Contrast2 is defined as: 

Co2= I2J- J/
2 
P(i,J) (3.31) 

i j 

3.6.2.2 Correlation 

Correlation provides a measure of linear-dependencies between the gray-level value of 

the pixel of interest and its specified neighbor over the entire image. The directions in a 

thermal image consisting of a linear structure will have either a correlation value closer to 

1 (positively correlated) or -1 (negatively correlated). On the other hand, an uncorrelated 

image with a lack of linear structure and/or high amount of noise will result in a 

correlation value closer to zero. The correlation value for an image with a constant 

thermal radiance across the surface is undefined. The correlation feature is defined by: 
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(3.32) 

where Jlx and ax are the mean and standard deviation of the rows sums of the GLCM 

formed by P(i,J) and Jly and aY are the statistics ofthe column sums. 

3.6.2.3 Energy 

Energy (also known as angular second moment) measures the uniformity of the gray-

level values in a thermal image. In a uniform image there are very few intense gray-level 

transitions between the neighboring pixels. The values of energy become larger as the 

GLCM has fewer entries of large P (i, j). Such a case exists when the probabilities 

P(i,J) are clustered near the main diagonal of the GLCM. The energy is unity for a 

thermal image of an object with a constant surface radiance. On the other hand, the 

values of energy approach zero as all P(i,J) become more equal in value. The energy 

feature is defined by: 

Er2 = LL[P(i,J)]2 (3.33) 
j 

3.6.2.4 Homogeneity 

Homogeneity is similar to the energy feature. The values of homogeneity become larger 

as larger values of P(i,J) become clustered near the main diagonal of the GLCM. 
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Homogeneity approaches zero as the values of P(i,j) become more equal and spread 

away from the main diagonal, and is unity for a diagonal GLCM. Homogeneity is 

defined by: 

3.6.2.5 Entropy2 

Ho2 =II P(~,j). 
i 1 1 + /r- 1/ 

(3.34) 

Similar to the case in first-order statistics, entropy in second-order statistics is a measure 

of the complexity (or randomness) in the thermal image. A thermal image become more 

complex as all the values of P (i, j) in the GLCM approach equality, resulting in a larger 

entropy. Entropy2 is defined by: 

En2 =-IIP(i,j) log 2 (P(i,J)) (3.35) . 
i j 

3.6.2.6 Most Favorable Pixel Distances 

As we mentioned previously, a pixel of interest in a thermal image forms a spatial 

relationship with one of its neighboring pixels defined by a pixel distance D and angular 

direction denoted by a row vector with the pixel of interest as the origin as illustrated in 

Fig. 3.1 Oa. In this section, we will discuss our most favorable pixel distances for both 

extended and compact objects. The most favorable pixel distance D is the one that allows 

a spatial relationship that captures an object class's distinctive radiant patterns. We will 

analyze various distances applied to the thermal images of extended and compact objects 
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captured with approximately the same environmental conditions and location on 27 

March 2007 between 1230 and 1300 hrs. The thermal images of the objects were 

captured during a period where there was a low thermal contrast in the scenes. These 

conditions will allow us to choose D values for both extended and compact objects that 

are sensitive to radiant patterns in a thermal image where a low thermal contrast exists. 

We will proceed to choose our D values by considering the extended and compact objects 

in separate cases. The methodology for each case consists of first generating the second-

order statistical features from GLCMs with spatial relationships with a horizontal angular 

direction and varying pixel distances D from 1 to 100, {[O,D] I D = 1, ... , 100}. Next, we 

will compare the feature values and choose the D value that results in the greatest 

distinction the object classes. 

The extended objects used in our analysis to choose the most favorable pixel distance 

D consist of the brick wall, hedges, picket fence, and wood wall displayed in Fig. 3.11. 

As we can see in Fig. 3 .12, Energy and Entropy2 provide the best separation of the object 

classes. Based on these results, we can derive an equation that will assist us in choosing 

the pixel distance that maximizes the discrimination between the object classes. This 

equation is defined as the absolute s1:1m of the differences in object class feature values as 

a function of pixel distance given by: 

(Picket F(D )- Hedges(D ))+(Picket F(D )-Brick W(D )) j 
Feat Diff(D )= +(Picket F(D)- WoodW(D))+ (Hedges(D)- BrickW(D) 

+ (Hedges(D )-Wood W(D ))+ (BrickW(D )-Wood W(D )) 

(3.36) 
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By applying this equation to the Energy and Entropy2 features, we obtain the results 

displayed in Fig. 3.13. The pixel distances that provide the best object class separation 

for Energy is D = 8 and Entropy2 is D =56. Comparing these pixel distances to each 

result in Fig. 3 .12, we can see that a pixel distance D = 8 provides an acceptable 

separation between the object classes for energy. However, a pixel distance ofD = 8 

does not result in an acceptable object class separation for the other features. On the 

other hand, the pixel distance ofD =56 for Entropy2 results in an acceptable object class 

separation for all the second-order statistical features. Consequently, we will choose 

D = 56 as the most favorable pixel distance for each spatial relationship involving 

extended objects. 

The compact objects used in our analysis to choose the most favorable pixel distance 

D consist of the steel poles and trees displayed in Fig. 3 .14. As we can see in Fig. 3.15, 

Energy and Entropy2 provide the best separation of the object classes. As with the 

extended objects we define an equation that will assist us in choosing the pixel distance 

that maximizes the discrimination between the object classes. However, since we desire 

to distinguish steel poles from trees for our compact object classes, our equation is given 

below as the absolute difference of the mean feature values for the three steel poles and· 

three trees across all pixel distances: 

[ (BrownSteelP( D)+ GreenSt;elP(D) + OctagonSteelP(D))] 

FeatDif.f (D)= 
_ [ (BasswoodT(D) + Bi~hT(D) + CedarT(D )) J (3.37) 
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By applying this equation to the Energy and Entropy2 features, we obtain the results 

displayed in Fig. 3.16. Once again, we will choose the pixel distance that maximizes the 

discrimination between the object classes. The pixel distances that provide the best 

object class separation for Energy is D = 8 and Entropy2 is D = 16. Comparing these 

pixel distances to each result in Fig. 3.15, we can see that a pixel distanceD= 8 provides 

an acceptable separation between the steel pole and tree object classes for energy. 

However, a pixel distance ofD = 8 does not result in an acceptable object class 

separation for the other features. On the other hand, the pixel distance of D = 16 for 

Entropy2 results in an acceptable object class separation for all the second-order 

statistical features. Consequently, we will choose D= 16 as the most favorable pixel 

distance for each spatial relationship involving compact objects. 

3. 7 Thermal Feature Application 

We will now provide an application to analyze some of the characteristics of our thermal 

features. However, we will not make any judgments regarding the worthiness of our 

thermal features. A proper selection of a set of most favorable features will require an 

exhaustive search using a high performance computing system to analyze the 

classification performance of every possible combination of features across multiple 

dimensions. During our exhaustive search, we eliminate redundant features and only 

retain those sets of features that enhance our ability to distinguish object classes. We 

delay this exhaustive search until the next chapter. Fig. 3.17 displays the thermal images 

of extended objects (brick wall, hedges, and wood wall) and compact objects (concrete 

cylinder, steel pole, and pine tree log) that were captured between 0930 and 1400 on 10 
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February 2007 under approximately the same solar conditions and location. All thermal 

images were captured as described in Chapter 2 at normal incidence with a distance of 

2.4 meters between the Raytheon Control!R 2000B long-wave infrared thermal imaging 

video camera and the object. The thermal features were generated on segments of these 

extended and compact objects using the equations derived in Sections 3.4-3.6 and 

summarized in Table 3.3. The resulting feature values are presented in Table 3.4. 

Since we intend to distinguish the object classes within either the category of extended 

or compact objects, we will analyze the two categories separately as disjoint sets of 

object classes. Beginning with the meteorological features in Table 3.4, we can see that 

the object classes within each category are experiencing approximately the same ambient 

temperatures and temperature rates of change. In the micro features, the object classes 

within each category are also experiencing about the same background irradiance. 

However, the wood wall and pine tree log are both emitting a higher surface radiance 

compared to the other object classes within their respective category. This higher 

radiance is partially due to the higher specific heat of the wood. Additionally, differences 

in the radiance are attributed to other factors such as the type of material (including 

chemicals used on the pressure treated wood wall) and the object's surface quality 

(smooth vs. rough). Of course these factors also influence the feature values for 

emissivity. As expected, the wood wall has a higher emissivity compared to the brick 

wall and hedges. Within the compact objects category, the pine tree log has a median 

value on the emissivity scale; however, the steel pole has a higher emissivity primarily 

due to its coating of black paint on the surface. 
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By analyzing the macro features, we see that the correlation feature in the second­

order statistics provides a measure of the linearity in the directions on an object's thermal 

image. The wood wall presents the highest correlation value amongst the extended 

objects as a result of its vertical boards and wood grains on the surface. Though the bark 

on the pine tree log tends to extend in a vertical direction, the zigzag design results in a 

lack of linear structure and the lowest correlation value amongst the compact objects. 

Similar to the uniformity in the first-order statistical feature, energy in the second-order 

case measures the intensity of gray-level (radiant) transitions in the thermal image of an 

object. Values for both uniformity and energy increase as the gray-level becomes more 

uniformly distributed and are unity for a thermal image of an object with a constant 

surface radiance. For the extended objects, the brick wall shows the highest uniformity 

and energy values since it displays less intense radiant transitions compared to the hedges 

and wood wall. The steel pole presents the highest uniformity and energy feature values 

for the compact objects due to its relatively constant surface radiance. Since 

homogeneity is similar to energy, its results are consistent with those presented by the 

energy feature. Contrary to uniformity, energy, and homogeneity tending to increase in 

value for objects with a uniform or constant surface radiance, contrast and entropy .feature 

values increase for objects with more variations (randomness or complexity) in radiant 

emissions. The wood wall presents a higher contrast feature value for both the first- and 

second-order statistical cases compared to the brick wall and hedges. The larger amount 

of variation in the radiance for the wood wall is contributed by both the radiant patterns 

of wood grains on the surface of the boards and the surface radiances in the foreground 

emitted through the gaps of the wood boards. For the compact objects, the pine tree log 
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displays the highest contrast in both the first- and second-order statistic cases as a result 

of the large variations in the radiance from the bark pattern. Entropy is a measure of 

complexity (or randomness) in an object's thermal image. Since the entropy feature 

tends to be sensitive to the variations in the radiance of an objects thermal image, its 

results are consistent with the contrast feature. For the extended objects, the hedges have 

a high entropy value for both the first- and second-order statistics as expected. However, 

the wood wall presents the highest entropy values due to the feature's sensitivity to the 

combined effects of varying radiation emitted from the wood grains on the surface of the 

boards and the surface radiances in the foreground emitted through the gaps of the wood 

boards. The rough surface and the zigzag pattern ofthe bark on the pine tree log results 

in a more complex surface compared to the concrete cylinder and steel pole. Therefore, 

the pine tree log has the highest entropy amongst the compact objects. The concrete 

cylinder has the second highest entropy due to its mixture of stones and cement creating a 

random radiant pattern compared to the steel pole's smooth radiant surface. 

As we can see, the micro and macro features all generate unique representations of a 

non-heat generating object from the given object's thermal image. The meteorological 

features serve to estimate the current and historical effects ofthe diurnal cycle of solar 

energy on the amount of radiance emitted from an object's surface. Consequently, not 

only will the micro and macro features provide inter-class variation to distinguish one 

object class from another, these features will also display intra-class variations due to the 

variations of the meteorological features. Our performance and feature selection process 

presented in Chapter 4 will prove that the most favorable feature sets are those that 

contain contributions from all the feature types - meteorological, micro, and macro. 
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3.8 Curvature Algorithm 

In Section 3.5 we discussed the factors that cause variations in radiance on cylindrical 

objects. These factors consisting of directional variation of emissivity, irradiance from 

sources in the background, and/or halo effect can also assist us in deriving a curvature 

algorithm used to distinguish compact objects from extended objects. Our curvature 

algorithm is presented in Table 3.5. In Step 1, the algorithm computes the average of 

radiances at the center, vertical, horizontal, and diagonal segments of the object's thermal 

image. In Step 2, the absolute differences between the average radiance at the center and 

the average radiance at the neighboring vertical, horizontal, and diagonal segments are 

computed. The absolute difference is chosen since the periphery of an object could have 

a smaller gray-level value than the center or vice versa, depending on the effects of the 

directional variation of emissivity, irradiance from sources in the background, and/or halo 

effect. In Step 3, these absolute differences are compared to a given threshold value Cr 

and conclude whether an object is compact-cylindrical, compact-spherical, compact 

(without regards to being cylindrical or spherical in shape) or extended. The rule for a 

compact-cylindrical object in Step 3 takes into consideration the possibility of a 

cylindrical object tilted at different orientations. We can also identify compact objects 

that display minimal directional variation of emissivity but still present variations in 

radiance from the center to the peripheries due to background irradiance and/or the halo 

effect. The square steel pole displayed in Fig. 3 .17b is an example of this type of 

compact object. Since these objects are not cylindrical or spherical, we will label them as 

compact (without regards to being cylindrical or spherical in shape). 
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As a demonstration of the curvature algorithm, consider the tree, square metal pole, 

and brick wall in Fig. 3.17. The segmented regions in thermal images are used to 

compute the average radiances R used in the curvature algorithm. The results of the 

computations from the curvature algorithm are presented in Table 3.6. With a threshold 

value of C r = 1.1 , the tree would be assigned as a compact-cylindrical object, square 

metal pole as a compact object (without regards to being cylindrical or spherical in 

shape), and the brick wall would be assigned as an extended object. As we will also 

mention in Chapter 6, with further investigation the curvature algorithm has potential to 

serve as an exceptional technique to distinguish compact objects from extended objects. 

3.9 Summary 

In this chapter we discussed the thermal features used in our research to classify non-heat 

generating objects. Examples were provided to illustrate the value of our features in 

distinguishing non-heat generating objects. A summary of our equations for these 

thermal features is displayed in Table 3.3. By generating feature values from the thermal 

images of non-heat generating objects, we have seen how interpreting the effects of the 

outdoor environment and thermal properties of objects on their feature values is a subtle 

process. We also presented a curvature algorithm to assist us in distinguishing compact 

objects from extended objects. In the next chapter we will select the most favorable sets 

from these features based on their performance with various classifiers. We will also 

analyze the behavior of our most favorable set of features with variations in the viewing 

angle with the target, thermal image window size, and rotational orientation of the target. 
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(c) 

Fig. 3.1 Thermal Image Representation: (a) sources of radiance emitted from fence 
segment and received by the camera, (b) thermal image of fence segment, (c) data array 
of gray-level intensities from segment of thermal image. 
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(b) 

Fig. 3.2 Aluminum plate low emissivity. (a) visible image of aluminum plate. 
(b) thermal image of aluminum plate. 
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(a) 

(b) 

(c) 

Fig. 3.3 Glass plate with high emissivity and opaque to IRradiation. (a) visible image 
of glass plate in front of pine tree log. (b) thermal image of glass plate in front of log. 
(c) thermal image of log without glass plate in front. 
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Fig. 3.4 Variation of emissivity with viewing angle for a number of 
(a) nonmetallic and (b) metallic materials. [72] 
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Fig. 3.5 Variation of emissivity with object shape and surface temperature. 
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Fig. 3.6 Directional variation of emissivity for a pine tree log outdoors. 
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(a) experimental setup, (b) pine tree log with brick wall irradiance, (c) pine tree log with 
dry wall irradiance. (d) gray-level comparisons of brick wall vs. dry wall. 



(a) 

(b) 

Fig. 3.7 Halo effect resulting from a (a) "hot" target and "cold" foreground and 
(b) "cold" target and "hot" foreground. 
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(a) 

(b) 

Fig. 3.8 (a) Thermal radiance received by the thermal imaging camera. 
(b) Thermal image of cedar tree captured at 0545 hrs on 17 March 2006. 
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(a) (b) (c) 

(d) (e) 

Fig. 3.9 Visible and thermal images of objects captured on 10 February 2007 to 
evaluate the emissivity feature. (a) steel pole, (b) birch tree log, (c) concrete cylinder, 
(d) hedges, and (e) wood wall. 
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Table 3.1 Thermal image capture times and temperatures for objects in Fig. 3.9 
captured on 10 February 2007. 

....... 
N 
VI 
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1000 45.8 0.04 Steel Pole 0.8876 
0.3106 
0.1922 
-0.0912 

Wood Wall 0.4623 

1330 46.5 0.02 Steel Pole 0.8792 
0.4498 
0.4187 
-0.0477 

Wood Wall 0.0320 

1615 42.2 -0.03 Steel Pole 0.7803 
0.3581 
0.4564 
-0.2772 

Wood Wall -0.0958 

Table 3.2 Feature values generated from the thermal image of objects in Fig. 3.9 
captured on 10 February 2007. 
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Fig. 3.10 Gray-level Co-occurrence Matrix. (a) spatial relationship of neighboring 
pixels, (b) gray-level array of a thermal image, (c)-(t) GLCMs with distanceD= 1 and 
directions 0, 45, 90, and 135 degrees, respectively. 
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(a) (b) 

(c) (d) 

Fig. 3.11 Visible and thermal images of extended objects used for pixel distance analysis 
and selection. (a) brick wall, (b) hedges, (c) picket fence, and (d) wood wall. 
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Fig. 3.12 Extended objects pixel distance analysis. Pixel Distance vs. 
(a) Contrast2, (b) Correlation, (c) Energy, (d) Homogeneity, (e) Entropy2 
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Fig. 3.13 Extended objects absolute sum of the differences for (a) Energy and 
(b) Entropy2 features as a function of pixel distance (D). 



(a) (b) (c) 

(d) (e) (f) 

Fig. 3.14 Visible and thermal images of compact objects used for pixel distance analysis and selection. (a) brown steel pole, 
(b) green steel pole, (c) octagon steel pole, (d) basswood tree (e) birch tree, (f) cedar tree. 
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Fig. 3.15 Compact objects pixel distance analysis. Pixel Distance vs. 
(a) Contrast2, (b) Correlation, (c) Energy, (d) Homogeneity, (e) Entropy2 
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(a) (b) (c) 

(d) (e) (f) 

Fig. 3.17 Visible and thermal images of objects used to evaluate thermal features. Extended objects: (a) brick wall, (b) hedges, 
(c) wood wall. Compact objects: (d) concrete cylinder, (e) steel pole, (f) pine tree log. 
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Lob=__..!!.._ 

L• 

Mo 1/Lb (Mob I) 

Contrast! (Col) 

Smoothness (So I) 

Third Moment (Tol) 

Contrast2 (Co2) 

256 

Mol = ~:>k P(rk) 
hi 

256 

Tol = L (rk -Mol)' P(rk) 
k=l 

256 

Enl =-L P(rk) log 2 (P(rk )) 
k=l 

Co2= LLii-JI' P(i,j) 
i j 

Er2 = LL[P(i,j)]' 
i j 

En2=-L:L:P(i,j) log 2 (P(i,j)) 
I j 

Table 3.3 Summary of meteorological, micro, and macro features. 
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Table 3.4 Feature values generated from the thermal image of objects in Fig. 3.17. 



Curvature Algorithm 

Step 1: Compute the average radiance of an object's thermal image 

at center ( Re ), verticals ( R,1 , R,1 ), horizontals ( Rh1 , Rhz ), and 

diagonals ( Rd1 , Rdz , Rd3 , Rd4) as displayed in the diagram to the 

right. 

Step 2: Compute the absolute radiance differences: 

cvl =IRe -Rvll,cvz =IRe -Rvzl•chl =IRe -Rhll•chz =IRe -Rhzl· 

cdl =IRe -Rd\l,cdz =IRe -R"dzl,cd3 =IRe -Rd31,cd4 =IRe -R"d41 

Step 3: For a given threshold value Cr, the following classifications are concluded: 

If 

[(Cv1 ACv2) <Cr A(Ch1 AChz)~Cr]v[(Ch1 ACh2)<Cr A(Cv1 /\Cv2 )~Cr] 

v[(Cd3/\Cd4)<Cr A(Cdl/\Cd2n~cT]v[(Cdi/\Cd2)<Cr I\(Cd31\Cd4n~cT]' 

then the object is classified as compact-cylindrical. 

Else If 

then the object is classified as compact-spherical. 

Else If at least one pair of image segments symmetric about the center segment have absolute 
radiance difference values (from Step 2) of at least that of the given threshold value C r, then the 
object is classified as compact (without regard to being cylindrical or spherical). 

Else the object is classified as extended. 

Table 3.5 Curvature Algorithm used to distinguish compact and extended objects. 
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(a) 

(b) 

(c) 

Fig. 3.18 Visible and thermal images of objects used to demonstrate curvature 
algorithm. Segmented regions in thermal images are used to compute the average 
radiances used in the curvature algorithm. (a) tree, (b) square metal pole, (c) brick wall. 



Object cvl cv2 chi ch2 edt cd2 cd3 

Tree 1.0061 0.4933 3.6701 8.4768 3.8899 10.3757 3.7682 
Square Metal Pole 0.3926 0.0234 4.9808 0.8537 5.963 1.187 0.2398 
Brick Wall 0.0814 1.5147 2.2482 0.0028 0.3565 1.2m_ - Q.974~ 

-

Table 3.6 Curvature Algorithm demonstration results using objects in Fig. 3.17. 

cd4 

3.818 
6.9402 

L_ 0.491 

1--' 
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Chapter 4 Thermal Feature Selection 

4.1 Introduction 

In the previous chapter, we generated 21 thermal features from three categories -

meteorological, micro, and macro. This chapter will present the third step in our pattern 

classification model design process - thermal feature selection. In the current and 

subsequent chapters, we will assume that the robotic thermal imagip.g system has already 

used algorithms to detect the presence of an unknown non-heat generating object, 

identified the object as being either extended or compact, and segmented the object to 

generate our thermal features. In the context of this research, we have defined non-heat 

generating objects as objects that are not a source for their own emission of thermal 

energy, and so exclude people, animals, vehicles, etc. The extended objects consist of 

objects that extend beyond the thermal camera's field oJview, such as brick walls, 

hedges, picket fences, and wood walls. The compact objects consist of objects that are 

within the thermal camera's field of view, such as steel poles and trees. Our analysis in 

the classification model design process will consider the extended and compact 

categories separately as disjoint sets of object classes. The current goal is to select sets of 

features from the three feature categories (meteorological, micro, and macro) that provide 

the most favorable information to allow us to classify the unknown non-heat generating 

object with minimal error. Each of these sets of features is called a feature vector (or 

pattern). Our methodologies will continue the standard of providing sets of features that 

have a physical interpretation. We will begin our feature selection process with a 
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preliminary feature analysis to explore for any outliers in the data and eliminate 

redundant features while avoiding any "data dredging" and retaining only those sets of 

features that enhance our ability to distinguish object classes. Since the performance of a 

classifier is a function of the feature vector, the subsequent evaluation of classifiers and 

selection of feature sets are done simultaneously. Our selection process will involve an 

exhaustive search using a high performance computing system to analyze the 

classification performance of over 290,000 feature combinations spanning up to 18 

dimensions. Common in the assessment of all feature vector candidates is their ability to 

minimize the error in classifying non-heat generating objects. We will see that there is no 

single "optimal" feature vector but we will have a set of "most favorable" feature vectors 

associated with various classifiers. Moreover, our process will prove that the most 

favorable feature vectors are those that contain contributions from all the feature types-

meteorological, micro, and macro. 

4.2 "No Free Lunch" Classifiers 

Selecting the most favorable sets of feature vectors is not a trivial process. Each feature 

vector is selected based on their performance with a given classifier. Therefore, the 

feature vector and classifier combination that results in minimum classification errors 

becomes the most favorable pattern classification model. However, as we discussed in 

Chapter 3, there is no universal feature vector according to the Ugly Duckling Theorem. 

Similarly, according to the No Free Lunch Theorem [34], there is no universal classifier 

or learning algorithm. The classifier is chosen based on how well it performs for a 

specific pattern classification application. Since the performance of a classifier is a 
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function of a feature vector, there is obviously no universal pattern classification model. 

Our application makes choosing a pattern classification model even more complex due to 

the variations in the thermal feature values caused by the diurnal cycle of solar energy. 

We will see in the subsequent chapters that each of our object classes will have their own 

set (or committee) of most favorable pattern classification models. Thus, each committee 

results in the most favorable performance on unknown patterns from their respective 

object class, but may not perform well on patterns from other object classes. The 

combination of these committees will result in a model that exploits the complementary 

information found in each classification model and improves overall performance. 

There are many choices for the type of classifier or learning algorithm to use in pattern 

classification model. Reviews of pattern recognition methods and theory are found in 

[78, 79, 34, 80, 35, 81, 82, 83, 84, 85, 86, 87, 88, 89]. The most popular approaches for 

pattern recognition are statistical classification, template matching, and neural networks. 

The method of choice is usually based objectively on which approach results in minimum 

classification errors and/or subjectively on which approach provides the operator with the 
,, 

desired data format in the output. Our desired approach is the one that results in 

minimum classification errors while retaining the original physical interpretation of the 

information in the signal data throughout the entire classification process. We choose not 

to use neural networks since this approach tends to conceal the original physical 

interpretation and statistics of the data [78]. In template matching, an unknown pattern is 

compared with a library of templates (or prototypes). A similarity (or correlation) 

measure is used to decide which of these templates the unknown pattern matches best. 

One possibility for creating a template is by computing a mean reference pattern from an 
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object class's training set. A major disadvantage of template matching is that it tends to 

fail with large intra-class variations among the patterns [78]. Consequently, template 

matching is not an appropriate method for our application since our thermal features 

experience intra-class variations due to the diurnal cycle of solar energy. In statistical 

classification, each object class is represented by a distribution of feature vectors that are 

chosen to maximize the distinction between each object class. The goal is to assign an 

unknown pattern to one of the object classes by considering the combination ofthese 

distributions of feature vectors and any prior knowledge regarding each object class. 

This approach affords the ability to classify unknown patterns from distributions that 

display intra-class variations. In our case, these variations of the feature vectors within 

each object class are due to the diurnal cycle of solar energy. Moreover, the statistical 

classification approach retains the original physical interpretation of the information in 

the signal data throughout the entire classification process. Consequently, statistical 

classification seems to be the most favorable method for our application. 

Statistical classification is further divided into two categories - supervised 

classification and unsupervised classification. In unsupervised classification, class 

labeling ofthe data is not available and techniques such as clustering are used to identify 

features that assist in distinguishing groups. Once the structure of the data is understood, 

an unknown pattern can be assigned to one of the groups. As introduced in Chapter 2, 

our application consists of labeled object classes- brick walls, hedges, wood picket 

fences, wood walls, steel poles, and trees. Consequently, our application is categorized 

as supervised classification where learning involves labeled classes of data. In our case, 

an unknown pattern is assigned to one of our predefined object classes. For a given 
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pattern classification application the density function representing the distribution of the 

data in each object class is known or unknown. Cases where the density function is 

known are called parametric techniques. For example, a parametric technique could use 

a Gaussian density estimation for an object class with a known normal distribution. Due 

to the variations in the thermal feature values caused by the diurnal cycle of solar energy, 

we will not assume a formal density function for the distribution of the data in each 

object class. Therefore, we will make use of nonparametric techniques for our pattern 

classification application. The two popular approaches for nonparametric techniques are 

the decision boundary approach and probabilistic approach. The decision boundary 

approach fot nonparametric cases involves the design of a discriminant function that 

defines the decision boundaries used to distinguish one object class from another. 

However, these discriminant functions tend to disguise probabilistic information in the 

data and the original physical interpretation of the information in the signal data though 

transformations with weight vectors. On the other hand, the probabilistic approach 

assigns an unknown pattern to one of the object classes based on a decision rule derived 

from posterior probabilities that consider the combination of density function estimations 

for the distributions of the data and any prior knowledge regarding each object class. The 

probabilistic approach is our choice for a nonparametric technique. In summary, our 

approach is an application of statistical pattern classification where learning involves 

labeled classes of data (supervised classification), assumes no formal structure regarding 

the density of the data in the classes (nonparametric density estimation), and makes direct 

use of posterior probabilities when making decisions regarding class assignments 

(probabilistic approach). 
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The remainder of this chapter will proceed as follows. In Section 4.3, we will present 

a preliminary feature analysis to assess the quality of our training data and eliminate any 

redundant features. Section 4.4 will present the nonparametric classifiers that we will use 

during the feature selection process. In Section 4.5, we will discuss and implement 

performance criteria and feature selection methods to select our most favorable features 

for extended and compact objects. In Section 4.6, we will perform a sensitivity analysis 

to explore the effects of variations in the camera's viewing angle, window size of the 

thermal scene, and rotational orientation of the target on the feature values and 

classification performance of a classifier involving selected feature vectors from our most 

favorable sets. We will provide a summary of the chapter in Section 4.7. The methods 

presented in this chapter were implemented with assistance by a Matlab toolbox for 

pattern recognition known as PRTools4 [90]. 

4.3 Preliminary Feature Analysis 

In this section, we will perform a preliminary feature analysis (exploratory data analysis 

or initial data analysis) ofthe thermal features (see Chapter 3) generated from our 

training data (see Section 2.3). Since the training data has a direct effect on the learning 

process of the pattern classification model, assessing the quality of the data is a crucial 

step. Our preliminary feature analysis consists of three steps. First, we will analyze the 

data for any outliers. Second, we will standardize the data values for each thermal 

feature. Each set of thermal feature values in the training data were standardized over all 

object classes within each ofthe extended and compact object categories. We used the 
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following standardization equation presented in a study of standardization methods by 

Milligan and Cooper [91]: 

25 
= (x- Min(x)) 

(Max(X)- Min( X)) 
(4.1) 

where X is the original thermal feature value being standardized. The ZS standardization 

method is bounded by 0.0 and 1.0 with at least one feature value at each of the end 

points. We adopted the ZS standardization method since it do~s not require an assumed 

formal density function for the distribution of the data. Furthermore, Milligan and 

Cooper's study showed that methods such as Z5 involving the range of the data values as 

the divisor offer the best recovery of the underlying data structure. Third, we will use 

scatter plots for an initial feature redundancy reduction. The goal in feature redundancy 

reduction is to retain features where the relationship between pairs of features improves 

class separation and eliminate features where strong linear relationships result in 

redundancy. Since preliminary feature analysis is a very subjective process, we will 

avoid any data dredging [92] that could result in an over-fitted pattern classification 

model and/or reducing the quality of our representative data set. 

We did not identify any outliers amongst the 424 extended objects in the training data 

set presented in Table 2.1. After standardizing the feature values using Eq. 4.1, we used 

scatter plots to study the relationship between each pair of thermal features found in 

Table 3.3. Since Co 1 has a strong relation with So 1 as shown in Fig. 4.1, Co 1 is 

eliminated from the choice of thermal features. Similarly, Uo1 is removed due to its 

strong relation with En1 as displayed in Fig. 4.2. Additionally, To1 was eliminated since 
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the majority of its vales are between 0.61 and 0.63 as presented in Fig. 4.3. This small 

interval containing the majority of the To 1 feature values results in a lack of separation 

between the object classes. The scatter matrix for the remaining 18 extended object 

thermal features is presented in Fig. 4.4. We can still observe other pairs of thermal 

features with strong relationships; however, we will retain these features for further 

analysis when we assess the performance of the feature combinations with various 

classifiers. For example, as we can see in Fig. 4.4, both Marl and Mobl display a strong 

relation with Lr and Lb, respectively, due to the dependencies found it their thermal 

feature equations (see Table 3.3). As expected, we can also see strong relationship 

between Enl and En2. As discussed in our application of the thermal features in Section 

3. 7, the characteristics ofHo2 are similar to Er2. As a result, Ho2 displays a strong 

relationship with Er2 in the scatter matrix. We also noted that contrary to Er2 and Ho2 

increasing in value for objects with a uniform or constant surface radiance, Co2, Enl, and 

En2 increase in value for objects with more variations (or complexity) in radiant 

emissions. Consequently, these characteristics are observed in the strong relationship of 

data trends with negative slopes. 

For the compact objects, two thermal feature values for emissivity were identified as 

outliers. As we discussed in Chapter 3, the emissivity values computed by Eq. 3.11 could 

be quite sensitive to variations in the thermal radiance of the object, reference emitter, 

and aluminum foil. For instance, as the radiance of the reference emitter and the 

aluminum foil approach the same value, the denominator in the equation for emissivity 

will become very small (either positive or negative). As a result, the value of the 

emissivity in Eq. 3.11 would take on very large values (either positive or negative). This 
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is the situation for our two outliers. One of the thermal images of a steel pole had Lo = 

95.2844, Lr = 95.0581, and Lb = 95.0479. The computed emissivity of Eo= 22.4907 

was identified as an outlier. The other outlier involved the thermal image of a tree with 

Lo = 94.6489, Lr = 94.0923, and Lb = 94.1144. In this case, the computed emissivity 

was Eo= -23.46. The thermal image ofthe steel pole was captured at 1049 hrs. on 21 

March 2007 with an ambient temperature of 45.6 °F and cloud coverage at a high ceiling 

altitude. The thermal image of the tree was captured at 1738 hrs. on 25 March 2007 with 

an ambient temperature of 51.4 oF and no cloud coverage. Thus, we can conclude the 

environmental conditions and viewing angle of the thermal camera were just right for the 

target and surrounding surfaces to have approximately the same level of thermal radiant 

emissions. This phenomenon, known as thermal crossover [23], resulted in the minimal 

thermal contrast between the surfaces of objects and the surrounding that caused the 

extreme emissivity values. Consequently, the thermal images of the steel pole and tree 

that created these emissivity outliers were removed from the training data set. Table 2.1 

displays the remaining 636 compact objects used in the training data set. In Chapter 6, 

we will discuss how these periods of thermal crossover could result in a limitation to our 

ability to classify non-heat generating objects in an outdoor environment using a thermal 

infrared imaging sensor. We will also present a method that integrates a thermal contrast 

threshold rule into the detection phase of the classification process that requires a 

minimum amount of contrast in the scene to use the thermal infrared imaging sensor. If 

the rule is not satisfied, the autonomous robot must reject the use of the thermal imaging 

sensor and rely on other sensors such as ultrasound to assist in classifying the target. 
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After standardizing the feature values ofthe compact objects using Eq. 4.1, we used 

scatter plots to study the relationship between each pair of thermal features found in 

Table 3.3. As noted in Chapter 3, the thermal featuresMol,Morl, andMobl will not 

apply to the compact objects since Lo =Mol. Since Col has a strong relation with Sol 

as shown in Fig. 4.5, So 1 is eliminated from the choice of thermal features. The feature 

Sol is eliminated since Col consists of more distinct feature values than Sol as displayed 

in Fig. 4.5. The thermal feature Uol is removed due to its strong relation with Enl as 

displayed in Fig. 4.6. Additionally, To 1 was eliminated since the majority of its values 

are between 0.21 and 0.23 as presented in Fig. 4.7. As with the extended object case, this 

small interval containing the majority of the To 1 feature values results in a lack of 

separation between the object classes. The scatter matrix for the remaining 15 compact 

object thermal features is presented in Fig. 4.8. The remaining pairs of thermal features 

with strong relationships in the scatter matrix will be retained for further analysis when 

we assess the performance of the feature combinations with various classifiers. As 

expected, Col and Enl display similar characteristics by their strong relationship with a 

positive sloping trend in data. Furthermore, Er2 and En2 present opposing attributes by 

displaying a negative sloping trend in their data. Interestingly, we can see strong 

relationships within each object class involving the pairs of features (Enl, En2), (Col, 

En2), (Co2, Enl ), (Co2, En2), and (Er2, Ho2) that result in an increasing separation 

between the two object classes' data from a common origin. 

A reoccurring observation in the scatter plots for both the extended and compact 

objects is that the data for each object class tends to diverge from the other object classes 

beginning at a common origin. We can see a separation in the object classes that is 
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dependent on the variation in thermal features due to the diurnal cycle of solar energy. 

Consequently, the origins afford thermal conditions in the environment that are just right 

for the feature values to not display much distinction between object classes. In typical 

classification applications involving controlled environment, the feature values for each 

object class tend to form compact hyperspherical or hyperellipsoidal clusters with no 

common origin amongst the object classes. These applications normally use traditional 

metrics to choose a set of features for the classification model such as the inter/intra class 

distance where the most favorable set of features is the one that results in a large distance 

between object class clusters (interclass) and small distance between feature vectors 

within each object class (intraclass). Since our application involves a dynamic outdoor 

environment, we are dealing with a more complex situation that requires non-traditional 

methods. 

Due to the complexity of classification applications involving outdoor images, we 

have only found three relevant attempts in the literature to classify features generated 

from the images of outdoor objects that vary with the availability of solar radiation. 

Buluswar and Draper present a color-based recognition application under varying 

illumination in an outdoor environment using features based on RGB (Red, Green, Blue) 

space to classify the color of surfaces for autonomous vehicles [93] and machine vision 

[94]. A represent(ltive training data set consisting of color features generated from 

images of natural objects in an outdoor environment covering a wide range of 

illumination conditions is used in a maximum likelihood classifier in [20]. The 

classification using the color stereo camera is complemented by a single axis ladar sensor 

for autonomous navigation in cross-country environments. 
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As we will see later, the diverging nature of the structure in our object classes' clusters 

will continue in higher dimensions. Since our object classes' clusters resemble a conical 

structure, they will be called hyperconoidal clusters. These hyperconoidal clusters are the 

cornerstones of our research that inspired our novel method for classifying non-heat 

generating objects in an outdoor environment that we will present in Chapter 5. 

4.4 Classifiers 

In this section we will discuss our nonparametric classifiers that will have a probabilistic 

approach when making decisions regarding class assignments. The three classifiers used 

in our feature selection process are Bayesian, K-Nearest-Neighbor (KNN), and Parzen. 

4.4.1 Bayesian Classifier 

In this section we will derive our Bayesian classifier that uses a KNN density estimation. 

Suppose we want to find the probability of an arbitrary object class OJ, j = 1, ... ,J, being 

present given that we generated a feature vector D n from the signal emitted by the object 

and received by our sensor n. In mathematical terms, we seek to find the conditional 

probability P(01 I D n). Intuitively, we would think that this condition somehow depends 

on the joint probability P(D n , OJ) that we obtained the feature vector D n from the 

signal and it belongs to the object class OJ. Our joint probability is defined using the 

product rule P(D n 'oJ = P(D n I oJP(oJ) where the conditional probability P(D n I oJ 
provides a measure of the chance that we would have obtained the values in the feature 
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vector D n if the object class OJ was given to be present and P(Oi) provides a measure 

of our state of knowledge regarding the object class being present before any signal data 

is collected using the sensor. Since the probability of both D n and 0 1 being true must 

be logically equivalent to 0 1 and D n being true so that P(D n , 0 J) = P( 0 1 , D n) , we 

must have P(Dn /OJ)P(OJ=P(OJ /DJP(DJ. Since all thejointprobabilities 

P(D n :· 0 J), for j = 1 .. .J, are mutually exclusive, the unconditional probability 

P(DJ=P(Dn ,O,)+P(Dn ,02 )+ ... +P(Dn ,01 ) (4.2) 
J 

= IP(Dn I oJP(oJ 
J=l 

is the total probability of obtaining the feature vector D n, irrespective of object class 

membership. Thus, we have 

(4.3) 

This expression is known as Bayes' theorem (or Bayes' formula), named after Reverend 

Thomas Bayes (1702- 1761). The quantity P(oj I D n) is called the posterior probability 

since it gives the probability of the object class being OJ after obtaining the measured 

feature vector D n. The quantity P(D n I OJ) is called the likelihood function since it 

provides a measure of the chance that we would have obtained the values in the feature 
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vector D" if the object class 0 1 was given to be present. As noted by R. A. Fisher [95], 

though the likelihood function is provided in the form of a conditional probability, it is 

not necessarily a probability density function since the integral of a likelihood function 

may not equal to one. Consequently, we will refer to the likelihood function as a 

probability density estimation. The quantity P(01 ) is called the prior probability since it 

represents our state of knowledge regarding the object class being present before any 

signal data is collected using the sensor. For example, if we feel that all the object 

classes could exist in our robot's local area of operation or have no reason to believe that 

one object class is more likely to be identified over another, then the "principle of 

indifference" prevails and we assign equal priors for all the object classes. The quantity 

P( D n ) is a normalization parameter (known as the evidence) that ensures that the 

posterior probabilities sum to unity. 

From Bayes' theorem we can form Bayes' decision rule that allows us to minimize the 

probability of misclassification by selecting the object class ok having the largest 

posterior probability compared to posterior probabilities of the other object classes. That 

is, given a feature vector D n obtained from the signal received by our sensor, we 

conclude that the source of the signal is object class Ok if 

for all k ct:.l. 

As noted earlier, the likelihood function provides a measure of the chance that we 

would have obtained the values in a feature vector if an object class was given to be 

(4.4) 
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present. Otherwise, the likelihood function is a probability density estimation in the data 

space. Formally, a probability density function p(x) is used to find the probability that a 

variable x lies within an interval from x = a to x = b and is given by 

b 

P(x E [a, b]) = fp(x) dx. (4.5) 
a 

Ifthe density function is known based on the distribution of the data and we do not 

expect the distribution to vary, then we could choose parametric techniques to formulate 

our probability density function. However, if we expect our data to vary based on 

environmental factors and our actual density function is unknown, we should seek 

nonparametric methods that can be used with arbitrary distributions to derive our 

probability density estimation. 

The general method in formulating an estimate for an unknown probability density 

function p(~) is discussed by Duda, Hart, and Stork [34] and Bishop [80] as follows. 

Suppose the probability P that a vector ! will fall inside a region R in ! -space is given 

by 

(4.6) 

IfN samples are drawn independently from p(!), then the probability that K ofthem will 

fall within the region R is given by the binomial law 
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(4.7) 

Since the mean fraction of the samples falling within this region is given by 

E[ KIN] = P and the variance about this mean is given by 

El(K IN- PY J= P(l- P)l N, the distribution peaks sharply as N ~ oo. Thus, the mean 

fraction of the samples falling within the region R is a good estimate of the probability P 

so that 

P=KIN. 
(4.8) 

Furthermore, if we assume that p(!_) is continuous and that the region R is small enough 

so that p(!_) does not vary appreciably within it, we have 

P = J p(~) d x' = p(!_) V (4.9) 
R 

where Vis the volume enclosed by the region R and !_ is an arbitrary point within~ 

Combining Eqs. 4.8 and 4.9 we obtain the following estimate for our probability density-

function p(!_), 
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( 4.1 0) 

An appropriate nonparametric method for implementing our density estimation in Eq. 

4.10 is the KNN technique. With the KNN density estimation, the approach is to select 

an appropriate K and determine the volume V containing the K samples centered on the 

point :! . Thus, the volume Vis a function of the training data. Consequently, if the 

density of the training data is high near :! , the volume will be relatively small, leading to 

good resolution. On the other hand, 'if the density is low, the volume will grow until it 

obtains the required number of K, but it may stop growing sooner if it enters a region of 

higher density. Theoretically, to ensure p(,!) is a good estimate of the probability that 

the point :! will fall within the region R of volume Vwe desire K to approach infinity as 

N approaches infinity. However, to ensure that V shrinks to zero we must require K to 

approach infinity slower than N. Devroye, Gyorfi, and Lugosi [88] show that lim K = oo 
N-->oo 

and lim K = 0 are necessary and sufficient conditions for p(,!) to be a consistent 
N-->oo N 

estimate of p(,!). 

Now suppose our training data set consists of N1 feature vectors from object class 0 1 

J 

and there are 'LN
1 

= N points in total. As displayed in Fig. 4.9, we can draw a 
}=I 

hypersphere of volume V with a center feature vector D n and consisting of K other 
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feature vectors irrespective of their object class. Suppose the hypersphere contains KJ 

feature vectors from object class OJ. From results of the probability density function 

estimation above in Eq. 4.10, we obtain our required likelihood function as a KNN 

density estimation 

A( ) K. 
p Dn !OJ = N;V 

J 

(4.11) 

The underlying concepts for using the KNN density estimation in nonparametric 

discrimination originated from the works by Fix and Hodges [96, 97]. Their decision rule 

was to assign D n to class j if 

( 4.12) 

for two classes i = 1 ,2. However, this maximum likelihood decision rule does not 

consider any prior knowledge about our object class Oj (i.e., P(OJ) ). Therefore, our 
~~ 

desired posterior probability for our Bayesian classifier in Eq. 4.3 is 

(4.13) 
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In our case, we will use a Bayes' decision rule as given in Eq. 4.4 that assigns the feature 

vector D n to the object class with the maximum posterior probability. 

At this point, two comments need to be made. First, as discussed above in the 

derivation of Bayes' theorem, the likelihood function is not necessarily a probability 

density function since the integral of a likelihood function may not equal to one. Thus, 

the KNN density function is not a true probability density since if we integrated Eq. 4.11 

over the whole feature space we would find that the integral is not unity but is infinity. 

Second, in practice, the optimal value of K depends on the size of the available training 

data set and various approaches are used to determine the best value forK that results in 

the most favorable classifier performance. Consequently, the performance of the 

Bayesian classifier with a KNN density estimation depends on both the choice forK and 

the feature vector. We will discuss our choices forK in Section 4.4.4 below. 

4.4.2 K-N earest-N eighbor (KNN) Classifier 

The traditional K-Nearest-Neighbor classifier (or rule) originated from the works of 

Cover and Hart (98]. They assumed that the proportion of each object class's samples in 

the training data set provides a good representation of the prior probability P(01 ) of that 

object class being present in the environment for subsequent classification so that 

(4.14) 

In this case, the unconditional density (evidence) in Eq. 4.2 becomes 



P(12n) = P(D n , 01) + P(D n , 02) + ··· + P(D n , 0 J) 
J 

= L.?(Dn IOJP(oJ 
J=l 

~t:1v(;J 
=I Kj 

J=l NV 
J 

LKJ 
j=l 

=--
NV 

K 
= 

NV 

For the posterior probability we have 

P(o I D ) = P(f2 n ~ 01 ) P( 01 ) 
1 

-n P(DJ 

:jv(~ J 
= ___.:_ _ ___:______:_ 

K 

NV 

= ~~(;) 
K; 

= 
K 

This form leads to what has traditionally been known as the K-Nearest-Neighbor 

classifier (or rule). Generalizing toM classes, we assign D n to class j if 

K 1 > Ki, j =F- i, i = 1, 2, ... ,1vf. 
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(4.15) 

( 4.16) 

(4.17) 
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Consequently, the design rule is to assign D n to the class that receives the majority vote 

amongst the K nearest neighbors. The case where K = 1 is simply called the Nearest 

Neighbor Rule. 

4.4.3 Parzen Classifier 

The Parzen classifier estimates the object class densities by a Parzen density estimation 

[99]. Both the KNN and Parzen density estimations evolve from Eq. 4.10. With the 

KNN density estimation presented in Section 4.4.1, the volume V of the hypersphere with 

a center feature vector D n is determined by the specified number of nearest neighbors K 

that depends on the size N of the training data set. However, the Parzen density 

estimation reverses the roles. In the Parzen density estimation, the value of K is 

determined by a specified volume V that depends on the size N of the training data. 

Similar to the Bayesian classifier with the KNN density estimation, the Parzen classifier 

will estimate the densities for each object class and assign an unknown feature vector to 

the object class with the maximum posterior probability. 

Beginning with Eq. 4.10, suppose our training data set consists of N 1 feature vectors 

J 

from object class 0 1 and there are L N 1 = N vectors in total.. Draw ad-dimensional 
j=l 

hypercube with edges of length h and a center feature vector D" around K other feature 

vectors irrespective of their object class. The hypercube contains K 1 feature vectors 

from object class 0 1 . The volume of this hypercube is given by 
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( 4.18) 

We can derive an analytical expression for f0 by defining the kernel function (or Parzen 

window function): 

( ) 
{

1 luPI::; 1/2 p = 1, ... ,d 
HZ:!:_= 0 

otherwise. 

Thus, the Parzen density estimation is known as a kernel-based method for density 

estimations. The function H(Y:_) defines a unit hypercube centered at the origin. 

(4.19) 

Consequently, for all feature vectors Dqj from the training data set of object class 01, the 

value of H((D n - D qj )1 h) is unity if the point f2cu falls within the hypercube and is zero 

otherwise. The total number of feature vectors from object class 0 j in the hypercube is 

given by 

(4.20) 

By substituting Eqs. 4.18 and 4.20 into Eq. 4.1 0, we obtain our Parzen density estimation: 
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P(D I Q )= _1 ~ _1 H(J2n- J2qj J 
-n 1 N ~ hd h 

J q-1 

( 4.21) 

Therefore, our posterior probability for our Parzen classifier is given by 

(4.22) 

The performance of the Parzen classifier depends on both the choice for h and the feature 

vector. We will discuss our method for choosing h in Section 4.4.4 below. 

4.4.4 General Remarks 

In this section, we will make some general remarks that are common to all our classifiers. 

First we will comment on the choices forK used in the KNN density estimation and h 

used by the Parzen density estimation. Next we will comment on the use of prior 

probabilities by the classifiers. We will conclude the section with a brief discussion on 

how to deal with ties between two posterior probabilities with different class 

assignments. 

4.4.4.1 Choices for Parameters K and h 

Both K and h act as smoothing parameters for the KNN and Parzen density estimations, 

respectively, where an appropriate choice will result in a good approximation to the true 
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density function for the training data. However, for our nonparametric application where 

the density function is not known, we must choose parameter values that minimize the 

misclassification error. Two approaches for selecting the values of the parameters are by 

either presenting the parameters as a function of the training data or using cross­

validation to set the parameter values. 

Since the KNN density estimation is one of the most popular methods used in pattern 

classification, there exists a considerable amount of research in the literature to develop a 

scheme for choosing the value for the parameter K that will minimize the 

misclassification rate [100, 101, 102, 103]. For our Bayesian classifier, we will choose 

the following functional form of Kin terms of the training data size that was presented by 

Loftsgaarden and Quesenberry [100] and endorsed by Duda, Hart, and Stork [34]: 

(4.23) 

where Hj is the number of labeled observations in the training data set for object class 01. 

A functional form for the parameter h in the Parzen density estimation that is 

recommended by Duda, Hart, and Stork [34] is obtained by letting v(NJ= 11 jii; in 

Eq. 4.18. We will choose the parameters for the KNN and Parzen classifiers using the 

cross-validation method discussed below. 

Cross-validation is an error estimation method used to assist in designing a 

classification model with a minimum misclassification error. The most favorable pattern 

classification model is the one consisting of the feature vector and parameters in the 
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classifier that results in minimal classification errors. The classifier is first designed 

using a training data set, and then its classification performance is assessed using a test 

(or validation) set. Hence, the test set is used to tune the values of the parameters in the 

classifier. The percentage of misclassified test samples is used as an estimate of the error 

(or misclassification) rate. Thus, cross-validation is used to compute the error rate for 

different parameter values (i.e., k or h) for a classifier and a given feature vector. The 

parameter value that results in the lowest estimate of the error rate is chosen for ·the given 

classifier. We will use the cross-validation method to select the parameter values for the 

KNN and Parzen classifiers. A more detailed discussion on the cross-validation method 

will be provided in Section 4.5. 

4.4.4.2 Prior J(nowledge 

The quantity P(Oj) in Bayes' formula (Eq. 4.3) is called the prior probability since it 

represents our state of knowledge regarding the object class being present before any 

signal data is collected using the sensor. Our Bayesian and Parzen classifiers both 

possess the capability to input prior knowledge regarding each object class's existence in 

the robot's local area of operation. However, as we mentioned previously, the KNN 

classifier assumes that the proportion of each object class's samples in the training data 

set provides a good representation of the prior probability. 

The KNN classifier's prior probability may be appropriate when dealing with training 

data sets that form compact hyperspherical clusters. However, the KNN classifier's 

choice of prior may not be appropriate with our hyperconoidal clusters where multimodal 
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distributions normally occur within each object class due the dynamical outdoor 

environment's effect on the training data. For instance, multimodal distributions could 

occur within an object class's training data set since the features generated from the 

object's thermal images display variations in the values due to the diurnal cycle of solar 

energy. Furthermore, since we are seeking to classify objects that could exist in a robot's 

local area of operation, we may want to integrate a prior based on our knowledge of an 

object existing in the environment under inspection. For example, if we feel that all the 

object classes could exist in our robot's local area of operation or have no reason to 

believe that one object class is more likely to be identified over another, then the 

"principle of indifference" prevails and we assign equal priors for all the object classes. 

During our analysis in the present chapter and Chapter 5, we will assume equal prior 

probabilities for all our object classes when using the Bayesian and Parzen classifiers. 

We will also use the popular KNN classifier as the comparative benchmark regardless of 

its potential shortcoming with the prior probability. In Chapter 6, we will discuss· future 

research to assign a prior probability to an object class using knowledge gained from 

satellite imagery. 

4.4.4.3 Ties 

There are various approaches to deal with ties between two posterior probabilities with 

different class assignments. For the KNN classifier, Devroye, Gyorfi, and Lugosi, [88] 

recommend choosing K to be odd to avoid voting ties. Webb [82] provides several ways 

to break ties. One way is to break ties arbitrarily. Another possible tiebreaker technique 
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is to assign D n to the object class, out of the classes with tying posterior probabilities, 

that has the nearest mean vector to D n (where the mean vector is computed over each 

object class's training data within the cell of volume V). An alternative method is to 

assign D n to the most compact object class out of the classes with tying posterior 

probability values. Since our autonomous robot may have to decide whether to go 

through the hedge or around the brick wall, posterior probabilities for the hedge and brick 
•""':_.,.. 

wall that are close in value could result in an autonomous robot with damaged sensors if 

the brick wall was misclassified as a hedge. Our point of view is that two posterior 

probabilities with different recommendations for class assignments but a small absolute 

difference in their posterior values may present too much risk for a misclassification. 

Consequently, in Chapter 5, we will introduce our approach that will prevent ties and 

high-risk decisions by requiring the two highest posterior values with different 

recommendations for class assignment to have an absolute difference that exceeds a 

specified threshold value. If the rule for the threshold is not satisfied, the classification is 

rejected and the robot must capture another thermal image for class assignment. 

4.5 Model Performance and Feature Selection 

In this section we will discuss and implement methods to select the most favorable 

feature vectors that result in minimum classification errors for the Bayesian, KNN, and 

Parzen classifiers presented in Section 4.4. Since the performance of a classifier is a 

function of the feature vector as well as the value ofthe its parameters (i.e., K or h), the 

evaluation of classifiers and selection of feature sets are done simultaneously using 
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various error estimation methods. Our selection process will involve an exhaustive 

search using two high performance computing systems to analyze the classification 

performance of over 290,000 feature combinations spanning up to 18 dimensions. A 

login node was used on the DoD High Performance Computing Modernization Program 

system at the Army Research Laboratory Major Shared Resource Center that included 8 

GB of memory at a processor frequency of3.6 GHz. Four nodes were used on a 

computing system located at the College of William & Mary with two nodes each 

consisting of 8 GB of memory and two other nodes each consisting of 16 GB of memory, 

each node operating at a processor frequency of 1.28 GHz. The end-state objective is to 

present sets of features that will maximize the performance of classifiers in assigning the 

correct object class to unknown feature vectors generated from the thermal imagery of 

non-heat generating objects in an outdoor environment. 

The discussions in this section are outlined as follows. In Section 4.5.1 we will 

discuss our exhaustive search feature selection method. Section 4.5.2 will present our 

performance criteria used to assess each classification model (classifier plus feature 

vector). Section 4.5.3 will discuss our error estimation methods used on the training and 

test data sets. In section 4.5.4 we will provide a summary of our scheme of maneuver for 

evaluating the various classification models and selecting the most favorable feature 

vectors for our extended and compact objects. We will select the most favorable feature 

vectors for the extended objects in Section 4.5.5 and compact objects in Sect_ion 4.5.6. 
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4.5.1 Feature Selection Method 

This section is concerned with the method used to identify the most favorable features for 

classifying an unknown non-heat generating object with minimal error. We will discuss 

the two primary approaches used to identify these features -feature selection and feature 

extraction. Our discussion will include how and why we will use a feature selection 

method to identify our most favorable sets of features and feature extraction method in a 

"nontraditional way" to analyze the hyperconoidal clusters and design our novel 

classification model in Chapter 5. A review of these two methods is found in [82, 78, 

79]. The goal of both methods is to minimize both the number of dimensions of the 

features and misclassifications. Not only does a large dimensional feature vector, relative 

to the available training data, increase the computation time for the robot's decision­

making process but, more importantly, it will have a negative effect on the performance 

of the classification model. This behavior brings up the concepts of the curse of 

dimensionality and peaking phenomena that we will discuss first. 

According to the curse of dimensionality [80], as the number of dimensions increases 

for a feature vector, the size of the training data set must increase exponentially as a 

function of the feature dimension to obtain an increase in classification performance. 

However, in practice, we have a limited quantity of data. Thus, as the number of 

dimensions of a feature vector increases, the data becomes sparse, in which case the 

classification performance begins to decline. This behavior is known as the peaking 

phenomenon [78]. Consequently, a rule of thumb that we will adopt to favor peak 

performance of our classification model is to have no more than nil 0 features for an 

object class with n training patterns [78 ]. 
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4.5.1.1 Feature Extraction 

Feature extraction methods create new features based on transformations of the original 

feature set. Thus, the new feature set may not have a clear physical meaning or retain the 

physical interpretation found in the original features generated from an object's thermal 

image. Consequently, we will not use any feature extraction methods in the "traditional 

way" for our application. Some of the popular feature extraction methods include 

principal component analysis, Karhunen-Loeve transformation, independent component 

analysis, factor analysis, discriminant analysis (also known as Fisher linear discriminant 

analysis), and multi-dimensional scaling [104, 105, 82, 78, 79]. We will only discuss 

principal component analysis since we will apply this method in a "nontraditional way" 

when we analyze the hyperconoidal clusters and introduce the design of our novel 

classification model in Chapter 5. 

Principal component analysis (PCA) is traditionally applied to the entire feature space 

in unsupervised classification. The objective is to transform the original features to a 

lower dimensional space while retaining as much information about the original features 

as possible. The idea behind this method is that the information in the patterns of an n­

dimensional feature space can be represented by a transformation involving the 

projection of the patterns, irrespective of any object class information, onto a subset of n 

orthonormal vectors with directions corresponding to high variance in the patterns. 

PCA assumes that information about the original features is available in the variance of 

the features. Hence, a direction of higher variance in the patterns corresponds to more 

information about the features. Any vector in a direction of low variance can be excluded 

from the transformation since it implies a direction with a low amount of information 
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about the features. Thus, the projection of the original patterns onto each of the selected 

vectors in the directions of the highest variance will yield new patterns in a lower 

dimensional space. In some cases the resulting transformation could yield an acceptable 

separation of the original clusters in the feature space. For instance, in Fig. 4.1 0, the 

projection of the 2-dimensional patterns onto the vector ~~ in the direction of the 

maximum variance of the patterns and excluding the vector ~ 2 from the transformation 

would reduce the patterns to a !-dimensional feature space while providing an acceptable 

separation of the two clusters as indicated by their given distributions. 

We will now go into more detail on the derivation of the transformation used in PCA. 

Let F be an n x m training data matrix where each column forms an n-dimensional 

feature vector f = (~, / 2 , ... , fn) for one object. First center the data by subtracting the 

sample mean !; from the feature value !; , where i = 1, ... ,n, across each row in F. This 

produces a matrix F where !; =!; -!; so that each row has a mean of zero. Compute 

the covariance matrix C of the centered training data matrix F so that 

cr 2
{/:} cr{J:,J

1
} 

c{F}= cr{J~,J:} .~2!Z> 
. . 

cr{fn ,ft} cr{Z ,Z} 

(4.24) 

The covariance matrix Cis an n x n matrix with the variances of the individual features 

of F along the main diagonal and the off-diagonal elements consist of the co variances of 
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each pair of features. Since a-{7: , ]1 } = a-{71 , ]; } for all i -:f. j, C {£} is a symmetric 

matrix. From linear algebra, the matrix C {£} is symmetric if and only if it has an 

orthonormal set of n eigenvectors. Next, calculate the eigenvalues A,i and corresponding 

unit-length eigenvectors ~i of the covariance matrix in Eq. 4.24 in following algebraic 

eigenvalue problem 

Ce=A.e .. 
-l l -l 

( 4.25) 

Thus, a·large eigenvalue Ai equates to large covariance values (positive or negative) for 

pairs of features in C. The unit-length eigenvector ~i corresponding to this large 

eigenvalue provides a direction ofhigh variation in the patterns. The ordering of the 

eigenvectors is such that the corresponding eigenvalues Ai satisfy A1 ~ A2 ~ ••• ~ An . The 

largest eigenvalues A1 is associated with the eigenvector ~~ that determines the direction 

with the maximal variance and best fits the patterns in a least squared sense. 

Each eigenvector in the orthonormal set corresponds to a principal axis of the patterns 

in the feature space. The PCA transformation projects each pattern ] = ( ~ , fz , ... , fn) 

onto a given column eigenvector ~1 to obtain a new feature given by the linear 

combination 
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n 

Yj = :L>uf (4.26) 

T ~ 
=e. f 
-)-

where j is the index of the chosen eigenvector in a direction with a high variance of the 

patterns. Each of these new features y j given by Eq. 4.26 is called a principal 

component. The principal component y 1 corresponding to the eigenvector ~~ in the 

direction ofthe maximal variance of the patterns is called the first principal component. 

As mentioned earlier, we can choose a subset of the eigenvectors with directions 

corresponding to the highest variances of the patterns and exclude those eigenvectors 

with directions of low variance to obtain a new lower dimensional pattern with minimal 

loss of information about the original features. Let E denote a matrix with each column 

being one of the selected eigenvectors ~j. The PCA transformation 

(4.27) 

yields new patterns Y, consisting of principal components, in a reduced dimensional 

feature space. Each column of Y is a new lower dimensional feature vector 

corresponding to the same column with the original feature vector in F. Consequently, 

if we included all n eigenvectors in E, we would lose no information, and Y would 

contain the original data rotated in the feature space with the eigenvectors as the axes. 

We will not use PCA as a feature extraction method; however, we will use its ability to fit 

an eigenvector through an object class's hyperconoidal cluster in a least squares sense. 
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Using PCA in this "nontraditional way" will allow us to analyze the characteristics of the 

hyperconoidal clusters for each object class and assist in designing our novel 

classification model in Chapter 5. 

4.5.1.2 Feature Selection 

Contrary to the feature extraction methods, feature selection methods result in features 

sets that retain their original physical meaning. The process in feature selection methods 

is to select the subset of size d from the available input feature set of size p that leads to 

the most favorable performance for a specific classifier based on a given criterion J(.). 

We will discuss our choice for a performance criterion in Section 4.5.2. Since the most 

favorable subset of features is dependent on the type of classifier chosen, the selected 

features are "wrapped around" the given classifier. Consequently, feature selection 

methods are often referred to as "wrapper methods" [79]. 

The most popular feature selection methods include exhaustive search, branch-and­

bound search, best individual features, sequential forward selection, sequential backward 

selection, plus /-take away r selection, sequential forward floating search, and sequential 

backward floating search [78]. The exhaustive search is the only thorough approach to 

identifYing the most favorable feature vector since it involves examining all ( ~ J 

possible subsets and selecting the subset that leads to the best performance for a specific 

classifier based on the criterion J(.). As noted in [78], no nonexhaustive feature 

selection method can be guaranteed to produce the "optimal" subset. The exhaustive 

search is normally avoided since it is computationally expensive. However, with the 
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increasing capabilities of high performance computing systems, what used to take say 20 

days to evalute 32,000 combinations of feature subsets, currently takes 4 days to 

complete. Therefore, our approach is to use the exhaustive search feature selection 

method on the high performance computing systems that we discussed earlier. As 

mentioned previously, to ensure peak performance, the size d ofthis most favorable 

feature vector must also satisfy the rule of thumb to have no more than n/10 features for 

an object class with n training patterns. 

4.5.2 Performance Criterion 

The most favorable classification model (feature vector plus classifier along with 

parameter values) is determined by comparing performance criterion values for all 

possible combinations of features and classifiers by an exhaustive search. Choices for the 

performance criterion functions J(.) normally include the estimated misclassification (or 

error) rate Pe, estimated correct classification (or accuracy) rate (1-?,), or some 

distance measure as the perforniance criterion J(-). For our application, we will seek to 

determine the classification model that minimizes the estimated error rate criterion given 

by 

(4.28) 
n 

where ne is the number of misclassified feature vectors out of n labeled test set samples 

for a given object class. The criterion based on a distance measure normally consist of a 
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ratio of the distances between object class clusters (interclass) and feature vectors within 

each object class (intraclass) [82]. The interclasslintraclass distance criterion should 

show a strong linear relationship with the estimated error rates such that the 

interclasslintraclass value increases as the estimated error rate decreases in value. 

However, we investigated the use of the interclasslintraclass distance criterion in our 

application and found a weak relationship between the estimated error rates and the 

interclasslintraclass distances. The best coefficient of determination of/= 57.4% was 

achieved with a Bayesian classifier and 2-dimensional feature vectors. The coefficients 

of determination decreased in value as the feature vectors increased in dimensions. 

Consequently, this type of distance criterion is best for applications involving 

hyperspherical or hyperellipsoidal clusters with no common origin amongst the object 

classes, as we see in our application involving hyperconoidal clusters. 

In section 4.5.3, we will discuss our chosen error estimation methods that involve the 

use of training data to design a classifier and test (or validation) data to assess the 

performance of the classification model. For a given classification model, these methods 

will assign an object class label to each feature vector from a test data set consisting of 

known (or actual) labels from multiple object classes. The resulting class assignments of 

the test data set by the given classification model will be presented in a confusion matrix 

(or misclassification matrix). Table 4.1 provides an example of a confusion matrix 

involving the extended objects where the labels for the actual object classes are displayed 

along the columns and the labels for the assigned object classes are given along the rows. 

Each element of the matrix, given by the ith row and jth column, provides the number of 

feature vectors from the actual object class OJ1 that were assigned as object class OJ; by 
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the given classification model. For example, out of the 23 actual brick wall feature 

vectors in the test data set, the classification model correctly assigned 15 feature vectors 

as brick wall and misclassified 6 feature vectors as hedges and 2 feature vectors as wood 

walls. By applying Eq. 4.28, the error rate for the brick wall is approximately 34.78%. 

The error rates for each object class are displayed below the confusion matrix. When 

comparing the performance of all the classification models using the exhaustive search 

feature selection method we will use the average of the error rates for each object class in 

the test data set due to the large number of models being evaluated. The average error 

rate for our example in Table 4.1 is approximately 33.70%. Once we identify the most 

favorable feature vectors, we will use the more detailed error rates for each object class in 

the confusion matrix during our analysis and design of our most favorable classification 

model in Chapter 5. 

4.5.3 Error Estimation Method 

In this section we will discuss our choice of error estimation methods that involve the use 

of training data to design a classifier and test (or validation) data to assess the 

performance of the classification model. The training, test, and blind data sets used in 

our application were discussed in Section 2.3. The objective of the error estimation 

methods is to manage the training and test data sets that are used by a given classification 

model to ensure an appropriate estimation of the error rate. The error estimation methods 

that are commonly used in pattern classification include the resubstitution method, 

holdout method, leave-one-out method, rotation method, and bootstrap method [78, 82, 

34, 81, 35]. The holdout, leave-one-out, and rotation methods are different versions of 
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the cross-validation algorithm [78]. For each classification model (i.e., classifier plus 

feature vector), an average error rate is computed on the test set data using a given error 

estimation method. In our application, we will estimate the average error rates using the 

resubstitution method, holdout method and leave-one-out method. 

In the resubstitution method, all the available data used for the training data set is also 

used as test data. The resubstitution method will only be applied to the Bayesian 

classifier. Thus, for this method, our training data collected from 15 March to 22 June 

2007 will be used in Sections 4.5.5 and 4.5.6 to design the Bayesian classifier with a 

given feature vector and then resubstituted as test data to validate the design. 

In the holdout method, a portion of the data is used for training and another portion is 

used for testing. Thus, the training and test data sets are disjoint. In this case, the 

training set is the data collected from 15 March to 22 June 2007. We will use the test set 

collected from 25 June to 3 July 2007 in Sections 4.5.5 and 4.5.6 to assess the 

performance of the Bayesian, KNN, and Parzen classifiers. We will use our blind data 

set that was collected from 6 July to 5 November as our validation set when we analyze 

our most favorable feature vectors and designing our novel classification model in 

Chapter 5. 

The leave-one-out method uses the training set of size N to design the classifier using 

(N -1) samples a'S the training data and assess the classifier on the one remaining feature 

vector as the test sample. This process is repeated N times with different training sets of 

size (N -1) to compute an average estimated error rate. We will apply the leave-one-out 

method to compute the average error rates involving the KNN and Parzen classifiers in 

Sections 4.5.5 and 4.5.6. As discussed in Section 4.4.4.1, cross-validation is also used to 
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identify the most favorable parameter value for a given classifier. The parameter value 

that results in the lowest estimate of the average error rate is chosen for the given 

classifier. Therefore, we will also use the leave-one-out method to select the parameter 

value forK in the KNN classifier and h in the Parzen classifier. The leave-one-out 

method will use the training data collected from 15 March to 22 June 2007. The leave­

one-out method is also called the jackknife method by John W. Tukey since it is handy 

and useful in many ways [34]. 

4.5.4 Checkpoint Summary 

In Sections 4.5.5 and 4.5.6 below, we will evaluate the performance of various 

classification models and identify the most favorable feature vectors for our extended and 

compact objects, respectiv~ly. In this section we will summarize our scheme of 

maneuver used in the following two sections based on the concepts we discussed in 

Sections 4.4 through 4.5.3. The goal of Sections 4.5.5 and 4.5.6 is to select a set of 

feature vectors that result in the lowest error rates when teamed up with either the 

Bayesian, KNN, or Parzen classifier. We will compute the error rates for each classifier 

combined with every combination of features across all possible dimensions (i.e., 

exhaustive search feature selection method). For each classification model (i.e., classifier 

plus feature vector), an average error rate is computed on test set data using the 

resubstitution, holdout, and leave-one-out error estimation methods. The resulting 

average error rates are compared to determine the feature vectors that present the lowest 

error rates. These feature vectors will be considered as our most favorable feature 
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Chapter 5. 

4.5.5 Extended Object Performance and Feature Selection 
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The 18 thermal features remaining from our preliminary feature analysis in Section 4.3 

are displayed in Table 4.2 along with numerical labels that are provided for convenience 

as we analyze the different feature vectors used in the classification models during the 

exhaustive search feature selection method. The three categories of features 

(meteorological, micro, and macro) are color coded to assist us in the discussion and 

analysis. The equations for each feature were discussed and derived in Chapter 3. 

Table 4.3 provides the number of combinations of extended object features for each 

feature vector dimension used in the exhaustive search method. We will compute the 

average error rates for the classification models across all 18 dimensions to ensure an 

exhaustive search. However, we will also adhere to rule of thumb given in Section 4.5.1 

that requires the size d of the most favorable feature vector to have no more than n/1 0 

features for an object class with n training patterns to ensure peak performance. Thus, 

given the number of training patterns for each extended object class in Table 2.1, the 

maximum acceptable size for our most favorable feature vector is 11 features. 

The average error rates for each classifier combined with every combination of 

features across all possible dimensions (i.e., exhaustive search feature selection method) 

were computed using the error estimation methods on a high performance computing 

system discussed in Section 4.5. Fig. 4.11 presents dotplots that give the general trend of 

the average error rates for each classifier and error estimation method observed in each 
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dimension. The dotplots show that holdout error estimation methods have a tendency to 

display a higher variance in the average error rates compared to the leave-one-out and 

resubstitution methods. This occurs since the training and test data come from the same 

set for the leave-one-out and resubstitution methods. 

The average error rates were sorted in increasing order by classifier and error 

estimation method within each dimension. Tables 4.4a-e compare the lowest average 

error rates(%) of each classifier with the respective error estimation method across each 

feature vector dimension. The average error rates in Tables 4.4a-e clearly illustrate the 

behavior known as the peaking phenomenon. Thus, as the number of dimension of a 

feature vector increases, the error rates of each classifier decrease to a specific peak (or in 

some cases a short plateau) and then the classification performance begins to decline. 

For instance, the Bayesian classifier with the resubstitution error estimation method 

reaches its peak performance at an estimated average error rate of 16.70% with a?­

dimensional feature vector. We can also see that no classifier reaches a peak 

performance with a feature vector consisting of only features from a single feature 

category~ meteorological, micro, or macro. 

The next step is to compare classification models (along with their respective error 

estimation methods) in Tables 4.4a-e to identify a most favorable set of feature vectors. 

The size of the most favorable set of feature vectors is limited to 11 dimensions to 

support the rule of thumb for peak performance. We choose pairs of classification 

models for comparison based on their similarities in the error rate trends found in Fig. 

4.11. Thus, for each dimension, we compare the error rates in Table 4.4 for the following 

pairs of classifiers along with their respective error estimation method: (KNN classifier 
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(with holdout method), Parzen classifier (with holdout method)) and (KNN classifier 

(with leave-one-out method), Parzen classifier (with leave-one-out method)). Within 

each dimension, the feature vector that is associated with the lowest error rate in each pair 

of classifiers is selected as a candidate to become a most favorable feature vector. The 

feature vector with the highest error rate in the pair is eliminated from the set of 

candidates. Since the Bayesian classifier (with holdout method) and Bayesian classifier 

(with resubstitution method) both present some uniqueness in the distribution of their 

error rate trends in Fig. 4.11, all their feature vectors from Table 4.4 will remain as 

candidates for most favorable feature vectors. The candidates for the most favorable 

feature vectors are presented in Table 4.5a-b. We can now choose a set of most favorable 

feature vectors that are associated with the lowest error rates within each category of 

classification models in Table 4.5. A set of most favorable feature vectors is displayed in 

Table 4.6. 

Alternatively, we can identify a set of feature vectors that result in minimal error rates 

for a single classifier on more generalized validation data. As we saw in Section 4.5.3, 

our error estimation methods (resubstitution, holdout, and leave-one-out) choose the test 

data in different ways. For instance, in the holdout method the training and test data sets 

are disjoint. On the other hand, in the resubstitution method all the available data used 

for the training data set is also used as test data. Thus, the performance of the classifier 

along with a given feature vector is assessed on the test set associated with given error 

estimation method. By identifying a set of feature vectors in each dimension that 

simultaneously minimize the error rates on two types of test data sets, we can present a 

classification model that will provide enough flexibility to ensure acceptable performance 
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on a more generalized test (or blind) data set. The scheme proceeds by first computing 

the average error rates for a single classifier using two types of error estimation methods 

for each dimension of features. For each dimension of feature vectors, we will create a 

scatter plot consisting of the average error rates produced by the single classifier on the 

two error estimation methods. We will use the scatter plots to determine the feature 

vector in each dimension that minimize both the average error rates and absolute 

difference between the average error rates for the single classifier on the two error 

estimation methods. For example, suppose we consider the combination consisting of the 

KNN classifier (with the holdout error estimation method) and KNN classifier (with 

leave-one-out error estimation method) in three dimensions. This combination involves 

the KNN classifier evaluated on two different test sets determined by their respective 

error estimation methods. A scatter plot of the average error rates(%) involving the 

KNN classifier and both of these error estimation methods is displayed in Fig. 4.12. 

Feature vector< 1, 6, 18 >results in the minimum average error rates with the smallest 

absolute difference in the error rates on the test data set for each error estimation method 

used by the KNN classifier. The combination of classifiers and error estimation methods 

considered in this analysis are: (KNN classifier (with holdout method), KNN classifier 

(with leave-one-out method)) and (Parzen classifier (with holdout method), Parzen 

classifier (with leave-one-out method)) and (Bayesian classifier (with holdout method), 

Bayesian classifier (with resubstitution method)). Table 4.7a-c presents the minimum 

average error rates with the smallest absolute difference in the error rates on the test data 

set for each combination across each dimension. After identifying the minimum average 

error rates in each dimension and combination, we can compare the results and select the 
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most favorable feature vectors associated with the lowest error rates. Once again, the size 

of the most favorable set of feature vectors is limited to 11 dimensions to support the rule 

of thumb for peak performance. Table 4.8 displays a set of most favorable feature 

vectors for the combinations of a classifier and error estimation methods. 

Table 4.9 combines the results from Tables 4.6 and 4.8 to present our set of most 

favorable feature vectors for the extended objects. An important observation is that none 

of the most favorable feature vectors consist of only features from a single feature 

category- meteorological, micro, or macro. Additionally, we are choosing a most 

favorable set of feature vectors rather than identifying the feature vector associated with 

the overall lowest error rate as the single most favorable feature vector. Considering a set 

of most favorable feature vectors will allow us to design a classification model that is 

able to generalize to other test (or blind) data sets, rather than choosing a single feature 

vector that results in a model with too little flexibility. 

4.5.6 Compact Object Performance and Feature Selection 

We will now repeat the same procedures presented in Section 4.5.5 to identify the most 

favorable features for the compact objects. The 15 thermal features remaining from our 

preliminary feature analysis in Section 4.3 are displayed in Table 4.10 along with 

numerical labels that are provided for convenience as we analyze the different feature 

vectors used in the classification models during the exhaustive search feature selection 

method. The three categories of features (meteorological, micro, and macro) are color 

coded to assist us in the discussion and analysis. The equations for each feature were 

discussed and derived in Chapter 3. 
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Table 4.11 provides the number of combinations of extended object features for each 

feature vector dimension used in the exhaustive search method. We will compute the 

average error rates for the classification models across all 15 dimensions in our 

exhaustive search. Since the number of training patterns for each of the compact object 

classes (steel pole and tree) is n = 318 as displayed in Table 2.1, the rule of thumb for 

peak performance given in Section 4.5.1 limits us to a feature vector with up to 32 

features. Thus, we could consider all 15 dimensions in our analysis to identify a set of 

most favorable feature vectors for our compact objects. 

The average error rates for each classifier combined with every combination of 

features across all 15 dimensions (i.e., exhaustive search feature selection method) were 

computed using the error estimation methods on a high performance computing system 

discussed in Section 4.5 .. Fig. 4.13 presents dotplots that give the general trend of the 

average error rates for each classifier and error estimation method observed in each 

dimension. Similar to the extended objects, the dotplots for the compact objects show 

that holdout error estimation methods have a tendency to display a higher variance in the 

average error rates compared to the leave-one-out and resubstitution methods. Once 

again, this result occurs since the training and test data come from the same set for the 

leave-one-out and resubstitution methods. 

The average error rates were sorted in increasing order by classifier and error 

estimation method within each dimension. Tables 4.12a-d compares the lowest average 

error rates(%) of each classifier with the respective error estimation method across each 

feature vector dimension. The average error rates in Tables 4.12a-d display the behavior 

of the peaking phenomenon. As the number of dimension of a feature vector increases, 
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the error rates of each classifier decrease to a specific peak (or in some cases a short 

plateau) and then the classification performance begins to decline. For instance, the 

Bayesian classifier with the resubstitution error estimation method reaches its peak 

performance at an estimated average error rate of 6.45% with a 7-dimensional feature 

vector and maintains this error rate up to nine dimensions before the performance begins 

to decline. We can also see that no classifier reaches a peak performance with a feature 

vector consisting of only features from a single feature category- meteorological, micro, 

or macro. 

The next step is to compare classification models (along with their respective error 

estimation method) in Tables 4.12a-d to identify a most favorable set of feature vectors. 

We will choose pairs of classification models for comparison based on their similarities 

in the error rate trends found in Fig. 4.13. Thus, for each dimension, we will compare the 

error rates in Table 4.12 for the following pairs of classifiers along with their respective 

error estimation method: (KNN classifier (with holdout method), Parzen classifier (with 

holdout method)) and (KNN classifier (with leave-one-out method), Parzen classifier 

(with leave-one-out method)). Within each dimension, the feature vector that is 

associated with the lowest error rate in each pair of classifiers is selected as a candidate to 

become a most favorable feature vector. The feature vector with the highest error rate in 

the pair is eliminated from the set of candidates. Since the Bayesian classifier (with 

holdout method) and Bayesian classifier (with resubstitution method) both present some 

uniqueness in the distribution of their error rate trends in Fig. 4.13, all their feature 

vectors from Table 4.12 will remain as candidates for most favorable feature vectors. 

The candidates for the most favorable feature vectors are presented in Table 4.13a-c. We 
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retained both feature vectors in any pairs that had tying error rates. We can now choose a 

set of most favorable feature vectors that are associated with the lowest error rates within 

each category of classification models in Table 4.13. A set of most favorable feature 

vectors is displayed in Table 4.14. 

As in Section 4.5.5, we will now identify a set of most favorable feature vectors 

involving combinations of a classifier and error estimation methods. The set of most 

feature vectors are associated with classification models that display flexibility by 

yielding acceptable performance on a more generalized test (or blind) data set. Following 

the same scheme in Section 4.5.5, we proceed by first computing the average error rates 

for a single classifier using two types of error estimation methods for each dimension of 

features. As discussed in the previous section, the two error estimation methods choose 

their respective test data in different ways. For each dimension of feature vectors, we 

will create a scatter plot consisting of the average error rates produced by the single 

classifier on the two error estimation methods. We will use the scatter plots to determine 

the feature vector in each dimension that minimize both the average error rates and 

absolute difference between the average error rates for the single classifier on the two 

error estimation methods. The combination of classifiers and error estimation methods 

considered in this analysis are: (KNN classifier (with holdout method), KNN classifier 

(with leave-one-out method)) and (Parzen classifier (with holdout method), Parzen · 

classifier (with leave-one-out method)) and (Bayesian classifier (with holdout method), 

Bayesian classifier (with resubstitution method)). Table 4.15a-c presents the minimum 

average error rates with the smallest absolute difference in the error rates on the test data 

set for each combination across each dimension. After identifying the minimum average 
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error rates in each dimension and combination, we can compare the results and select the 

most favorable feature vectors associated with the lowest error rates. Table 4.16 displays 

a set of most favorable feature vectors for the combinations of a classifier and error 

estimation methods. 

Tables 4.17a-b combine the results from Tables 4.14 and 4.16 to present our set of 

most favorable feature vectors for the compact objects. As in the case with the extended 

objects, none of the most favorable feature vectors for the compact objects consist of only 

features from a single feature category- meteorological, micro, or macro. Also, we are 

again considering a set of most favorable feature vectors that will allow us to design a 

classification model that is able to generalize to other test (or blind) data sets, rather than 

choosing a single feature vector that results in a model with too little flexibility. 

4.6 Sensitivity Analysis 

In the previous section, we identified sets of most favorable feature vectors for our 

extended and compact objects. We will now analyze the effects of variations in the 

camera's viewing angle, window size of the thermal scene, and rotational orientation of 

the target on the feature values and classification performance of a classifier involving 

selected feature vectors from our most favorable sets. Before we begin we will specify 

our rules of engagement for this analysis. Since one of our objectives is to study the 

behavior of the features with the noted variations, we will only make within class 

inferences and will not present conclusions from between class comparisons. 

Furthermore, we will explore the effects of these variations on classification performance 

within each class. However, we will not attempt to make inferences on the 
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misclassifications until Chapter 5. All images used to generate the features were captured 

at a distance of 2.4 meters between the thermal camera and target. The images were 

processed as discussed in Chapter 2 and the features were generated as presented in 

Chapter 3. 

4.6.1 Viewing Angle Variations 

The sensitivity analysis for the variations in the camera's viewing angle will be 

performed using the extended objects and the Bayesian classifier with the 9-dimensional 

extended object feature vector< 2, 3, 5, 6, 7, 8, 9, 11, 12 >. The features associated with 

the numerical labels in the feature vector are presented in Table 4.2. This classification 

model displayed an error rate of approximately 2.95% with the holdout error estimation 

method on the extended objects in Section 4.5.5. The extended objects used in the 

analysis consist of a brick wall, hedges, picket fence, and wood wall. The thermal 

images were captured on 10 and 11 February 2007 between 1300 and 1700 hrs on each 

day with meteorological conditions involving clear skies and temperatures ranging from 

approximately 42.2° F to 49.8° F. This temperature range influenced our choice for the 

most favorable feature vector used in this analysis. Consequently, we did not choose a 

feature vector that included the ambient temperature feature since minimal data is 

available in the training set for this range oftemperatures as shown in Fig. 2.15. The 

thermal images of these extended objects were captured at seven different viewing 

angles: -60° from normal incidence, -45° from normal incidence, -30° from normal 

incidence, normal incidence ( 0° ), 30° from normal incidence, 45° from normal 
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incidence, and 60° from normal incidence. The visible image and thermal images for 

each viewing angle is presented for each object in Fig. 4.14. 

Table 4.18 presents the feature values and assigned classes as well as the posterior 

probabilities of the Bayesian classifier for each extended object with variations in the 

camera's viewing angle. The object surface radiance (Lo) feature values show strong 

variations for both the picket fence and wood wall. The background irradiance (Lb) 

values display variations as expected for each object class since thermal energy from 

different background sources is being reflected diffusely from the aluminum foil as the 

camera varies its viewing angle. In the context of this research, we have defined 

background as the region either in front or to the side of the target consisting of thermal 

sources that emit thermal energy onto the target's surface. The source emitting this 

thermal energy may or may not be in the cam~ra's field of view. On the other hand, we 

have defined foreground as the region in the scene consisting of objects behind the target 

of interest and within the thermal camera's field of view. In Section 3.5.2, we noted that 

for nonmetallic materials such as wood and vegetation, the emissivity remains rather 

constant across variations in the viewing angle up to about 5tJ& from normal incidence 

[22]. This statement appears to definitely hold true for the picket fence and somewhat 

true for the other three object classes. However, we would not expect the emissivity 

feature values (or any other feature values) for our object classes to be well behaved as 

they would in a controlled laboratory since our objects' feature values depend on a 

dynamical outdoor environment. The reference emitter's radiance (Lr) displays a large 

deviation in its values for the hedges due to the electrical tape being attached to an 

irregular surface. The variation in the camera's viewing angle has a strong effect on the 
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posterior probabilities for the brick wall as seen by the variation in the resulting 

probabilities of a brick wall and hedges. We can see a moderate effect on the posterior 

probabilities for the picket fence as seen by the variations in the resulting probabilities of 

a picket fence and wood wall. The variation in the camera's viewing angle appears to 

have a minor effect on the posterior probabilities for the hedges and wood wall object 

classes. As mentioned earlier, we will discuss reasons for misclassifications of objects by 

a classification model in Chapter 5. In general, we conclude that variations in the 

viewing angle of a thermal camera will have a moderate effect on the values of features 

and performance of a classification model. 

4.6.2 Window Size Variations 

The sensitivity analysis for the variations i~ the window size of the thermal scene will be 

performed using the extended objects and the Bayesian classifier with the 9-dimensional 

extended object feature vector< 2, 3, 5, 9, 10, 11, 13, 15, 17 >. The features associated 

with the numerical labels in the feature vector are presented in Table 4.2. This 

classification model displayed estimated error rates of 18.06% with the holdout error 

estimation method and 17.91% with the resubstitution error estimation method on the 

extended objects in Section 4.5.5. The extended objects used in the analysis consist of a 

brick wall, hedges, picket fence, and wood wall. The thermal images of the extended 

objects were captured on 10 and 11 February 2007 between 0930 and 1700 hrs on each 

day with meteorological conditions involving clear skies and temperatures ranging from 

approximately 42.2° F to 49.8° F. Consequently, we did not choose a most favorable 

feature vector with a temperature feature since minimal data is available in the training 
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set for this range of temperatures as shown in Fig. 2.15. Furthermore, we chose a feature 

vector having a majority of macro features since we will vary the window size of the 

entire scene of the target with the micro features generated from each target's surface 

remaining constant. For each extended object used in the analysis, the window size of 

the thermal scene containing the target decreases in increments to produce 100 thermal 

images that are each proportional to the original segment. As previously mentioned, the 

values for the micro feature Lo as well as Lb and the meteorological feature Tl will 

remain constant for each object's images. However, the values for the macro features 

Mol, Morl, Mobl, Enl, Cr2, and Ho2 will be computed for each window size. The 

visible image and thermal images to include the first (largest) and lOOth (smallest) 

window segment for each of these objects is displayed in Fig. 4.15. 

For the brick wall, the constant feature values were Tl = 0.05, Lo = 95.0405, and Lb = 

94.4728. Fig. 4.16a presents the posterior probabilities for the brick wall feature vectors 

being a brick wall, hedges, picket fence, and wood wall. The posterior probabilities of 

the brick wall and wood wall display minimal variations. However, there is minimal 

variation in the classifier's posterior probabilities of the hedges and picket fence until 

about the 80th window size index. For the macro feature values in Fig. 4.16b, the largest 

variations occu.a,t around the 80th window size index. However, the features Enl and 

Cr2 display a gradual change in values up to the 80th window size index. 

For the hedges, the constant feature values were Tl = 0.0567, Lo = 94.0763, and Lb = 

97.4769. Fig. 4.17a presents the posterior probabilities for the hedges feature vectors 

being a brick wall, hedges, picket fence, and wood wall. The posterior probabilities of 

the brick wall and wood wall display minimal variations. However, there is minimal 
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variation in the classifier's posterior probabilities of the hedges and picket fence until 

about the 90th window size index. For the macro feature values in Fig. 4.17b, the largest 

variations occur around the 90th window size index. The features Mo 1, Mor 1, and Mob 1 

display a gradual change in values up to about the 90th window size index. 

For the picket fence, the constant values were T1 = 0.0233, Lo = 123.221, and Lb = 

94.996. Fig. 4.18a displays the posterior probabilities for the picket fence feature vectors 

being a brick wall, hedges, picket fence, and wood wall. The posterior probabilities of 

the brick wall and hedges display minimal variations. However, there is minimal 

variation in the classifier's posterior probabilities of the picket fence and wood wall until 

about the 80th window size index. For the macro feature values in Fig. 4.18b, the largest 

variations occur around the 90th window size index. Additionally, all the macro features 

for the picket fence display a gradual change in values up to about the 90th window size 

index. 

For the wood wall, the constant values were T1 = -0.02, Lo = 96.8051, and Lb = 

97.566. Fig. 4.19a displays the posterior probabilities for the wood wall feature vectors 

being a brick wall, hedges, picket fence, and wood wall. The posterior probabilities of 

the brick wall and hedges display minimal variations. However, there is minimal 

variation in the classifier's posterior probabilities of the picket fence and wood wall until 

about the 90th window size index. For the macro feature values in Fig. 4.19b, the largest 

variations occur around the 90th window size index. With the exception ofHo2, all the 

macro features for the wood wall display a gradual change in values up to about the 90th 

window size index. The Ho2 macro feature remains approximately constant until the 90th 

window size index. 
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In general, we conclude that the variations in the window size of the thermal scene of 

a target will have a moderate effect on the values of features and minor effect on the 

posterior probabilities of a classification model. As we can see, these variations in the 

window size of the thermal scene of a target could act as a dynamical window technique 

that affords an autonomous robot the ability to collect multiple degrees of information 

regarding a target's surface to arrive at a more confident decision for a class assignment. 

We use this dynamical window technique in our novel classification model that we will 

present in Chapter 5. 

4.6.3 Rotational Variations 

The sensitivity analysis for the variations in the rotational orientation will be performed 

using a compact object and the Bayesian classifier with the 9-dimensional compact object 

feature vector< 1, 6, 7, 8, 10, 11, 12, 13, 14 >. The features associated with the 

·, -
numerical labels in the feature vector are presented in Table 4.10. This classification 

model displayed an estimated error rate of 2.00% with the holdout error estimation 

method on the compact objects in Section 4.5.6. The compact object used in this analysis 

is a pine tree log with the thermal image captured on 9 October 2007 at 1317 hrs with 

meteorological conditions involving clear skies and an ambient temperature of 

approximately 98.2° F. The thermal image of the pine tree log was rotated to produce 

images with five different orientations: 0°, 45°, 90°, 135°, and 180°. The visible image 

and thermal images for each orientation along with the segmented portion of the pine tree 

log used in the analysis is presented in Fig. 4.20. 
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Table 4.19 presents the feature values and assigned classes as well as the posterior 

probabilities of the Bayesian classifier for each orientation of the pine tree log. The 

feature values for Eo display a large deviation at the diagonal angles ( 45° and 135°) 

from the feature values found for 0°, 90°, and 180°. Additionally, Co2 shows a large 

variation in values at the angles 135° and 180° frorri those feature values of the other three 

angles. However, the other feature values display minimal variations with the rotational 

angles. As we can see, the variation in the orientation of the pine tree log has a minimal 

effect on the posterior probabilities. Consequently, we can conclude that variations in the 

rotational orientation of an object have a minor effect on the values of the features and 

posterior probabilities of a classification model. Therefore, the performance of the 

classification model is rotational invariant. 

4.7 Summary 

In this chapter, we evaluated the performance of various classification models to identify 

the most favorable feature vectors for our extended and compact objects. We first 

introduced our approach of statistical pattern classification where learning involves 

labeled classes of data (supervised classification), assumes no formal structure regarding 

the density of the data in the classes (nonparametric density estimation), and makes direct 

use of posterior probabilities when making decisions regarding class assignments 

(probabilistic approach). After presenting a preliminary feature analysis to assess the 

quality of our training data and eliminate redundant features, classification models were 

formed with feature vectors from the extended and compact object classes and Bayesian, 

KNN, and Parzen classifiers. The error rates for each classification model were 
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computed using exhaustive search feature selection method on a high performance 

computing system. For each classification model, an average error rate was computed on 

test set data using the resubstitution, holdout, and leave-one-out error estimation methods. 

The resulting average error rates were compared to determine the feature vectors that 

present the lowest error rates. These feature vectors were considered as our most 

favorable feature vectors and consist of relevant information to allow us to classify 

unknown non-heat generating objects with minimal error. We saw that there is no single 

"optimal" feature vector but a set of"most favorable" feature vectors associated with 

various classifiers for both the extend and compact object classes. Moreover, we showed 

that the most favorable feature vectors are those that contain contributions from all the 

feature types -meteorological, micro, and macro. 

We performed a sensitivity analysis to explore the effects of variations in the camera's 

viewing angle, window size of the thermal scene, and rotational orientation of the target 

on the feature values and classification performance of a Classifier involving selected 

feature vectors from our most favorable sets. In general, we conclude that variations in 

the viewing angle of a thermal camera will have a moderate effect on the values of 

features and performance of a classification model. The variations in the window size of 

the thermal scene of a target have a moderate effect on the values o~ features and minor 

effect on the posterior probabilities of a classification model. Additionally, we concluded 

that variations in the rotational orientation of an object have a minor effect on the values. 

of the features and posterior probabilities of a classification model. 

During the sensitivity analysis in Section 4.6, we noted that the variations in the 

window size of the thermal scene of a target could act as a dynamical window technique 
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that affords an autonomous robot the ability to collect multiple degrees of information 

regarding a target's thermal scene to arrive at a more confident decision for a class 

assignment. We use this dynamical window technique in our novel classification model 

that we will present in Chapter 5. Furthermore, we saw that some patterns from specific 

object classes were consistently misclassified while other patterns were assigned to the 

correct class. In Chapter 5, we will identify conditions that result in blind patterns from 

specific object classes being misclassified. Additionally, we will observe that certain 

classification models perform exceptionally on patterns from specific object classes. 

These classification models act as experts in making classification decisions for patterns 

from these respective object classes. It turns out that we can form a committee of experts 

for classifying patterns from a specific object class. By combining each committee of 

experts into one classification model, we are able to exploit the expertise of each 

committee and complement the overall performance of the classification model. This 

novel concept is the baseline for our Adaptive Bayesian Classification Model presented 

next in Chapter 5. 
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Fig. 4.1 Scatter plot of extended object thermal features Co 1 vs. So 1. 
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Fig. 4.2 Scatter plot of extended object thermal features Uo1 vs. En1. 
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Fig. 4.5 Scatter plot of compact object thermal features Co 1 vs. So 1. 
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Fig. 4.6 Scatter plot of compact object thermal features Uo1 vs. Enl. 
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Fig. 4.9 K-Nearest-Neighbor density estimation. 
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Fig. 4.10 Principal component analysis used to project patterns onto eigenvector ~1 
in direction of maximum variance ofthe patterns. 
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Assigned 
Object 
Class 

Object 
Labels 

Brick Wall 1 
Hedges 2 
Picket Fence 3 
Wood Wall 4 

Total in Object Class 
Total Errors 

Error Rate (%) 

Total Errors 
Avg Error Rate(%) 

Brick Wall 

1 
15 
6 
0 
2 

23 
8 

34.7826 

31 
33.6957 

Actual Obiect Cl 
Hedges Picket Fence Wood Wall 

2 3 4 
3 0 5 

20 0 8 
0 20 4 
0 3 6 

23 23 23 
3 3 17 

13.0435 13.0435 73.9130 

Table 4.1 Confusion matrix example that assesses a classification model's performance 
on test data set consisting of extended objects. 

N 
0 
Vl 



Table 4.2 Extended object thermal features and labels used in the exhaustive 
search feature selection method. Feature categories are color coded for 
convenience during the analysis. 
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I I8 
2 I 53 
3 8I6 
4 3060 
5 8568 
6 I8564 
7 3I824 
8 43758 
9 48620 
IO 43758 
II 3I824 
I2 I8564 
I3 8568 
I4 3060 
IS 8I6 
I6 I 53 
I7 I8 
I8 I 

TOTAL 262143 

Table 4.3 Total number of extended object thermal feature combinations 
for feature vectors from 1 to 18 dimensions. The first 11 dimensions 
(highlighted in yellow) satisfy the rule of thumb to ensure peak 
performance of the classification models. 
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Fig. 4.11 General trend for extended objects of dotplots with average error rates for 
each classifier and error estimation method observed in each dimension. 
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Table 4.4a Extended object comparison of the lowest average error rates(%) of each classifier with the respective error 
estimation method across each feature vector dimension. 

N 
0 
1.0 



Table 4.4b Extended object comparison of the lowest average error rates(%) of each classifier with the respective error 
estimation method across each feature vector dimension. 

N -0 



Table 4.4c Extended object comparison of the lowest average error rates(%) of each classifier with the respective error 
estimation method across each feature vector dimension. N 

......... 

......... 



Table 4.4d Extended object comparison of the lowest average error rates(%) of each classifier with the respective error 
estimation method across each feature vector dimension. N ...... 

N 



• Bayesian classifier will use the functional form of K in terms of the training data size that was presented by 

Loftsgaarden and Quesenberry [ 1 00]: K(N 
1

) = Jii: where Nj is the number of labeled observations in the 

extended object training data set for object class OJ as presented in Table 2.1. 

Table 4.4e Extended object comparison ofthe lowest average error rates(%) of each classifier with the respective error 
estimation method across each feature vector dimension. 

N 
........ 
w 



Table 4.5a Extended object candidates for most favorable feature vectors. 
-·----, N 

I ........ 

~ 



•Bayesian classifier will use the functional form ofK in terms of the training data size that was presented by 

Loftsgaarden and Quesenberry [ 1 00]: K(N j) = Jii: where Nj is the number of labeled observations in the 

extended object training data set for object class Oj as presented in Table 2.1. 

Table 4.5b Extended object candidates for most favorable feature vectors. N 
........ 
Vl 



• Bayesian classifier will use the functional form of K in terms of the training data size that was presented by 

Loftsgaarden and Quesenberry [ 1 00]: K(N j) = -Jii: where Nj is the number of labeled observations in the 

extended object training data set for object class Oj as presented in Table 2.1. 

Table 4.6 Extended object set of most favorable feature vectors for each classifier with the respective error estimation 
method. 
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Fig. 4.12 Extended object scatter plot of average error rates (%) for KNN classifier (with holdout 
error estimation method) and KNN classifier (with leave-one-out error estimation method) in 
three dimensions. Feature vector< 1, 6, 18 >results in the minimum average error rates with the 
smallest absolute difference in the error rates on the test data set for each error estimation method 
used by the KNN classifier. 
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Table 4.7a Extended object comparison of the lowest average error rates(%) for combinations of a classifier and error 
estimation methods across each feature vector dimensions. N -00 



Table 4.7b Extended object comparison of the lowest average error rates(%) for combinations of a classifier and error 
estimation methods across each feature vector dimensions. tv -\0 



• Bayesian classifier will use the functional form of K in terms of the training data size that was presented by 

Loftsgaarden and Quesenberry [100]: K(Nj )= jii; where Nj is the number of labeled observations in the 

extended object training data set for object class Oj as presented in Table 2.1. 

Table 4. 7c Extended object comparison of the lowest average error rates (%) for combinations of a classifier and error 
estimation methods across each feature vector dimensions. 

N 
N 
0 

file:///msmnm


•Bayesian classifier will use the functional form ofK in terms of the training data size that was presented by 

Loftsgaarden and Quesenberry [ 1 00]: K(N j) = jii; where Nj is the number of labeled observations in the 

extended object training data set for object class Oj as presented in Table 2.1. 

Table 4.8 Extended object set of most favorable feature vectors for combinations of a classifier and error estimation 

methods. 

N 
N 
........ 



• Bayesian classifier will use the functional form of K in terms of the training data size that was presented by 

Loftsgaarden and Quesenberry [ 1 00]: K(N 1 ) = Jli: where Nj is the number of labeled observations in the 

extended object training data set for object class Oj as presented in Table 2.1. 

Table 4.9 Extended object set of most favorable feature vectors (combined feature vectors from Tables 4.6 and 4.8). 
N 
N 
N 



Table 4.10 Compact object thermal features and labels used in the 
exhaustive search feature selection method. Feature categories are 
color coded for convenience during the analysis. 
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1 15 
2 105 
3 455 
4 1365 
5 3003 
6 5005 
7 6435 
8 6435 
9 5005 
10 3003 
11 1365 
12 455 
13 105 
14 15 
15 1 

TOTAL 32767 

Table 4.11 Total number of compact object thermal feature combinations 
for feature vectors from 1 to 15 dimensions. All 15 dimensions 
(highlighted in yellow) satisfy the rule of thumb to ensure peak 
performance of the classification models. 
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Fig. 4.13General trend for compact objects of dotplots with average error rates for 
each classifier and error estimation method observed in each dimension. 
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Table 4.12a Compact object comparison of the lowest average error rates(%) of each classifier with the 
respective error estimation method across each feature vector dimension. 

N 
N 
0\ 



Table 4.12b Compact object comparison of the lowest average error rates(%) of each classifier with the 
respective error estimation method across each feature vector dimension. 

N 
N 
-....l 



Table 4.12c Compact object comparison of the lowest average error rates(%) of each classifier with the 
respective error estimation method across each feature vector dimension. 

N 
N 
00 



• Bayesian classifier will use the functional form of K in terms of the training data size that was presented by 

Loftsgaarden and Quesenberry [ 1 00]: K(N j) = jii; where Nj is the number of labeled observations in the 

compact object training data set for object class OJ as presented in Table 2.1. 

Table 4.12d Compact object comparison of the lowest average error rates(%) of each classifier with the respective error 
estimation method across each feature vector dimension. N 

N 
\0 



Table 4.13a Compact object candidates for most favorable feature vectors. N 
w 
0 



Table 4.13b Compact object candidates for most favorable feature vectors. N 
w 
........ 



• Bayesian classifier will use the functional form of K in terms of the training data size that was presented by 

Loftsgaarden and Quesenberry [100]: K(Nj )= Jii: where Nj is the number of labeled observations in the 

compact object training data set for object class Oj as presented in Table 2.1. 

Table 4.13c Compact object candidates for most favorable feature vectors. 
N 
VJ 
N 



2.00321 * 
4.0064 15 
6.4465 * 
2.0032 * 
5.8176 5 
6.4465 * 
2.0032 * 
5.8176 5 
2.0032 * 
2.0032 * 

•Bayesian classifier will use the functional form ofK in terms of the training data size that was presented by 

Loftsgaarden and Quesenberry [100]: K(Nj )= JN; where Nj is the number of labeled observations in the 

compact object training data set for object class Oj as presented in Table 2.1. 

Table 4.14 Compact object set of most favorable feature vectors for each classifier with the respective error estimation method. 

N 
w 
w 



Table 4.15a Compact object comparison of the lowest average error rates(%) for combinations of a classifier and error 
estimation methods across each feature vector dimensions. 

N 
w 
~ 



Table 4.15b Compact object comparison ofthe lowest average error rates(%) for combinations of a classifier and error 
estimation methods across each feature vector dimensions. 

N 
w 
Vl 



• Bayesian classifier will use the functional form of K in terms of the training data size that was presented by 

Loftsgaarden and Quesenberry [ 1 00]: K(N j) = jN; where Nj is the number of labeled observations in the 

compact object training data set for object class Oj as presented in Table 2.1. 

Table 4.15c Compact object comparison of the lowest average error rates(%) for combinations of a classifier and error estimation 
methods across each feature vector dimensions. 

N 
!.,;.) 
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• Bayesian classifier will use the functional form of K in terms of the training data size that was presented by 

Loftsgaarden and Quesenberry [ 1 00]: K(N j) = JN: where Nj is the number of labeled observations in the 

compact object training data set for object class Oj as presented in Table 2.1. 

Table 4.16 Compact object set of most favorable feature vectors for combinations of a classifier and error estimation methods. N 
w 
......,] 



Table 4.17a Compact object set of most favorable feature vectors (combined feature vectors from Tables 4.14 and 4.16). 

N 
VJ 
00 



• Bayesian classifier will use the functional form of K in terms of the training data size that was presented by 

Loftsgaarden and Quesenberry [100]: K(Nj )= JN; where Nj is the number oflabeled observations in the 

compact object training data set for object class Oj as presented in Table 2.1. 

Table 4.17b Compact object set of most favorable feature vectors (combined feature vectors from Tables 4.14 and 4.16). 

tv 
w 
1.0 
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Fig. 4.14 Visible images and thermal images for each viewing angle of extended objects 
used in sensitivity analysis for the variations in the camera's viewing angle. The viewing 
angles of the thermal images are arranged from left to right as -60° from normal incidence, 
-45° from normal incidence, -30° from normal incidence, normal incidence, 30° from 
normal incidence, 45° from normal incidence, and 60° from normal incidence. 
(a) brick wall, (b) hedges, (c) picket fence, (d) wood wall. Continued 
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Fig. 4.14 Continued 



Table 4.18 Variations in the camera's viewing angle effect on feature values and classification performance of a Bayesian 
classifier for each extended object in the left column. The object class assigned by the classifier as well as the posterior 
probabilities for each object class is presented in the columns on the right. N 

.J::.. 
N 
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(a) 

(b) 

(c) 

(d) 

Fig.4.15 Visible images and thermal images for extended objects used in sensitivity 
analysis for the variations in the window size of the thermal scene. The first (largest) and 
lOQth (smallest) window segments out ofthe 100 window sizes are enclosed by the solid 
red borders. (a) brick wall, (b) hedges, (c) picket fence, (d) wood wall. 
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Fig. 4.16 Brick wall sensitivity analysis for the variations in the window size of the thermal 
scene. (a) Posterior probabilities for the brick wall feature vectors and (b) macro feature 
values with variations in window size indexed from 1 (largest window) to 100 (smallest 
window). 
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Fig. 4.17 Hedges sensitivity analysis for the variations in the window size of the thermal 
scene. (a) Posterior probabilities for the hedges feature vectors and (b) macro feature values 
with variations in window size indexed from 1 (largest window) to 100 (smallest window). 
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Fig. 4.18 Picket fence sensitivity analysis for the variations in the window size of the thermal 
scene. (a) Posterior probabilities for the picket fence feature vectors and (b) macro feature 
values with variations in window size indexed from 1 (largest window) to 100 (smallest 
window). 
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Fig. 4.19 Wood wall sensitivity analysis for the variations in the window size ofthe thermal 
scene. (a) Posterior probabilities for the wood wall feature vectors and (b) macro feature 
values with variations in window size indexed from 1 (largest window) to 100 (smallest 
window). 
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(d) (e) 

Fig. 4.20 Visible image and thermal images for the pine tree log used in the sensitivity 
analysis for the variations in the rotational orientation. (a) 0°, (b) 45°, (c) 90°, (d) 135°, 
(e) 180°. The portion of the pine tree log segmented for the analysis is enclosed by the 
solid red borders in each thermal image. 
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Table 4.19 Effect variations in the rotational orientation on feature values and classification performance of a Bayesian 
classifier of a pine tree log. The object class assigned by the classifier as well as the posterior probabilities for each rotation 
angle is presented in the columns on the right. 
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Chapter 5 Adaptive Bayesian Classification Model 

5.1 Introduction 

In Chapter 3, we generated features from the thermal images of our non-heat generating 

objects. In the context of this research, we have defined non-heat generating objects as 

objects that are not a source for their own emission of thermal energy, and so exclude 

people, animals, vehicles, etc. In Chapter 4, we assessed the performance of various 

classification models to identify the most favorable sets of feature vectors for our 

extended and compact object classes. The extended objects consist of objects that extend 

beyond the thermal camera's field ofview, such as brick walls, hedges, picket fences, and 

wood walls. The compact objects consist of objects that are within the thermal camera's 

field of view, such as steel poles and trees. We will now use these most favorable feature 

vectors to design and implement a novel model that outperforms the traditional KNN and 

Parzen classifiers for our specific application. The design of the adaptive Bayesian 

classification model is based on the observation that the thermal patterns for each class of 

noq;heat generating objects display a unique behavior about an eigenvector that projects 

through their respective hyperconoidal cluster. The behavior is characterized by the 

normal distances between the patterns and eigenvector for each object class. Various 

distance functions are derived based on these normal distances. These distance functions 

are integrated into the likelihood function of the Bayesian classifiers to form an adaptive 

Bayesian classifier. We found that the combination of specific sets of adaptive Bayesian 

classifiers and most favorable feature vectors yield exceptional classification 
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performance for a given object class. Each set of adaptive Bayesian classifier models 

acts as an expert in making classification decisions on patterns from their respective 

object class. It turns out that we can form a committee of experts for classifying patterns 

from a specific object class. Consequently, one committee of experts may perform 

exceptionally on specific unknown patterns where another classifier is deficient, and vice 

versa. By combining each committee of experts into one classification model, we are 

able to exploit the expertise of each committee and complement the overall performance 

of the classification model. We further increased the confidence level in our model's 

classification decisions by integrating the dynamical window technique presented in 

Chapter 4 that lets each committee of experts decide on class assignment by considering 

information collected from multiple window sizes of the thermal image of an object. 

Additionally, we incorporated rules into our model that must be satisfied before the bot is 

authorized to make a classification decision. If all the rules are satisfied, the bot is 

authorized to assign a class to the unknown object within its field of view and proceed 

with the next required action in the intelligence algorithm. On the other hand, if a rule is 

not satisfied, the bot must reject a class assignment and capture another thermal image of 

the unknown object for classification, perhaps from another viewing angle. This is the 

cornerstone of the Adaptive Bayesian Classification Model. 

The remainder of this chapter will proceed as follows. In Section 5.2, we will derive 

the distance metrics used to describe the behavior of each object class's patterns about the 

eigenvector that projects through their respective hyperconoidal cluster. In Section 5.3, 

we will present our adaptive Bayesian classifiers. We will compare the classification 

performance of our adaptive Bayesian classifiers to the KNN and Parzen classifiers using 
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our most favorable feature vectors on blind data sets in Section 5.4. We will also make 

inferences on blind patterns being misclassified under certain thermal conditions. In 

Section 5.5 we will present our algorithm for the Adaptive Bayesian Classification Model 

consisting of the committees of expert adaptive Bayesian classifiers. Section 5.6 will 

present an example application of our Adaptive Bayesian Classification Model. We will 

conclude this chapter with a summary in Section 5.7. The models and methods presented 

in this chapter were implemented using Matlab with assistance by FastiCA [106] and a 

pattern recognition toolbox known as PRTools4 [90]. 

5.2 Distance Metrics for Hyperconoidal Clusters 

In Chapter 4 we introduced principal component analysis (PCA) as a traditional feature 

extraction method for dimensionality reduction of a feature space. As a dimensionality 

reduction technique, PCA is applied globally over the patterns of all the object classes in 

the feature space. For a data set of size m consisting of n-dimensional feature vectors 

from all object classes, we showed that there exists an eigenvector that not only 

determines the direction of the maximal variance of the data in feature space but also best 

fits the patterns in a least squared sense. We will refer to this eigenvector as the first 

principal eigenvector. Using PCA in a "nontraditional way" we can perfonn local PCA 

on each object class and compute the first principal eigenvector that provides a best fit 

through the respective object class's hyperconoidal cluster. 

Fig. 5.1 provides an example oflocal PCA applied to three object classes in a 3-

dimensional feature space with features fl, £2, and f3. We will name these object classes 

red, blue, and green, corresponding to the colors in the figure. Since the patterns in the 
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feature space illustrated in Fig. 5.1 display characteristics analogous to the patterns of our 

non-heat generating objects, we will generalize the following observations and equations 

to our extended and compact object classes. First we will note that similar to the 

hyperconoidal clusters introduced with the 2-dimensional scatter plots in Chapter 4, the 

3-dimensional hyperconoidal clusters for our non-heat generating object classes also tend 

to diverge from a common origin as displayed in Fig. 5.1. In Fig. 5.1, we can see that the 

patterns about the first principal eigenvectors behave differently for each object class. 

Thus, two types of behavior in the patterns seem to uniquely characterize the object 

classes. The first type of behavior is that we can see regions with dense clusters of 

patterns that vary in location differently for each object class. The second type of 

behavior is that the trend in the normal distance between each object class's patterns and 

their respective first principal eigenvector appear to uniquely characterize each object 

class. For instance, the patterns in the blue class appear to have a more compact fit about 

their respective first principal eigenvector compared to the patterns in the red and green 

classes. The patterns in the green class appear to have larger normal distances from their 

respective first principal eigenvector compared to the red and blue classes. We can study 

these behaviors in more detail and with n-dimensional feature vectors by using the two 

distance metrics that we will now present. 

Similar to the global PCA discussed in Chapter 4, that was applied to all the patterns 

in the feature space irrespective of the object class, local PCA centers them patterns in 

each object class Oj by subtracting the sample mean JP from each feature value JP, 

where p = 1, ... ,n, across each pattern f .. = (.h, / 2 , ••• , fn) , where i = 1, ... ,m. This 
-I) 
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produces patterns ] iJ == ( J;, ]2 , ••• , fn) with a mean of zero for each feature 

JP = JP - JP in object class 0 1 . Continuing with the same procedures discussed in 

Chapter 4, we can compute the first principal eigenvector ~IJ by solving the eigenvalue 

problem involving the covariance matrix of the matrix formed with the patterns f .. 
-I} 

along the columns. Repeating this process across all object classes results in 

hyperconoidal clusters along with their respective first principal eigenvectors that diverge 

from a common origin, similar to Fig. 5.1. Consequently, the first principal eigenvector 

e 1 . and each pattern f .. in object class 0. can be treated as position vectors with the 
- J -1} J 

common origin as the initial position. 

The first distance metric that will assist us in understanding the behavior of each 

object class's patterns is the component (or scalar projection) of the pattern f .. onto the 
-I} 

first principal eigenvector ~ 11 as displayed in Fig. 5.2 and given by 

~ 

e ·! 
compe .J .. = /7/cose = -~~~iJ 

-IJ-1} -1} 

~tj 

(5.1) 

The second distance metric is the normal distance between a pattern and its respective 

first principal eigenvector as displayed in Fig. 5.2 and given by 

DiJ = /7./lsinBI 
-I} 

(5.2) 
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[ ~ J e ·I I -1} ;· 

where DiJ :::::0 and B =cos- ,=~, . 
1~1}1 I ij 

By relating compe. I .. to D;·, we can analyze the behavior of each object class's 
-1] -lj y 

pattern f iJ about the respective first principal eigenvector ~ 11 • Figs. 5.3a-j present the 

relationships ofthese distance metrics involving the set of most favorable feature vectors 

for the extended objects presented in Table 4.9. The numerical labels in each feature 

vector for the extended objects are defined in Table 4.2. The training data for the 

extended objects displayed in Table 2.1 is used in this analysis. By comparing the plots 

for each object class across the given dimensions, we can see that a general trend is found 

within each object class that varies slightly depending on the feature vector. These trends 

found in the relationships between the distance metrics are attributed to the values of the 

features for each object class within the training data set. As we saw in Chapters 3 and 4, 

each object class's feature values depend on its respective material properties, the thermal 

camera's viewing angle, and the diurnal cycle of solar energy. These combined factors 

yield the trends that we see by each extended object class's patterns in Figs. 5.3. For 

instance, the hedges present the highest standard deviation in its feature values compared 

to the other extended object classes. As a result, the hedges' patterns display higher 

deviations across both the normal distance and scalar projection metrics in Fig. 5.3 

compared to the other extended objects. These high deviations in the feature values are 

due to the hedges' thermal-physical properties. Thus, the hedges display the greatest 

deviation in thermal radiance throughout its training data since the leaves on the hedges 

tend to track the availability of solar energy due to the low specific heat of the leaves 
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[23]. Consequently, the features generated for the training data from the thermal images 

of the hedges captured over diverse environmental conditions, as described in Chapter 2, 

yield a high deviation among the feature values. The standard deviation of the feature 

values associated with the brick wall and picket fence are close in value but lower than 

the hedges object class and higher than the wood wall object class. Thus, as we see in 

Fig. 5.3, the relationships between the values of the scalar projections and normal 

distances for the patterns involving the brick wall and picket fence present approximately 

the same trends throughout all the feature vectors. On the other hand, the feature values 

in the training data set for the wood wall object class present the lowest standard 

deviation compared to the other extended object classes. As we will also discuss in 

Section 5.4.2, the thermal images of the wood walls used in the training data typically 

had a low thermal radiance and contrast displayed by its surface and reference emitter. 

The combination of these circumstances contribute to the patterns associated with the 

wood wall object class displaying a more compact cluster that is closer to the origin in 

Fig. 5.3 compared to the other extended object classes. 

Figs. 5.4a-r present the relationships of the distance metrics involving the set of most 

favorable feature vectors for the compact objects presented in Table 4.17. The numerical 

labels in each feature vector for the compact objects are defined in Table 4.1 0. The 
~,. 

training data for the compact objects displayed in Table 2.1 is used in this analysis. 

Analogous to the extended objects, the tr~nds found in the relationships between the 

distance metrics for the compact objects are attributed to the values of the features for 

each object class within the training data set. Each object class's feature values depend 

on its respective material properties, the thermal camera's viewing angle, and the diurnal 
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cycle of solar energy. These combined factors yield the trends that we see by each 

compact object class's patterns in Fig. 5.4. Thus, the standard deviation ofthe feature 

values in the steel pole object class's training data set is lower than the tree object class. 

Furthermore, as we also mention in Section 5.4.2, the thermal images of the steel poles 

used in the training data set typically have a lower thermal contrast displayed on the 

surface and with the reference emitter compared to the tree object class. These combined 

factors contribute to the steel pole object class's patterns displaying a more compact 

cluster that is closer to the origin in Fig. 5.4 compared to the patterns from the tree object 

class. Consequently, there exists a distinguishing behavior between the patterns for the 

steel poles and trees. 

As we can see, the distance metrics given by Eqs. 5.1 and 5.2 play a significant role in 

the study of n-dimensional patterns that form hyperconoidal clusters. Additionally, these 

distance metrics give us the ability to "see" regions in the n-dimensional feature space 

where some object classes may tend to "look alike" and run the risk for misclassification 

by a classification model. For instance, we will see that tendency for the majority of the 

patterns for the wood wall in the extended object category and steel pole in the compact 

object category clustering closer to their respective common origins, where minorities of 

the other object classes' patterns may exist, will lead to a higher error rate for the wood 

wall and steel pole. Consequently, the common origin for the hyperconoidal clusters of a 

set of object classes is a region where patterns from the object classes will tend to "look 

alike." Thus, the closer an object class's patterns are to the common origin of all the 

hyperconoidal clusters, the higher the risk for misclassification of patterns from that 

object class by the classification model. Additionally, we can also consider the 
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uniqueness in the behavior of each object class's patterns about their respective first 

principal eigenvector when assigning a class to an unknown pattern. This is the basis for 

adaptive Bayesian classifier that we will now present. 

5.3 Adaptive Bayesian Classifier Design 

Based on our analysis in Section 5.2, it appears that the likelihood function used in the 

posterior probability for classifying an unknown pattern should not only be determined 

by the unknown pattern's participation in the density distribution of a given object class 

but also by the unknown pattern's behavior about the first principal eigenvector 

projecting through the given object class's hyperconoidal cluster. Consequently, we can 

consider both the density distribution and behavioral characteristics of patterns by 

deriving a likelihood function that is weighted by a function that involves the normal 

distance of the unknown pattern to an object class's first principal eigenvector. 

Additionally, variations of the weighted likelihood function are derived that are adapted 

to the behavior of the patterns for a given object class. The resulting weighted likelihood 

function will produce a posterior probability with enhanced discriminating capabilities. 

,. 

Fig. 5.5 presents a zoomed in portion of the hyperconoidal clusters given in Fig. 5.1 

with an unknown pattern denoted as a black star in the feature space. Analogous to the 

behavior of the patterns that we studied in Section 5.2, the patterns in the object classes 

red, blue, and green display unique behaviors about their respective first principal 

eigenvectors that allow us to distinguish one object class from another. For instance, the 

patterns in the blue class tend to have a smaller distance to their respective first principal 

eigenvector compared to the patterns in the red and green classes. The patterns in the 
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green class appear to have larger normal distances from their respective first principal 

eigenvector compared to the red and blue classes. Consequently, if we computed the 

normal distance of the unknown pattern (black star) from each object class's first 

principal eigenvector and combined this information with our knowledge about each 

object class's density distribution, we could conclude that the characteristics of the black 

star mostly resemble the blue class. Therefore, the normal distances of the training 

patterns to the respective first principal eigenvector define the behavior of the given 

object class. 

Let f be an unknown pattern centered for the object classes in an n-dimensional 

feature space using local PCA. Thus, the unknown pattern is treated as a position vector 

with an initial position being the common origin for all the hyperconoidal clusters in the 

n-dimensional feature space. From Eq. 4.13 we have our Bayesian classifier with a KNN 

density estimation given by 

(5.3) 

where the likelihood function is defined by the KNN density estimation 

(5.4) 

and 
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(5.5) 

is a function of the training data in object class OJ as discussed in Chapter 4 and 

presented by Loftsgaarden and Quesenberry [100]. We will assign equal prior 

probabilities P(OJ) to the object classes for our analysis throughout this chapter; 

however, in Chapter 6, we will describe a way to use satellite imagery to assist in 

establishing prior knowledge used in a bot's area of operation. Consequently, our 

assignment rule classifies an unknown object to the object class with the largest posterior 

probability given by Eq. 5.3. 

An unknown pattern's normal distance is adapted as a weight on the likelihood 

function based on the general behavior of the training patterns about each object class's 

respective first principal eigenvector. For training patterns that tend to h~ve large normal 

distances from their respective first principal eigenvector ~~J, such as the green object 

class in Fig. 5.5, the normal distance D. for the unknown pattern f is adapted as a 
J -

weighted value on the likelihood function of the object class OJ as a multiplier to obtain 

(5.6) 

On the other hand, when the training patterns tend to have smaller normal distances from 

their respective first principal eigenvector, such as the blue class in Fig. 5.5, the normal 
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distance D1 for the unknown pattern f is adapted as a weighted value on the likelihood 

function of the object class 0
1 

as a divisor to obtain 

.z-(ZioJ~ P~oJ (5.7) 

J 

Consequently, for an unknown pattern with a large normal distance from a first 

principal eigenvector, Eq. 5.6 will enhance the likelihood value when the unknown 

pattern is among a crowd of training patterns from an object that with large normal 

distances from the same first principal eigenvector. On the other hand, the use ofEq. 5.7 

on the unknown pattern (black star) in Fig. 5.5 will enhance the likelihood value of the 

blue class since the star is among the crowd ofblue training patterns. However, the use 

ofEq. 5.6 on the star for the green class will not yield any significant changes to the 

green class's likelihood value since the star does not exist among a crowd of green 

· ...... training patterns. Such enhancements to the likelihood function will improve the 

discriminating power of the posterior probability. 

We can generalize Eqs. 5.6 and 5.7 to form likelihood functions that are weighted by a 

distance function d 1 (Z_, ~ 11 ) that takes on various forms involving the normal distances 

given by Eq. 5.2. For this research, we will consider distance functions d 1 ([,~ 11 ) that 

1 1 1 2 ( ) are defined by 1, - , -
2 

, ( ) , D 1 , D 1 , and exp D 1 . Thus, our generalized 
D1 D

1 
exp D1 

weighted likelihood function becomes 
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(5.8) 

Hence, our weighted KNN density estimation is given by 

zr]io ,d.)=dr],e 1 .)·~ \j_ 1 1 1 \j_- 1 N.V 
J 

(5.9) 

Therefore, our generalized adaptive Bayesian classifier is defined by the posterior 

probability 

(5.10) 

where our unconditional probability is given by 

)=I 
(5.11) 

= ±z(Z 101 ,d;)P(oJ 
}=1 

The novel adaptive Bayesian classifier in Eq. 5.10 puts more weight on the likelihood 

function when the behavior of an unknown pattern is similar to the patterns of a specific 

object class. For instance, as previously noted, the unknown pattern (black star) 

displayed in Fig. 5.5 is located more among the blue class. The adaptive Bayesian 
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classifiers for each class will respond using the weighted likelihood function given by Eq. 

5.9. The weighted likelihood function associated with the blue class will have the 

greatest value since the unknown pattern is among a dense crowd of blue patterns and a 

close distance to the respective first principal eigenvector like the other blue patterns in 

the crowd. Consequently, the larger posterior probability associated with the blue class 

will give us confidence to assign the unknown pattern to the blue object class. 

5.4 Adaptive Bayesian Classifier Appraisal 

In this section, we will assess the performance of the adaptive Bayesian classifier with 

the distance function d J {Z, fu) defined by 1, -
1
- , ~, ( ) , D J , D ~ , and 

D1 D1 exp D1 

exp(D1 ). We will compare these classification results to the performance by the 

traditional KNN and Parzen classifiers. The classifiers are teamed up with our most 

favorable feature vectors presented in Chapter 4 and evaluated on the blind data set 

discussed in Chapter 2. Our analysis will show that our adaptive Bayesian classifiers 

have the ability to outperform the KNN and Parzen classifiers. Furthermore, we see that 

some adaptive Bayesian classifiers show exceptional classification performance on a 

certain object class but do not perform as well on blind patterns from other object classes. 

This phenomenon is a result of our weighted likelihood functions adapting to the 

behavior of each object class's patterns about their respective first principal eigenvector. 

Additionally, we explore why some blind patterns are being misclassified under certain 

thermal conditions. 
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5.4.1 Blind Data Performance 

We assessed the performance of our adaptive Bayesian classifier given by Eq. 5.10 with 

the distance function d . {], g_ 1 . ) defined by 1, -
1
-, --4 , ( )' D , D

1

2 
, and 

1 \L 1 D D . exp D 1 

J J J 

exp (D 1 ). We compared these classification results to the performance by the traditional 

KNN and Parzen classifiers presented in Sections 4.4.2 and 4.4.3, respectively. Each 

classification model is formed by one of these classifiers and a feature vector from the 

extended and compact objects displayed in Tables 4.9 and 4.17 presented in Chapter 4. 

The classification models designed for the extended and compact objects are evaluated on 

the respective blind data sets for the extended and compact objects discussed in Chapter 2 

and presented in Table 2.2. 

Tables 5.1 and 5.2 present the average error rates for the adaptive Bayesian, KNN and 

Parzen classifiers using the most favorable feature vectors and blind data for the extended 

and compact objects, respectively. The K values for the KNN classifier and h values for 

the Parzen classifier are presented in blue shaded cells in each table and were derived 

using the leave-one-out method as discussed in Chapter 4. The numerical labels for the 

feature vectors of the extended and compact objects are displayed in Tables 4.2 and 4.1 0, 

respectively. As we can see, the top performers from the adaptive Bayesian classifiers 

outperform the best models designed from the KNN and Parzen classifiers for both the 

extended and compact objects. For the extended objects in Table 5.1, the adaptive 

Bayesian classifier with the distance function d 1 {Z, g_ 11 ) = D 1 and feature vector 

<1,2,3,4,6,11,13,14,16> result in the best classification performance with an estimated 
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error rate of 28.26%, while the top performers for both the KNN and Parzen only obtain 

error rates of approximately 33.70%. For the compact objects in Table 5.2, the adaptive 

Bayesian classifier with the distance function d1 (Z,~ 11 ) defined by 1, D 
1

, and exp(D
1

) 

along with the feature vector <1 ,2,4,6,7,8, 10,11 ,13,14, 15> all produce error rates of only 

10%, while the KNN and Parzen classifiers both display their best classification 

performances with error rates of 15%. Therefore, we conclude that the adaptive Bayesian 

classifier is an appropriate choice for a classification application, such as ours, involving 

hyperconoidal clusters consisting of patterns in an n-dimensional feature space that are 

characterized by their behavior about the respective first principal eigenvector. 

As expected, the average error rates for the adaptive Bayesian classifier in Tables 5.1 

and 5.2 vary with choice of feature vector and distance function d 1 (Z, ~ 11 ). The next 

question is how these combinations affect the adaptive Bayesian classifier's classification 

performance on the blind data for each object class within the extended and compact 

object categories. We analyzed the confusion matrices for the adaptive Bayesian 

classifier involving every combination of feature vectors and distance functions 

dj (Z,~ 11 ) in Tables 5.1 and 5.2. Once again, we saw variations in the error rates within 

each object class with different combinations of feature vectors and distance functions. 

Within the extended object class category, the highest error rates consistently occurred 

with the wood wall object class. The average of the error rates across the 133 possible 

combinations for each object class is: 40.27% for the brick wall, 18.31% for the hedges, 

20.17% for the picket fence, and 75.32% for the wood wall. There were nine 

combinations that resulted in the lowest error rate of 8. 70% for the brick wall. Six 
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combinations resulted in the lowest error rate of 8. 70% for the hedges. The picket fence 

had the lowest error rates of 4.35% with four combinations and 8.70% with four other 

combinations. Six combinations resulted in the lowest error rate of 56.52% for the wood 

wall. Tables 5.3a-d presents five confusion matrices subjectively selected from the set of 

combinations of feature vectors and distance functions that resulted in the lowest error 

rates for each class in the extended object category. 

Within the compact object class category, the highest error rates consistently occurred 

with the steel pole object class. The average of the error rates across the 238 possible 

combinations for each object class is: 29.56% for the steel pole and 4.71% for the tree. 

Four combinations resulted in the lowest error rate of20% for the steel pole. The tree 

had the lowest error rates ofO.OO% with 136 combinations of feature vectors and distance 

functions. Tables 5.4a-b presents four confusion matrices subjectively selected from the 

set of combinations of feature vectors and distance functions that resulted in the lowest 

error rates for each class in the compact object category. As displayed in Tables 5.4, the 

steel pole and tree object classes have the feature vectors for all the chosen combinations 

and the same distance functions for three of the combinations. 

As we can see in Tables 5.3 and 5.4, some adaptive Bayesian classifiers show 

exceptional classification performance on a certain object class but do not perform as 

well on blind patterns from other object classes. Thus, one classifier may perform 

exceptionally on specific unknown patterns where another classifier is deficient, and vice 

versa. In most cases, the classification models presented in Tables 5.3 and 5.4 present 

better classification results on their respective individual object class than the models' 

performance on all the classes within their respective extended or compact object 
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category as displayed by the average error rates in Tables 5.1 and 5.2. Consequently, 

each combination of a feature vector and adaptive Bayesian classifier with the particular 

distance function displayed in Tables 5.3 and 5.4 forms a model that acts as an expert in 

making classification decisions on patterns from their respective object class. In Section 

5.5, we will show how a classification model consisting of committees of these experts 

will further enhance the overall performance. 

5.4.2 Analysis ofMisclassifications 

We next explore why some blind patterns are being misclassified under certain thermal 

conditions. As discussed in Section 5.2, the common origin for the hyperconoidal 

clusters of a set of object classes is a region where patterns from the object classes will 

tend to "look alike." Thus, the closer the majority of an object class's patterns are to the 

common origin of all the hyperconoidal clusters, the higher the risk for misclassification 

of patterns from that object class by the classification model. We can use the distance 

metrics given by Eqs. 5.1 and 5.2 to predict what object classes are at risk for 

misclassification. By relating the scalar project metric in Eq. 5.1 to the normal distance 

in Eq. 5.2, we saw in Figs. 5.3 and 5.4 that the patterns of the wood wall and steel poles ··· -

tend to cluster closer to common origin compared to the other object classes in the 

extended and compact object categories, respectively. Consequently, our classification 

results in Section 5 .4.1 verified our predictions since the wood wall and steel pole 

displayed the highest error rates within their respective object class categories. Now we 

will go a little deeper "into the bushes" to determine what thermal conditions are required 

for the patterns from two distinct object classes to "look alike." The analysis consisted of 
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finding misclassification trends in both the extended and compact object categories using 

the confusion matrices resulting from our adaptive Bayesian classifiers and comparing 

the individual thermal images and feature values of the misclassified objects to those of 

the respective object classes in the training data set. 

5.4.2.1 Misclassifications of Extended Objects 

We will begin by making inferences on the misclassification of objects within the 

extended object category. Fig. 5.6 displays the visible images and thermal images of a 

sample of extended objects used in the training data set. The thermal images present the 

thermal radiance and contrast that are typically found in the scenes for each object class 

in their respective training data set. The reference emitter (electrical tape) is displayed in 

each thermal image since it was segmented to generate the Lr feature value as discussed 

in Chapter 3. Since the extended object training data discussed in Chapter 2 was captured 

at various viewing angles and times from 15 March to 3 July 2007, there is some 

deviation in the thermal radiance and contrast for these object classes due to the diurnal 

cycle of solar energy. Thus, there were times when it was difficult to detect the object 

and/or distinguish between the object and the reference emitter in the thermal scene. The 

brick walls used for the training data normally had a low overall thermal radiance and 

thermal contrast between the brick and the mortar layers. The reference emitter for the 

brick wall normally had a thermal radiance slightly higher than the brick wall's surface. 

The hedges normally displayed a good thermal contrast. The reference emitter for the 

hedges usually had a higher thermal radiance than surface of the hedges. The hedges 

displayed the greatest deviation in thermal radiance throughout its training data since the 
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leaves on the hedges tend to track the availability of solar energy due to the low specific 

heat of the leaves [23]. When the hedges are in the shade, a cloud passes, or the sun 

begins to set, the surface temperature of the hedges stays consistent with the lower 

ambient temperature and the hedges will display a low thermal radiance in the scene. 

The picket on the picket fence normally displayed a good thermal contrast with the 

foreground (in the gaps between the pickets). In the context of this research, we have 

defined foreground as the region in the scene consisting of objects behind the target of 

interest and within the thermal camera's field of view. On the other hand, background is 

defined as the region either in front or to the side of the target consisting of thermal 

sources that emit thermal energy onto the target's surface. The source emitting this 

thermal energy may or may not be in the camera's field of view. The reference emitter 

normally had a higher thermal radiance than the wood surface of the pickets. The 

thermal radiance and contrast of the wood wall and its reference emitter were normally 

low, similar to the brick wall. 

As noted in Section 5.4.1, the brick wall had the second highest average error rate of 

40.27% across all combinations of feature vectors and distance functions used by the 

adaptive Bayesian classifier. The misclassified patterns from the brick wall object class 

were mainly assigned to the hedges. Fig. 5.7 displays the thermal image of one of the 

misclassified brick walls found in the blind data set that was captured on 24 September 

2007 hrs at 1005 hrs. As we can see, the high thermal radiance of the reference emitter 

and the high thermal radiance and contrast associated with the blind brick wall in Fig. 5.7 

resemble the hedges and reference emitter in Fig. 5.6b more than the brick wall and 

reference emitter in Fig. 5.6a. Consequently, by analyzing the thermal images and 
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feature values, we found that some of the brick wall patterns from the blind data are 

misclassified as a result of much larger and smaller features values compared to those 

found in the training data set. The features generated from the misclassified brick wall 

blind objects that resulted in larger feature values compared to the training data were Lr, 

So 1, En 1, Co2, and En2. The feature Er2 generated from the misclassified brick wall 

blind objects is smaller in value compared to the brick wall feature values found in the 

training data set. These results are consistent with the characteristics of our features that 

we discussed in Chapter 3. In Chapter 3, we noted that Sol will take on small values 

(close to zero) for surfaces with a constant thermal radiance (i.e., gray-level value in the 

thermal image) and large values (close to unity) when the surface of an object displays 

large deviations among its gray-level values in the thermal image. Similarly, the feature 

values for Co2, Enl, and En2 will increase for objects with more variations (randomness 

or complexity) in radiant emissions. 

As noted in Section 5.4.1, the hedges had the lowest average error rate of 18.31% 

across all combinations of feature vectors and distance functions used by the adaptive 

Bayesian classifier. The misclassified hedges were mainly assigned as brick walls. 

These misclassifications occurred in the thermal images of hedges from the blind data set 

that presented a low thermal radiance of the reference emitter and low thermal radiance 

and contrast in the thermal scene associated with the hedges. Fig. 5.8 displays the visible 

and thermal image of one of the hedges that was misclassified as a brick wall. The 

thermal radiance emitted from the hedges and reference emitter seem to have a stronger 

resemblance with the thermal image of the brick wall in Fig. 5.6a that is normally found 

in the training data set. On the other hand, the hedges from the blind data set display a 
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weak resemblance to the thermal radiance of the hedges in Fig. 5.6b that are often found 

in the training data set. Classifying hedges using a thermal imaging system presents a 

challenge since the leaves on the hedges tend to track the availability of solar energy due 

to the low specific heat of the leaves [23]. When the hedges are in the shade, as is the 

case for the hedges in Fig. 5.7, a cloud passes, or the sun begins to set, the surface 

temperature of the hedges stays consistent with the lower ambient temperature. 

Consequently, a low level of solar energy available to this low specific heat object results 

in less thermal radiation emitted and features that tend to look like those of other objects 

with a similar thermal scene. 

As noted in Section 5 .4.1, the picket fence had the second lowest average error rate of 

20.17% across all combinations of feature vectors and distance functions used by the 

adaptive Bayesian classifier. The misclassified picket fences from the blind data set were 

normally assigned as wood walls. Fig. 5.9 displays the visible and thermal images of a 

picket fence from the blind data set that was misclassified as a wood wall. The common 

characteristics of a picket fence from the blind data that results in a misclassification as a 

wood wall are a low thermal radiance emitted from the reference emitter and minimal 

thermal radiance contrast between the pickets and foreground as we see in Fig. 5.9. 

Thus, the thermal radiance displayed by the reference emitter for the picket fence in Fig. 

5.9 is similar to the wood wall in Fig. 5.6d. In any case, the picket fence will always run 

the risk of being classified as a wood wall, and vice versa, due to the similar physical and 

geometrical properties ofthe two objects. 

As noted in Section 5.4.1, the wood wall had the highest average error rate of75.32% 

across all combinations of feature vectors and distance functions used by the adaptive 
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Bayesian classifier. As we mentioned earlier, the thermal images of the wood walls used 

in the training data typically had a low thermal radiance and contrast for the wood wall 

and its reference emitter. As a result, when relating the scalar project metric in Eq. 5.1 to 

the normal distance in Eq. 5.2, we saw in Figs. 5.3 that the patterns of the wood wall tend 

to cluster closer to common origin compared to the other object classes in the extended 

object category. However, this common origin is a region where the hyperconoidal 

clusters from all the object classes diverge. Thus, blind objects that are wood walls and 

have a similar thermal radiance as the wood wall training data in Fig. 5.6d will run the 

risk ofmisclassifying in this region where patterns from the object classes will tend to 

"look alike." On the other hand, if a blind object is a wood wall and its feature values 

deviate greatly from the norm found in the wood wall's training data, then it will more 

likely be classified as one of the other object classes. 

Now we will go into more detail with the wood walls. Fig. 5.1 Oa presents a wood 

wall from the blind data that was misclassified as a brick wall. Thus, the blind wood wall 

object and its reference emitter in Fig. 5.10a display a low thermal radiance similar to the 

thermal images of the brick wall in Fig. 5.6a and wood wall in Fig. 5.6d. As we showed 

ih Chapter 4, the thermal features are invariant to the rotation of the given object. 

Consequently, the thermal contrast resulting from tight fitting, slightly slanted boards 

forming the blind wood wall in Fig. 5.1 Oa could result in a closer resemblance to the 

layers of bricks in Fig. 5.6a in feature space. 

Three primary conditions that result in a wood wall being misclassified as a picket 

fence are a high thermal contrast between the wood boards and the foreground in the gaps 

between the boards, a gap size between the boards that is wider than the typical gaps 



273 

found in the wood wall's training data, and a reference emitter that produces a higher 

thermal radiance than the reference emitters with a low thermal radiance in the wood 

wall's training data. Fig. 5.10b displays a thermal image of a blind wood wall object that 

was misclassified as a picket fence. The thermal features generated from this blind wood 

wall object would more likely resemble the training data features generated from thermal 

images of the picket fences captured at 45 degrees from incidence since viewing angles 

off of normal incidence make the gaps appears smaller. 

Three primary conditions that result in a wood wall being misclassified as hedges are 

a higher thermal radiance emitted by both the surface of the wood wall and reference 

emitter, high thermal contrast on the surface of the wood boards due to the grains in the 

wood, and small gaps between the boards of the wood wall. Thus, the combination of 

these conditions results in thermal features that resemble the complexity (or randomness) 

associated with hedges. Fig. 5.1 Oc displays the same object as Fig. 5.1 Ob capture within 

one minute apart but at different viewing angles. The wood wall blind object in Fig. 

5.1 Oc misclassified as hedges due to these three conditions. 

5.4.2.2 Misclassifications of Compact Objects 

Fig. 5.11 displays the visible images and them1al images of a sample of compact objects 

used in the training data set. The thermal images present the thermal radiance and 

contrast that are typically found in the scenes of the training data sets for the steel pole 

and tree object classes. The reference emitter (electrical tape) is displayed in each 

thermal image since it was segmented to generate the Lr feature value as discussed in 

Chapter 3. Since the compact object training data discussed in Chapter 2 was captured at 
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various viewing angles and times from 15 March to 3 July 2007, there is some deviation 

in the thermal radiance and contrast for these object classes due to the diurnal cycle of 

solar energy. Thus, there were times when it was difficult to detect the object and/or 

distinguish between the object and the reference emitter in the thermal scene. As also 

discussed in Chapter 3, the steel poles consistently display a relatively constant surface 

radiance. However, a slight thermal contrast may appear on steel poles with aged painted 

surfaces that result in flaking ofthe paint, such as the octagon steel pole in Fig. 5.11c. 

Furthermore, the reference emitter on the surface of the steel poles is normally difficult to 

distinguish from the steel poles' surfaces since the emissivity of the electrical tape 

( &~0.97) is about the same as emissivity of the steel poles' surfaces ( & ~ 0.92-0.96 at 

75.2° F depending on the type of paint) [23]. The trees' surfaces typically displayed a 

high thermal contrast due to the large variations in the radiance from the bark patterns. 

However, the birch tree's surface usually presented the lowest thermal contrast, . 

compared to the other trees, due to the less rough characteristics of its bark. The 

reference emitter attached to the trees' surfaces normally displayed a higher thermal 

radiance than the trees' surfaces. 

As noted in Section 5.4.1, the steel pole had the highest average error rate of29.56% 

across all combinations of feature vectors and distance functions used by the adaptive 

Bayesian classifier. When relating the scalar project metric in Eq. 5.1 to the normal 

distance in Eq. 5.2, we saw in Figs. 5.4 that the patterns of the steel pole tend to cluster 

closer to common origin compared to the patterns of the tree object class. As previously 

discussed, this common origin is a region where the hyperconoidal clusters from all the 

object classes diverge. Thus, blind objects that are steel poles and have a similar thermal 
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radiance and contrast as the steel pole training data in Fig. 5.6a-c will run the risk of 

misclassifying in this region where patterns from the object classes will tend to "look 

alike." Additionally, if a blind object is a steel pole and its feature values deviate greatly 

from the norm found in the steel pole's training data, then it may be misclassified as a 

tree. Fig. 5.12 displays the visible and thermal images of a steel pole captured on 5 

November 2007 at 1428 hrs for the blind data that consistently misclassified as a tree. 

This steel pole used for the blind data was an unpainted, lightly oxidized surface with an 

emissivity of approximately & ~ 0.80 at 77° F [23]. Consequently, the electrical tape 

reference emitter, with an emissivity of approximately & ~ 0.97, emits a higher thermal 

radiance compared to the surface of the steel pole. Furthermore, the oxidized surface of 

the steel pole results in a thermal contrast that is seen in the steel pole's thermal image. 

T~e combination of the thermal contrast on the surface of the steel pole and higher 

emission of thermal radiation by the reference emitter results in a thermal scene similar to 

the trees in the training data set and misclassification by the adaptive Bayesian classifiers. 

As noted in Section 5.4.1, the tree object class had the highest average error rate of 

4. 71% across all combinations of feature vectors and distance functions used by the 

adaptive Bayesian classifier. Fig. 5.13 displays the visible and thermal image of a tree 

from the blind data set that misclassified as a steel pole. The obvious conditions that will 

result in a misclassification of a tree as a steel pole are a low thermal contrast on the 

surface of the tree and thermal radiant emission from the reference emitter that is similar 

to the tree's surface as displayed in Fig. 13. Consequently, the thermal image of the tree, 

in Fig. 13 has characteristics that are similar to the steel poles in Fig. 5.11 a-c. 
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5.4.2.3 Misclassifications Discussion 

The correct classification of a blind object was independent of the geographical location 

of the object. For instance, the adaptive Bayesian classifier was just as successful in 

correctly classifying a picket fence in Buffalo, New York, as it was in York County 

Virginia. The two primary factors that contributed to the misclassification of the blind 

objects were a lack of representative training data and the effects ofthe diurnal cycle of 

solar energy. Thus, some misclassifications could be eliminated by expanding the range 

of features in the training data set by capturing a more representative set of thermal 

images. However, in most cases a lack of a thermal signature from an object due to the 

diurnal cycle of solar energy will continue to result in feature values from different object 

classes looking alike. As discussed in Chapter 4, the phenomenon primarily responsible 

for a target and the surrounding surfaces having approximately the same level of thermal 

radiant emissions is known as thermal crossover [23]. Thermal crossover results in 

minimal thermal contrast between the surfaces of objects and the surrounding 

environment within the thermal infrared camera's field of view. Consequently, thermal 

images of objects captured during thermal crossover run the risk of producing features 

that the bot will think look like features from other object classes. In Chapter 6, we will 

discuss how these periods of thermal crossover could result in a limitation to our ability 

to classify non-heat generating objects in an outdoor environment using a thermal 

infrared imaging sensor. We will also present a method that integrates a thermal contrast 

threshold rule into the detection phase of the classification process that requires a 

minimum amount of contrast in the scene to use the thermal infrared imaging sensor. If 
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the rule is not satisfied, the autonomous robot must reject the use of the thermal imaging 

sensor and rely on other sensors such as ultrasound to assist in classifying the target. 

Another observation from our analysis is that in some cases the misclassification of a 

blind object was associated with either a low posterior probability or a posterior that was 

close in value to another posterior for an assignment to a different object class. Although 

the posterior probabilities provide a degree of certainty in the bot's ability to correctly 

classify an unknown object, these two situations may increase risk ofmisclassification 

and decrease our confidence in the bot's classification decision. We can gain more 

confidence in the bot's decisions by integrating certain rules into the classification model 

that will require the bot to capture another thermal image of an unknown object if these 

rules are not satisfied. For instance, if the classification model's resulting posterior 

probability for assigning an unknown pattern to an object class does not satisfy a specific 

threshold, then the classification is rejected_and the bot is required to capture another 

image, perhaps at another viewing angle, for class assignment. We will present these 

types of rules with our novel adaptive Bayesian classification model in Section 5.5. The 

tendency for an object to "look like" another object under certain thermal conditions 

(other than thermal crossover) presents a degree of vagueness that may call for the 

integration of fuzzy logic into the classification model. Additionally, we could integrate 

other sensors into the autonomous robotic system by designing a multi-sensor data fusion 

architecture where the use of multiple sensors complements the overall performance of 

the classification model. We will discuss our plans for future research involving the 

integration of fuzzy logic into our classification model and designing a multi-sensor 

classification model in Chapter 6. 
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5.5 Adaptive Bayesian Classification Model Design 

We will now present the design of our Adaptive Bayesian Classification Model. In 

Section 5 .4.1, we saw that some adaptive Bayesian classifiers show exceptional 

classification performance on a certain object class but do not perform as well on blind 

pattern,s from other object classes. Thus, one classifier may perform exceptionally on 

unknown patterns from a specific object class where another classifier is deficient, and 

vice versa. Consequently, each combination of a feature vector and adaptive Bayesian 

classifier with the particular distance function displayed in Tables 5.3 and 5.4 forms a 

model that acts as an expert in making classification decisions on unknown patterns from 

the respective object class. By forming a committee of these experts of a specific object 

class, we should have a model with improved classification performance and confidence 

in deciding whether an unknown pattern belongs to the respective object class. With 

multiple committees, each consisting of experts of a specific object class, one committee 

of experts will perform exceptionally on specific unknown patterns where another 

classifier is deficient, and vice versa. By combining each committee of experts into one 

classification model, we are able to exploit the expertise of each committee and 

complement the overall performance ofthe classification model. We can increase the 

confidence level in our model's classification decisions by integrating the dynamical 

window technique presented in Chapter 4 that lets each committee of experts decide on 

class assignment by considering information collected from multiple window sizes of the 

thermal image of an object. Additionally, we can integrate rules to improve the accuracy 

of class assignments and prevent voting ties by the committees. Included are rules that 

will require the bot to reject class assignments if a posterior probability is below a given 
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threshold or too close to another committee's posterior probability. This will prevent 

decisions on class assignments during these high-risk situations. Rejections of a class 

assignment will require the bot to capture another thermal image of the unknown object 

for classification, perhaps at another viewing angle. We will seek to choose threshold 

values that minimize both the error rate and humber of rejections of class assignments. 

This is the cornerstone of our Adaptive Bayesian Classification Model. 

The concept behind our Adaptive Bayesian Classification Model resides in the topic 

of combining classifiers. There are many strategies for combining classifiers [35, 82, 

34]. Analogous to what is found for single classifiers, there is no universal combination 

of classifiers. The combination of classifiers is chosen based on how well it performs for 

a specific pattern classification application. Thus, the No Free Lunch Theorem discussed 

in Chapter 4 prevails again. Consequently, the Adaptive Bayesian Classification Model 

is an appropriate choice for any classification application, such as _ours, involving 

hyperconoidal clusters consisting of patterns in an n-dimensional feature space that are 

characterized by their behavior about their respective first principal eigenvector. 

Fig. 5.14 presents our algorithm for the Adaptive Bayesian Classification Model 

designed to assign classes to objects from the extended object category. As we will 

show, this algorithm can be easily modified to support the compact object category. The 

algorithm begins with the thermal infrared imaging camera receiving thermal radiation 

emitted from objects within the camera's field ofview as described in Chapter 2. The 

thermal image of the scene is pre-processed as discussed in Chapter 2. After pre­

processing, existing algorithms are used to detect and segment an unknown object in the 

thermal image. The curvature algorithm, introduced in Chapter 3, is used to distinguish 
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and separate extended objects from compact objects. The bot will then use the Adaptive 

Bayesian Classification Model to assign a class to the unknown object. 

Once the unknown object is categorized as either an extended or compact object, the 

respective set of thermal features are generated from window segments of the object's 

thermal image that vary in size by a technique that we will refer to as dynamical 

windows. Dynamical windows increases our confidence level in our model's final 

classification decision since the technique lets the bot make a decision on the class 

assignment of an unknown object by interpreting information collected from multiple 

window sizes of the thermal image of the object. This technique is analogous to how a 

human would perhaps study an object at varying fields of view to make a class 

assignment. In Section 4.6.2, we saw that generating thermal features from 100 window 

segments of an extended object's thermal image that decrease in size will result in 

posterior probabilities computed by a Bayesian classification model that generally display 

minimal variations until about the 801
h window size index. Thus, the posterior 

probabilities produced by the classification model generally became sensitive to the 

smaller window segments with an index greater than 80, resulting in inconsistent 

posterior probabilities and class assignments. Consequently, we will apply the dynamical 

window technique by generating thermal features from 80 window segments of 

decreasing size. For the extended objects' thermal features displayed in Table 4.2, the · 

micro features generated from a segment of the object's surface and meteorological 

features will remain constant during the classification of the given unknown object. 

However, the values for the macro features will be computed for each window size. For 

the compact objects' thermal features displayed in Table 4.1 0, the micro features Lr and 
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Lb will remain constant during the classification of the given unknown object. However, 

the micro features Lo, Lor, Lob, and Eo and macro features will be computed for each 

window size since Lo and the macro features are generated from the same center segment 

of a given compact object. 

A committee of experts is formed for each object class within both the extended and 

compact object categories. As mentioned previously, each expert consists of a feature 

vector and adaptive Bayesian classifier with a particular distance function that performs 

exceptionally on classifying unknown patterns from a specific object class. Table 5.3 

displays the experts for the extended objects. For the extended object category, each 

object class consists of five experts that form a committee of experts. As we can see in 

Table 5.4, the steel pole and tree compact object classes each have four experts in their 

respective committee. The selection of the number and types of experts is subjective; 

however, the goal should always be to select the experts for each object class that result 

in exceptional classification performance. Additional research is required to determine 

the most favorable number of experts in each committee. Each expert in each committee 

votes on the 80 patterns generated from each dynamical window segment of the unknown 

object's thermal image by assigning a class and posterior probability. 

The next phase in the algorithm consists of the first set of classification rules. Since 

each committee is an expert in classifying unknown patterns from a specific object class, 

a majority vote by the experts in a given committee of an unknown object being assigned 

to their respective object class would give us some confidence that the committee of 

experts is correct. Consequently, the first rule requires that the majority (or mode) of 

votes of the experts in a given committee be in favor of their respective object class, 
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known as the mode class. Furthermore, the number of experts in each committee having 

the respective object class as their mode must be greater than or equal to a Committee 

Mode Frequency Threshold. The Committee Mode Frequency Threshold is a value from 

the set { 1, 2, 3, ... ,n} where n is the number of experts in each committee. For instance, a 

mode class equal to brick wall and a Committee Mode Frequency Threshold = 3 implies 

that the mode of the votes for the committee must be in favor of the brick wall and at 

least 3 of the 5 experts in the committee must have the brick wall as their mode when 

voting on the unknown pattern. If these two rules are not satisfied for a given committee, 

the committee assigns a class label of 0 to the unknown object with a posterior 

probability ofO%. If the rules are satisfied, the given committee's voting information 

moves on to the next set of rules. 

The next set of rules applies to those experts with the required mode class in each 

respective committee. The first rule is that the total number of patterns voted in favor of 

the required class by the experts with the required mode class in each committee must be 

greater than or equal to a Required Class Votes Threshold. The chosen Required Class 

Votes Threshold is a number no greater than the product of the number of experts in a 

given committee and number of dynamical window segments (i.e., 5 * 80 = 400 for our 

extended object application). The choice for the Required Class Votes Threshold is 

associated with the Committee Mode Frequency Threshold. For instance, with the 

extended objects, if Committee Mode Frequency Threshold = 2 and Required Class 

Votes Threshold = 400 are selected, the rule involving Committee Mode Frequency 

Threshold may be satisfied; however, it is very possible that the rule involving the 

Required Class Votes Threshold may not be satisfied. The second rule is that the total 
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number of class voting ties by the experts with the required mode class in each respective 

committee must be less than or equal to the Ties Threshold. By expecting the ideal 

situation, where there are no class voting ties by each expert on the total number of 

patterns produced by the dynamical window, the Ties Threshold= 0. The third rule is 

that the desired mean of the posterior probabilities of the experts with the required mode 

class in each respective committee is greater than or equal to a Posterior Threshold. The 

Posterior Threshold is chosen based on the degree of confidence desired for each 

committee's recommendation for a class assignment of the unknown object. If a 

committee satisfies these three rules, then its mode class and the associated mean of the 

posterior probabilities of the experts with the required mode class is provided as the 

committee's recommendation for a class assignment of the unknown object. Otherwise, 

if the three rules are not satisfied, the committee assigns a class label of 0 to the unknown 

object with a posterior probability of 0%. 

The final phase in the algorithm for the Adaptive Bayesian Classification Model 

involves all the committees to present their recommendations for the class assignment of 

the unknown object. The recommended assigned class and their respective posterior 

probability from each committee are arranged in ascending order by the posterior 

probabilities. If the maximum posterior probability among all the committees is not 0%, 

then the recommended class assignment information from each committee is sent to the 

final decision rule. Otherwise, if the maximum posterior probability is 0%, then all the 

committees recommended a class label of 0 to the unknown object with a posterior 

probability of 0% and the class assignment is rejected by the model. The final decision 

rule is that the absolute difference between the two largest posterior probabilities is 



284 

greater than or equal to an Absolute Posterior Difference Threshold. The Absolute 

Posterior Difference Threshold will prevent high-risk situations of assigning a class to an 

unknown object when two committees made different class assignment decisions but 

have a small difference in their posterior values. This threshold will also eliminate ties 

when two committees vote on different class assignments but they have the same 

posterior probability values. If the rule involving the Absolute Posterior Difference 

Threshold is not satisfied, then the recommended class assignment is rejected by the 

model. Otherwise, if the Absolute Posterior Difference Threshold is satisfied, the 

unknown object is assigned to the class with the largest posterior probability. 

Rejections of a class assignment will require the bot to capture another thermal image 

of the unknown object for classification, perhaps at another viewing angle. 

Consequently, the Adaptive Bayesian Classification Model would be appropriate for 

autonomous robotic systems that capture continuous frames. If the class assignment is 

accepted by the Adaptive Bayesian Classification Model, the bot will use this 

classification output to decide on the next required action in the intelligence algorithm 

[report the object and/or (if the object is a hedge, go through the object or if the object is 

a brick wall, go around the object]. 

5.6 Adaptive Bayesian Classification Model Application 

In this section we will assess the performance of the Adaptive Bayesian Classification 

Model presented in Section 5.5 on the extended and compact blind data displayed in 

Table 2.2. We will also evaluate the classification model's response when confronted 

with the following additional blind objects that include objects outside the classes in the 
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training data sets: brick wall with moss on the surface, concrete wall, bush, gravel pile, 

steel picket fence, wood bench, wood wall of a storage shed, square steel pole, aluminum 

pole for a dryer vent, concrete pole, knotty tree, telephone pole, 4x4 wood pole, and 

pumpkin. 

5.6.1 Performance on Blind Data (with Classes= Training Set) 

The performance of the Adaptive Bayesian Classification Model on the blind data in 

Table 2.2 was analyzed using various combinations of values for the model's thresholds. 

As discussed in Section 2.3, the blind data presented in Table 2.2 consisted of the same 

classes and were captured at the same viewing angles as the training data but were not the 

same objects. The blind data was classified by the Adaptive Bayesian Classification 

Model using a login node on the DoD High Performance Computing Modernization 

Program system at the Army Research Laboratory Major Shared Resource Center that 

included 8 GB of memory at a processor frequency of 3.6 GHz. The model required 

approximately 4.45 minutes to make a decision regarding the class assignment of each 

object in the extended object category consisting of the brick wall, hedges, picket fence, 

and wood wall object classes. The model required approximately 1.16 minutes to 

classify each object in the compact object category consisting of the steel pole and tree 

object classes. Tables 5.5 and 5.6 provide the confusion matrices of the Adaptive 

Bayesian Classification Model with different combinations of threshold values for the 

extended and compact object categories, respectively. The confusion matrices include 

the number of objects that were rejected by the Adaptive Bayesian Classification Model 
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The thresholds provide the ability to fine tune the classification model to support the 

extended and compact object categories. The appropriate selection of the threshold 

values will minimize the classification error rate and number of rejections. For the 

extended objects, we fixed the threshold values as displayed in the upper left comer of 

Table 5.5a and varied the Posterior Threshold as shown. As we can see, a Posterior 

Threshold= 0.6 (or 60%) provides the most favorable average error rate (28.20%) and 

the least amount of rejections of class assignments (11). We now fix Posterior Threshold 

= 0.6 and vary the Required Class Votes Threshold as shown in Table 5.5b. In this case, 

the Required Class Votes Threshold set to 400 results in the lowest average error rate and 

total rejections. However, we will subjectively select Required Class Votes Threshold =1 

since the setting of 400 appears to slightly increase the number of misclassifications for 

the wood wall object class, which is already more vulnerable to classification errors as 

discussed in Section 5.4. Fixing the Required Class Votes Threshold= 1, we now vary 

the Committee Mode Frequency Threshold as displayed in Table 5.5c. As we can see, 

setting Committee Mode Frequency Threshold = 5 provides the most favorable 

performance. Table 5.5d presents variations of our final threshold, Absolute Posterior 

Difference Threshold, while fixing the threshold displayed in the upper left comer of the 

matrices. We can see that the threshold settings in the upper left comer along with letting 

Absolute Posterior Difference Threshold= 0.01 provide an acceptable average error rate 

of 26.16% with only a total of 7 rejections of class assignments. Consequently, these 

threshold settings appear to be a favorable selection for our extended objects. 
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Analysis of the performance of the Adaptive Bayesian Classification Model on the 

compact objects with variations in the threshold values was conducted in a similar 

fashion as the extended objects. For the compact objects, we begin in Table 5.6a by 

fixing the thresholds displayed in the upper left comer and varying the Posterior 

Threshold. As we can see, setting the Posterior Threshold= 0.6 (or 60%) results in the 

most favorable average error rate and total rejections. Consequently, we will choose 0.6 

as the setting for the Posterior Threshold. Since the variations in the Required Class 

Votes Threshold and Committee Mode Frequency Threshold in Table 5.6b and 5.6c, 

respectively, do not show any changes in the classification performance, we will set each 

of the their thresholds equal to one. In Table 5.6d, we can also see that the variations in 

the Absolute Posterior Difference Threshold values do not produce any changes in the 

model's classification performance. Consequently, we will choose the settings of the 

thresholds in the upper left comer and Absolute Posterior Difference Threshold= 0.01 as 

our favorable choices for the compact objects. 

Tables 5.7 and 5.8 provide a comparison of the confusion matrices of our Adaptive 

Bayesian Classification Models with the threshold settings discussed above to the best 

performers among the Adaptive Bayesian Classifier with the single distance function, 

KNN Classifier, and Parzen Classifier from Tables 5.1 and 5.2 on the extended and 

compact object categories, respectively. As we can see, our Adaptive Bayesian 

Classification Model performs exceptionally on the blind extended and compact objects 

shown in Table 2.2 compared to the KNN Classifier and Parzen Classifier. While the 

committees of experts and dynamical window technique integrated into the Adaptive 

Bayesian Classification Model increase the accuracy of class assignments and our 
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confidence in the model's final classification decision, the ability to reject class 

assignments that do not satisfy specific rules is the distinguishing factor that results in the 

Adaptive Bayesian Classification Model outperforming the Adaptive Bayesian Classifier 

with a single distance function. 

5.6.2 Performance on Blind Data (with Classes *- Training Set) 

We will now evaluate the Adaptive Bayesian Classification Model's response when 

confronted with the following additional blind objects that include objects outside the 

classes in the training data sets. Fig. 5.15 displays the visible and thermal images of 

some random blind extended objects consisting of a brick wall with moss on the surface, 

concrete wall, bush, gravel pile, steel picket fence, wood bench, wood wall of a storage 

shed. Fig. 5.16 displays the visible and thermal images of some blind compact objects 

consisting of a square steel pole, aluminum pole for a dryer vent, concrete pole, knotty 

tree, telephone pole, 4x4 wood pole, and pumpkin. The thermal images of these objects 

were captured between 6 July and 5 November 2007 on The College of William & Mary 

campus, throughout York County, Virginia, and on a farm outside Buffalo, New York. 

The performance of the Adaptive Bayesian Classification Model was assessed on these 

objects with threshold settings selected as discussed above for the extended and compact 

object categories and displayed in the confusion matrices for the Adaptive Bayesian 

Classification Model in Tables 5.7 and 5.8. 

Table 5.9 presents the actual blind object and object class assigned by the Adaptive 

Bayesian Classification Model along with the resulting posterior probability for the 

extended objects. The brick wall with moss on the surface in Fig. 5.15a was 



289 

misclassified as hedges due to the high thermal radiance of the reference emitter and the 

high thermal radiance and contrast associated with the blind brick wall having a strong 

resemblance to those of the hedges in the model's training data set as discussed in 

Section 5.4. The classification performance on brick walls with a larger range of thermal 

radiances could be improved by increasing the range of representative objects in the 

training data set as noted in Section 5.4.2.3. Furthermore, since the posterior probability 

for assigning the brick wall as hedges was 81.78%, setting the models Posterior 

Threshold to 82% would result in the model rejecting this class assignment and requiring 

the bot to capture another thermal image of the brick wall for classification, perhaps at 

another viewing angle. The concrete wall in Fig. 5.15b and bush in Fig. 5.15c were 

appropriately classified as a brick wall and hedges, respectively. The gravel pile in Fig. 

5.15d classified as hedges since it displays variations (randomness or complexity) in 

radiant emissions that are similar to the hedges in the training data set. Even though the 

thermal-physical properties of the steel picket fence used for the blind data in Fig. 5.15e 

and wood picket fence used in our training data set are obviously different, the model 

appropriately classified the steel picket fence as a (wood) picket fence since the blind 

object has the same picket pattern and similar thermal emissions from the foreground as 

the wood picket fences in the training data. 

During our research, we have continuously emphasized our desire to design a 

classification model that affords the ability to retain the original physical interpretation of 

the information in the signal data throughout the entire classification process. As a result, 

our Adaptive Bayesian Classification Model provides the ability to analyze the physical 

characteristics of objects and decisions by the experts in each committee to understand 
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the reason for misclassifications and rejections of class assignments. As we can see in 

Table 5.9, the Adaptive Bayesian Classification Model rejected the class assignment for 

the wood bench in Fig. 5.15fand wood wall on the shed in Fig. 5.15g. By analyzing each 

committee's decision making process, we found that the classifications of both the wood 

bench and wood wall were rejected for not satisfying specific rules within each 

committee. The class assignment of the wood bench was rejected since each committee 

did not have a mode class equal to their respective object class. For instance, the mode 

class for the brick wall, hedges, and picket fence committees was the wood wall. The 

mode class for the wood wall committee was the picket fence. As a result, the mode 

class rule was not satisfied and each committee recommended a class label of 0 to the 

wood bench with a posterior probability of 0%. The model subsequently rejected the 

classification of the wood bench. Similarly, the classification of the wood wall was also 

rejected for not satisfying rules within each committee. In this case, the brick wall, picket 

fence, and wood wall committees each recommended a class label of 0 and posterior 

probability ofO% to the wood wall since each oftheir mode classes was the hedges. The 

hedges committee had a mode class ofhedges; however, a class label ofO and posterior 

probability ofO% was recommended since only four out of the required five experts had 

the hedges as their mode class. Consequently, the model rejected the classification of the 

wood wall. 

Table 5.10 presents the actual blind object and object class assigned by the Adaptive 

Bayesian Classification Model along with the resulting posterior probability for the 

compact objects. As we can see, the square steel pole in Fig. 5.16a was appropriately 

classified as a steel pole by the model. We would expect an aluminum pole to classify as 
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a steel pole due to its approximately constant thermal radiance on the surface. However, 

as we can in Fig. 5 .16b, the expected constant thermal radiance on the surface is 

interrupted by a crease in the aluminum that results in a higher thermal radiance emitted 

from the crease due to the variation of emissivity with the shape of the object as we 

discussed in Chapter 3. Consequently, the model sees the thermal features generated 

from the surface of the aluminum pole more closely resembling the features of the trees 

in the training data set. The concrete pole in Fig. 5.16c classified as a steel pole due to its 

approximately constant thermal radiance on the surface resembling the surfaces of the 

steel poles in the training data. The knotty tree in Fig. 5.16d classified as a tree as 

expected. As we can see in Table 5.1 0, the model rejected the classification of the 

telephone pole in Fig. 5.16e. By analyzing the execution of the Adaptive Bayesian 

Classification Model on the telephone pole, we learned that both the steel pole and tree 

committees had a mode class equal to the steel pole. As a result, the tree committee 

recommended a class label of 0 and posterior of 0% to the telephone pole. On the other 

hand, the rules for the mode class, committee mode frequency threshold, required class 

vote threshold, and ties threshold were satisfied within the steel pole committee. 

However, the steel pole committee's mean posterior probability for the telephone pole 

was only 53.76%. Therefore, the rule with the Posterior Threshold set to 60% was not 

satisfied and the steel pole committee also recommended a class label of 0 and posterior 

of 0% to the telephone pole. The final decision by the Adaptive Bayesian Classification 

Model was to reject the classification of the telephone pole. The 4x4 wood pole in Fig. 

5 .16f classified as a tree by the model as expected. The pumpkin in Fig. 5 .16f classified 

as a steel pole since the model saw the pumpkin's surface, with an approximately 
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constant thermal radiance, r~sembling the thermal radiance and contrast typically found 

on the surfaces of the steel poles in the training data set as displayed in Fig. 5.lla-c. 

Fortunately, our Adaptive Bayesian Classification Model is equipped with the rule 

involving the Posterior Threshold. As a result, a simple tuning that sets the model's 

Posterior Threshold to say 80% will let the bot reject the classification of the pumpkin. · 

5.7 Summary 

The concepts, methods, and thermal features introduced in the previous chapters 

culminated in the design and implementation of the novel pattern classification tools 

presented in this chapter that can be used to understand the behavior of the thermal 

patterns of non-heat generating object classes in an n-dimensional feature space and 

classify an unknown pattern that is mapped into the feature space. In this chapter, we 

first showed how to apply principal component analysis locally on the patterns from a 

given object class to derive two distance metrics- based on a scalar projection (Eq. 5.1) 

and normal distance (Eq. 5.2) involving the patterns and first principal eigenvectors in 

feature space. We showed how these distance metrics provide the ability to see and 

understand the behavior of an object class's patterns about its first principal eigenvector 

that projects through the respective hyperconoidal cluster. Additionally, we 

demonstrated how our distance metrics give us the ability to "see" regions in an n­

dimensional feature space where some object classes may tend to "look alike" and run the 

risk for misclassification by a classification model. 
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Various distance functions d1 (J_,?_ 11 ) were derived based on the normal distance 

between patterns and an object class's first principal eigenvector. These distance 

functions were integrated into the likelihood function of the Bayesian classifiers to form 

our adaptive Bayesian classifier given by Eq. 5.10. In this way, we formed a weighted 

likelihood function used in the posterior probability of the Bayesian classifier that not 

only considers the unknown pattern's participation in the density distribution of a given 

object class but also the unknown pattern's behavior about the first principal eigenvector 

projecting through the given object class's hyperconoidal cluster. The variations of the 

distance functions were designed to adapt to the behavior of the patterns for a given 

object class, as the name for the adaptive Bayesian classifier implies. The resulting 

adaptive Bayesian classifier with the weighted likelihood function was shown to produce 

a posterior probability with enhanced discriminating capabilities that outperformed the 

traditional KNN and Parzen classifiers. 

As we have stated in previous chapters, the performance of a classifier is a function of 

the feature vector. However, rather than analyzing the classification performance by just 

choosing different feature vectors, the novel process used by our adaptive Bayesian 

classifier affords us the ability to literally see how the choice of any n-dimensional 

feature vector will affect the behavior of an object class's patterns and the overall 

performance of the classification model. As we discussed in Section 5.2, the distance 

metrics, given by Eq. 5.1 and 5.2, give us the ability to see a general trend in the behavior 

of the patterns within each object class that vary slightly depending on the feature vector. 

Thus, the behavior of the patterns about the first principal eigenvector is dependent on the 

choice of the n-dimensional feature vector. Consequently, the normal distance metric, 



given by Eq. 5.2, depends on the behavior of the patterns about the first principal 

eigenvector. The normal distance metric has an effect on the values of our distance 
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function d Az, ~u) and the weighted KNN density estimation given by Eq. 5.9. As a 

result, the classification performance of our model is based on the values of our adaptive 

Bayesian classifier, given by Eq. 5.1 0, that are dependent on the weighted KNN density 

estimation. Therefore, the performance of a classifier is a function of the feature vector. 

We used our distance metrics and adaptive Bayesian classifier to understand why 

some blind patterns are being misclassified under certain thermal conditions. We noted 

that correct classification of a blind object seemed to be independent of the geographical 

location of the object. Thus, the two primary factors that contributed to the 

misclassification of the blind objects were a lack of representative training data and the 

effects of the diurnal cycle of solar energy. Consequently some misclassifications could 

be eliminated by expanding the range of features in the training data set by capturing a 

more representative set of thermal images. However, in most cases a lack of a thermal 

signature from an object due to the diurnal cycle of solar energy will continue to result in 

feature values from different object classes looking alike. We also observed that in some 

cases the misclassification of a blind object was associated with either a low posterior 

probability or a posterior that was close in value to another posterior for an assignment to 

a different object class. These situations led to our integration of specific rules into our 

novel classification model and our plans for future research involving the integration of 

fuzzy logic into our model and designing a model based on a multi-sensor data fusion 

architecture that we will discuss in Chapter 6. 
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Based on our discovery that some adaptive Bayesian classifiers act as experts by 

showing exceptional classification performance on a certain object class, we formed 

committees of experts where each committee classifies patterns from their respective 

object class. By combining each committee of experts into one classification model, we 

were able to exploit the expertise of each committee and complement the overall 

performance of the classification model. We further increased the confidence level in our 

model's classification decisions by integrating the dynamical window technique 

presented in Chapter 4 that lets each committee of experts decide on class assignment by 

considering information collected from multiple window sizes of the thermal image of an 

object. Additionally, we incorporated rules into our model that must be satisfied before 

the bot is authorized to make a classification decision to improve the accuracy of class 

assignments and prevent high-risk classification decisions. If all the rules are satisfied, 

the bot is authorized to assign a class to the unknown object within its field of view and 

proceed with the next required action in the intelligence algorithm. On the other hand, if 

a rule is not satisfied, the bot must reject the class assignment and capture another 

thermal image of the unknown object for classification, perhaps at another viewing angle. 

These concepts led to the design of our novel Adaptive Bayesian Classification Model 

displayed in Fig. 5.14. 

By assessing.our Adaptive Bayesian Classification Model on extended and compact 

blind data that consisted of objects from the same and different object classes as the 

training data, we proved the exceptional applicability and originality of our model. Our 

application demonstrated that the Adaptive Bayesian Classification Model outperforms 

the traditional KNN Classifier and Parzen Classifier. Additionally, while the committees 
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of experts and dynamical window technique integrated into the Adaptive Bayesian 

Classification Model increase the accuracy of class assignments and our confidence in the 

model's final classification decision, the ability to reject class assignments that do not 

satisfy specific rules is the distinguishing factor that results in the Adaptive Bayesian 

Classification Model outperforming the Adaptive Bayesian Classifier with a single 

distance function. 

The design of our Adaptive Bayesian Classification Model makes it an appropriate 

method to support multiple scenarios. First, the Adaptive Bayesian Classification Model 

is a suitable choice for any classification application, such as ours, involving 

hyperconoidal clusters consisting of patterns in an n-dimensional feature space that are 

characterized by their behavior about their respective first principal eigenvector. Such 

applications involve features that vary due to the effects of some natural cyclic events. 

The natural cyclic event in our application is the diurnal cycle of solar energy. 

Furthermore, the emphasis on designing the model so that the original physical 

interpretation of the information in the signal data is retained throughout the entire 

classification process affords human operators the ability to analyze the reason for a bot's 

class assignments by associating the final classification decision with the thermal­

physical properties found in the original features. Also, the integration of the dynamical 

window technique and classification rules with the option to reject class assignments and 

capture another thermal image of the unknown object for classification, perhaps at 

another viewing angle, make our model appropriate for autonomous robotic systems that 

capture continuous frames. 
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The design and implementation of our Adaptive Bayesian Classification Model has 

also created new research opportunities. Research is required to determine ifthere exists 

a most favorable number of experts in each committee. Also, the selection of the most 

favorable threshold values requires additional research. The appropriate selection of 

threshold values will minimize the classification error rate and number of rejections. The 

tendency for an object to "look like" another object under certain thermal conditions 

(other than thermal crossover) presents a degree of vagueness that may call for the 

integration of fuzzy logic into the classification model. We could also integrate other 

sensors into the autonomous robotic system by designing a multi-sensor data fusion 

architecture where the use of multiple sensors complements the overall performance of 

the classification model. We will discuss these research opportunities in our final 

chapter, Chapter 6. 
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Fig. 5.1 First principal eigenvectors each projected through the hyperconoidal cluster 
of their respective object class in a 3-dimensional feature space. 
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Fig. 5.3a Extended object distance metric relations for given most favorable feature 
vector. 
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Fig. 5.3b Extended object distance metric relations for given most favorable feature 
vector. 
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Fig. 5.3c Extended object distance metric relations for given most favorable feature 
vector. 
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Fig. 5.3d Extended object distance metric relations for given most favorable feature 
vector. 
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Fig. 5.3e Extended object distance metric relations for given most favorable feature 
vector. 
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Fig. 5.3fExtended object distance metric relations for given most favorable feature 
vector. 
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Fig. 5.3g Extended object distance metric relations for given most favorable feature 
vector. 
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Fig. 5 .3h Extended object distance metric relations for given most favorable feature 
vector. 
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Fig. 5.3i Extended object distance metric relations for given most favorable feature 
vector. 
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Fig. 5.3j Extended object distance metric relations for given most favorable feature 
vector. 
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Fig. 5.4a Compact object distance metric relations for given most favorable feature 
vector. 
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Fig. 5.4b Compact object distance metric relations for given most favorable feature 
vector. 

311 



0 
0 

0 

0 
0 

0 0 
o0 oo 

0 0 0 
0 

0 
0 

0 0 
0 
oo 

cP 

oo 0 0 0 0 
0 0 0 

o8 0 

0 

0 

312 

0 

00 
0 

CD 
0 

0 

tb 
0 0 

0 

Fig. 5.4c Compact object distance metric relations for given most favorable feature 
vector. 
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Fig. 5.4e Compact object distance metric relations for given most favorable feature 
vector. 
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Fig. 5.4f Compact object distance metric relations for given most favorable feature 
vector. 
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Fig. 5.4g Compact object distance metric relations for given most favorable feature 
vector. 
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Fig. 5.4h Compact object distance metric relations for given most favorable feature 
vector. 
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Fig. 5.4i Compact object distance metric relations for given most favorable feature 
vector. 
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Fig. 5.4j Compact object distance metric relations for given most favorable feature 
vector. 
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Fig. 5.4k Compact object distance metric relations for given most favorable feature 
vector. 
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Fig. 5.41 Compact object distance metric relations for given most favorable feature 
vector. 
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Fig. 5.4m Compact object distance metric relations for given most favorable feature 
vector. 
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Fig. 5.4n Compact object distance metric relations for given most favorable feature 
vector. 
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Fig. 5.4o Compact object distance metric relations for given most favorable feature 
vector. 
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Fig. 5.4p Compact object distance metric relations for given most favorable feature 
vector. 
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Fig. 5.4q Compact object distance metric relations for given most favorable feature 
vector. 
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Fig. 5.5 Portion ofhyperconoidal clusters presented in Fig. 5.1 with an unknown pattern 
displayed as the black star in the feature space. 



BAYESIAN CLASSIFER WITH d i (J, ~ 1 i ) = 

Table 5.1 Comparison of average error rates(%) for adaptive Bayesian classifiers with KNN and Parzen classifiers using most 
favorable feature vectors and blind data for extended objects. The table cells with the lowest average error rates for each 
classifier are shaded in gold. The table cell with the overall lowest average error rate is shaded in green. 
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ADAPTIVE BAYESIAN CLASSIFER WITH d i (J, ~'i )= 

Table 5.2a Comparison of average error rates (%) for adaptive Bayesian classifiers with KNN and Parzen classifiers using most 
favorable feature vectors and blind data for compact objects. The table cells with the lowest average error rates for each 
classifier are shaded in gold. The table cells with the overall lowest average error rate are shaded in green. 
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BAYES IAN CLASSIFER WITH d i (J , ~ 1 i ) = 

Table 5.2b Comparison of average error rates(%) for adaptive Bayesian classifiers with KNN and Parzen classifiers using most 
favorable feature vectors and blind data for compact objects. The table cells with the lowest average error rates for each 
classifier are shaded in gold. The table cells with the overall lowest average error rate are shaded in green. 
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Brick Wall 

I I 
<1,3,4,6,11,12,14,18>, D' Actual Object Class 

J Brick Wall Hed!!eS Picket Fence Wood Wall 
<1,2,3,5,6,10,12,13,14,16>, D' Actual Object Class 

J Brick Wall Hedges Picket Fence Wood Wall 

Assigned 
Brick Wall 21 4 0 12 

Hed!!es 2 19 I I 
Object 

Picket Fence 0 0 19 7 
Class 

Wood Wall 0 0 3 3 

Assigned 
Brick Wall 21 4 0 12 

Object 
Hedges 2 19 I I 

Class 
Picket Fence 0 0 20 7 
Wood Wall 0 0 2 3 

Total Objects in Class 23 23 23 23 Total Objects in Class 23 23 23 23 
Errors by Class 2 4 4 20 Errors by Class 2 4 3 20 
Error Rate by Class(%) 8.70 17.39 17.39 86.96 Error Rate by Class (%) 8.70 17.39 13.04 86.96 

Total Errors 30 Total Errors 29 
Avera2e Error Rate(%) 32.61 Avera2e Error Rate(%) 31.52 

I I 
<1,2,3,4,5,6,8,12,13,14,16>, ~ Actual Object Class 

J Brick Wall Hed!!es Picket Fence Wood Wall 
<1,2,3,4,5,6,8,12,13,14,16>, D' Actual Object Class 

J Brick Wall Hed2es Picket Fence Wood Wall 

Assigned 
Brick Wall 21 4 0 9 

Hed2es 2 19 3 2 
Object 

Picket Fence 0 0 19 8 
Class 

Wood Wall 0 0 I 4 

Assigned 
Brick Wall 21 4 0 12 

Hed!!es 2 19 3 I 
Object 

Picket Fence 0 0 19 7 Class 
Wood Wall 0 0 I 3 

Total Objects in Class 23 23 23 23 Total Objects in Class 23 23 23 23 
Errors by Class 2 4 4 19 Errors by Class 2 4 4 20 
Error Rate by Class(%) 8.70 17.39 17.39 82.61 Error Rate b:v Class(%) 8.70 17.39 17.39 86.96 

Total Errors 29 Total Errors 30 
Averal!e Error Rate(%) 31.52 Avera2e Error Rate(%) 32.61 

I 
<1,2,3,4,5,6,7,10,12,14,16>, D' Actual Object Class 

J Brick Wall Hed!!es Picket Fence Wood Wall 

Assigned 
Brick Wall 21 4 0 10 

Hed!!eS 2 19 I I 
Object 

Picket Fence 0 0 18 6 
Class 

Wood Wall 0 0 4 6 

Total Objects in Class 23 23 23 23 
Errors by Class 2 4 5 17 

Error Rate by Class(%) 8.70 17.39 21.74 73.91 

Total Errors 28 
Avera2e Error Rate(%) 30.43 

Table 5.3a Brick wall lowest error rates with respective feature vector and distance function combination displayed in the 
upper left comer of each confusion matrix. 
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Hedges 

<1,2,3,6,12>, DJ Actual Object Class <1,3,4,6,11,12,14,18>, D' 
J 

Actual Object Class 
Brick Wall Hed2es Picket Fence Wood Wall Brick Wall Hedges Picket Fence Wood Wall 

Assigned 
Brick Wall 14 2 0 7 

Hedges 9 21 2 6 
Object 

Picket Fence 0 0 18 8 
Class 

Wood Wall 0 0 3 2 

Assigned 
Brick Wall 17 2 0 10 

Hedges 6 21 2 2 Object 
Picket Fence 0 0 18 5 Class 
Wood Wall 0 0 3 6 

Total Objects in Class 23 23 23 23 Total Objects in Class 23 23 23 23 
Errors by Class 9 2 5 21 Errors by Class 6 2 5 17 
Error Rate by Class (%) 39.13 8.70 21.74 91.30 Error Rate by Class(%) 26.09 8.70 21.74 73.91 

Total Errors 37 Total Errors 30 
Average Error Rate(%) 40.22 Average Error Rate(%) 32.61 

I 
<1,2,3,5,6,7,10,11,14,16>, I Actual Ob.iect Class 

Brick Wall Hedges Picket Fence Wood Wall 
<1,2,3,5,6,7,10,11,14,16>, (D ) Actual Object Class exp 1 Brick Wall Hedges Picket Fence Wood Wall 

Assigned 
Brick Wall 13 2 0 5 

Hedges 9 21 I 4 I 
Object 

Picket Fence I 0 19 5 I 

Class 
Wood Wall 0 0 3 9 

Assigned 
Brick Wall 15 2 0 5 

Hedges 7 21 I 4 Object 
Picket Fence 1 0 19 5 Class 

Wood Wall 0 0 3 9 

Total Ob.iects in Class 23 23 23 23 I Total Objects iu Class 23 23 23 23 
Errors by Class 10 2 4 14 l Errors by Class 8 2 4 14 
Error Rate by Class(%) 43.48 8.70 17.39 60.87 I Error Rate by Class(%) 34.78 8.70 17.39 60.87 

Total Errors 30 Total Errors 28 
Average Error Rate(%) 32.61 Av'C!'age Error Rate(%) 30.43 

<1,2,3,5,6,7,10,11,14,16>, DJ Actual Object Class 
Brick Wall Hed2es Picket Fence Wood Wall 

Assigned 
Brick Wall 12 2 0 5 

Hedges 10 21 I 4 
Object 

Picket Fence I 0 19 5 
Class 

Wood Wall 0 0 3 9 

Total Objects in Class 23 23 23 23 
Errors by Class II 2 4 14 

Error Rate by Class(%) 47.83 8.70 17.39 60.87 

Total Errors 31 

Average Error Rate(%) 33.70 

Table 5.3b Hedges lowest error rates with respective feature vector and distance furtction combination displayed in the 
upper left comer of each confusion matrix. 
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Picket Fence 

<1,3,5,6,7,11,16>, D' 
J Actual Object Class <1,2,3,4,6,11,13,14,16>, DJ Actual Object Class 

Brick Wall Hedges Picket Fence Wood Wall Brick Wall Hedges Picket Fence Wood Wall 

Assigned 
Brick Wall 5 2 0 3 

Hedges 15 20 I 6 
Object 

Picket Fence 3 I 22 8 
Class 

Wood Wall 0 0 0 6 

Assigned 
Brick Wall 18 3 0 8 

Hedges 5 20 I 3 
Object 

Picket Fence 0 0 22 6 
Class 

Wood Wall 0 0 0 6 

Total Objects in Class 23 23 23 23 Total Objects in Class 23 23 23 23 
Errors by Class 18 3 I 17 Errors by Class 5 3 I 17 
Error Rate by Class (%) 78.26 13.04 4.35 73.91 Error Rate by Class(%) 21.74 13.04 4.35 73.91 

Total Errors 39 Total Errors 26 
Average Error Rate(%) 42.39 Average Error Rate (%) 28.26 

<1,2,3,4,6,11,13,14,16>, D' 
J 

Actual Object Class <1,2,3,6,10,11,13,14,16>, DJ Actual Object Class 
Brick Wall Hedges Picket Fence Wood Wall Brick Wall Hedges Picket Fence Wood Wall 

Assigned 
Brick Wall 16 3 0 8 

Hedges 7 18 1 3 
Object 

Picket Fence 0 2 22 6 
Class 

Wood Wall 0 0 0 6 

Assigned 
Brick Wall 17 3 0 8 

Hedges 6 20 I 3 
Object 

Picket Fence 0 0 21 6 
Class 

Wood Wall 0 0 I 6 

Total Objects in Class 23 23 23 23 Total Objects in Class 23 23 23 23 
Errors by Class 7 5 1 17 Errors by Class 6 3 2 17 
Error Rate by Oass (%) 30.43 21.74 4.35 73.91 Error Rate by Class (%) 26.09 13.04 8.70 73.91 

Total Errors 30 Total Errors 28 
Average Error Rate(%) 32.61 Average Error Rate (%) 30.43 

<1,2,3,6,10,11,13,14,16>, D' 
J 

Actual Object Class 
Brick Wall Hedges Picket Fence Wood Wall 

Brick Wall 13 2 0 8 
Assigned 

Hedges 10 18 1 3 
Object 

Picket Fence 0 3 22 7 
Class 

Wood Wall 0 0 0 5 

Total Objects in Class 23 23 23 23 
Errors by Class 10 5 I 18 
Error Rate by Class (%) 43.48 21.74 4.35 78.26 

Total Errors 34 
Average Error Rate(%) 36.96 

Table 5.3c Picket fence lowest error rates with respective feature vector and distance function combination displayed in the 
upper left comer of each confusion matrix. 
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Wood Wall 

I 
<2,3,5,6,7,8,9,11,12>, I Actual Object Class 

Brick Wall Hed!!es Picket Fence Wood Wall 
<2,3,5,6,7,8,9,11,12>, - Actual Object Class Dj 

Brick Wall Hed2es Picket Fence Wood Wall 

Assigned 
Brick Wall 7 3 0 4 

Hed!!es 16 20 I 5 
Object 

Picket Fence 0 0 17 4 
Oass 

Wood Wall 0 0 5 10 

Assigned 
Brick Wall 9 3 0 4 

Hedges 14 20 I 5 Object 
Picket Fence 0 0 17 4 Class 
Wood Wall 0 0 5 10 

Total Objects in Class 23 23 23 23 Total Objects in Class 23 23 23 23 
Errors by Class 16 3 6 13 Errors by Class 14 3 6 13 
Error Rate by Oass (%) 69.57 13.04 26.09 56.52 Error Rate by Class(%) 60.87 13.04 26.09 56.52 

Total Errors 38 Total Errors 36 
Average Error Rate(%) 41.30 Average Error Rate(%) 39.13 

I 
<2,3,5,6,7,8,9,11,12>, exp {DJ Actual Object Class 

Brick Wall Hedges Picket Fence Wood Wall 
<2,3,5,6,7,8,9,11,12>, exp (Dj) Actual Object Class 

Brick Wall Hedges Picket Fence Wood Wall 

Assigned 
Brick Wall 8 3 0 4 

Hed!!es 15 20 I 5 
Object 

Picket Fence 0 0 17 4 
Oass 

Wood Wall 0 0 5 10 

Assigned 
Brick Wall 7 3 0 4 

Hedges 16 20 I 5 Object 
Picket Fence 0 0 18 4 

Oass 
Wood Wall 0 0 4 10 

Total Objects in Class 23 23 23 23 Total Objects in Class 23 23 23 23 
Errors by Class 15 3 6 13 Errors by Class 16 3 5 13 
Error Rate by Class(%) 65.22 13.04 26.09 56.52 Error Rate by Class(%) 69.57 13.04 21.74 56.52 

Total Errors 37 Total Errors 37 
Average Error Rate(%) 40.22 Avera~e Error Rate(%) 40.22 

I 
<1,2,3,5,6,7,10,11,14,16>, - Actual Obiect Class 

Dj 
Brick Wall Hed2es Picket Fence Wood Wall 

Assigned 
Brick Wall 15 3 0 5 

Hedges 7 20 I 4 
Object 

Picket Fence I 0 19 4 
Class 

Wood Wall 0 0 3 10 

Total Objects in Class 23 23 23 23 
Errors by Class 8 3 4 13 
Error Rate by Class(%) 34.78 13.04 17.39 56.52 

Total Errors 28 
Avera~_)i;rror Rate_rY!> 30.43 

Table 5.3d Wood wall lowest error rates with respective feature vector and distance function combination displayed in the 
upper left comer of each confusion matrix. 
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Steel Pole & Tree 

<1,2,4,6,7,8,10,11,13,14,15>, 1 Actual Object Class <1,2,4,6,7,8,10,11,13,14,15>, Dj Actual Object Class 
Steel Pole Tree Steel Pole Tree 

Assigned Steel Pole 16 0 Assigned Steel Pole 16 0 
Object Class Tree 4 20 Object Class Tree 4 20 

Total Objects in Class 20 20 Total Objects in Class 20 20 
Errors by Class 4 0 Errors by Class 4 0 
Error Rate by Class (%) 20 0 Error Rate by Class (%) 20 0 

Total Errors 4 Total Errors 4 
Average Error Rate(%) 10 Average Error Rate(%) 10 -

<1,2,4,6, 7,8, 10,11, 13,14,15>, exp (D j) Actual Object Class 
Steel Pole Tree 

Assigned Steel Pole 16 0 
Object Class Tree 4 20 

Total Objects in Class 20 20 
Errors by Class 4 0 
Error Rate by Class (%) 20 0 

Total Errors 4 
Average Error Rate(%) 10 

~-

Table 5.4a Steel Pole and Tree lowest error rates with respective feature vector and distance function combination displayed 
in the upper left comer of each confusion matrix. 
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Steel Pole Tree 

<1,2,4,6,7,8,10,11,13,14,15>, D2 Actual Ob.iect Class J 

Steel Pole Tree 

1 
<1,2,4,6,7,8,10,11,13,14,15>, - Actual Object Class 

DJ 
Steel Pole Tree 

Assigned Steel Pole 16 1 Assigned Steel Pole 15 0 
Object Class Tree 4 19 Object Class Tree 5 20 

Total Ob.iects in Class 20 20 Total Objects in Class 20 20 
Errors by Class 4 1 Errors by Class 5 0 
Error Rate by Class (%) 20 5 Error Rate by Class (%) 25 0 

Total Errors 5 Total Errors 5 
Average Error Rat~(%) 12.5 

- --
&erage Error Rate J%) 12.5 

Table 5.4b Steel Pole and Tree lowest error rates with respective feature vector and distance function combination displayed 
in the upper left comer of each confusion matrix. 
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(a) (b) 

(c) (d) 

Fig. 5.6 Visible and thermal images of extended objects from the training data set. The thermal images display the thermal 
radiance and contrast that are typically found in the scenes for each object class and reference emitters in their respective 
training data set. (a) brick wall (b) hedges, (c) picket fence, and (d) wood wall. w 
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Fig. 5.7 Visible and thermal image ofbrick wall from the blind data set that was 
misclassified as a hedge by the adaptive Bayesian classifier. The thermal image 
was captured on 24 September 2007 at 1005 hrs. 
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Fig. 5.8 Visible and thermal image of hedges from the blind data set that was 
misclassified as a brick wall by the adaptive Bayesian Classifier. The thermal 
image was captured on 15 August 2007 at 1048 hrs. 
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Fig. 5.9 Visible and thermal images of a picket fence from the blind data set that was 
misclassified as a wood wall by the adaptive Bayesian Classifier. The thermal image 
was captured on 6 October 2007 at 1240 hrs. 
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(a) 

(b) 

(c) 

Fig. 5.10 Visible and thermal images ofwood walls from the blind data set that were 
misclassified by the adaptive Bayesian Classifier. (a) misclassified as a brick wall 
(captured on 15 August 2007 at 1034 hrs ), (b) misclassified as a picket fence (captured 
on 24 September 2007 at 1029 hrs, same object as in (c) but viewed at normal incidence), 
(c) misclassified as hedges (captured on 24 September 2007 at 1030 hrs, same object as in 
(b) but at 45 degrees from normal viewing angle). 
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(a) (b) (c) 

(d) (e) (t) 

Fig. 5.11 Visible and thermal images of compact objects from the training data set. The 
thermal images display the thermal radiance and contrast that are typically found in the 
scenes for each object class and reference emitters in their respective training data set. 
Steel poles: (a) brown painted surface, (b) green painted surface, (c) octagon shape, 
w/ aged brown painted surface. Tree: (d) basswood tree, (e) birch tree, (f) cedar tree. 



Fig. 5.12 Visible and thermal images of a steel pole from the blind data set that was 
misclassified as a tree by the adaptive Bayesian Classifier. The thermal image 
was captured on 5 November 2007 at 1428 hrs. 
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Fig. 5.13 Visible and thermal images of a tree from the blind data set that was 
misclassified as a steel pole by the adaptive Bayesian Classifier. The thermal image 
was captured on 18 September 2007 at 1407 hrs. 



Each expert in each committee votes on patterns generated 
from each window segment and provides posterior probability 

~'-----1------..J ~ '~ ~----~--r------" 
Mode class Mode class Mode class Mode class 
=Brick Wall =Hedges =Picket Fence =Wood Wall 

AND 
Number of experts in each committee having the required mode class 

:?: Committee Mode Frequency Threshold 

==c= ~RUE==c= 
Total patterns voted in favor of the required class by experts with the required 
mode class in each respective committee ;?:Required Class Votes Threshold 

----------------- ----------------AND ----------------- -----------------
Total number of class voting ties by experts with the required 
mode class in each respective committee :5; Ties Threshold 

AND 
Desired mean of posterior probabilities of experts with the required 

mode class in each respective committee :?: Posterior Threshold 

Recommend 
class= Brick 
w/ Posterior 

Recommend 
class= Hedges 

w/ Posterior 

Recommend 
class= Picket Fence 

w/ Posterior w/ Posterior 

Arrange assigned class and posterior probability pairs in ascending order by posterior 

Maximum posterior probability is not 0% 

"' TRUE 

Absolute difference between two largest posterior 
probabilities :?: Absolute Posterior Difference Threshold 

"' TRUE 

Fig. 5.14 Adaptive Bayesian Classification Model Algorithm 
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Committee Mode Frequency Threshold = 4 
Required Class Votes Threshold= 250 
Ties Threshold = 0 
Absolute Posterior Difference Threshold= 0.10 

Posterior Threshold =0.6 

Assigned 
Object 
Class 

Brick Wall 
Hede:es 

Picket Fence 
Wood Wall 

Re.iections by Class 

Total Objects in Class 
Errors })y_ Class 
Error Rate by Class(%) 

Total Errors 
Average Error Rate(%) 
Total Rejections 

Posterior Threshold = 0.8 

Assigned 
Object 
Class 

Brick Wall 
Hede:es 

Picket Fence 
Wood Wall 

Rejections by Class 

Total Objects in Class 
Errors by Class 
Error Rate by Class (%) 

Total Errors 
Averae:e Error Rate(%) 
Total Rejections 

Brick Wall 
18 
3 
0 
0 

2 

23 
3 

14.29 

21 
28.20 

11 

Brick Wall 
17 
3 
0 
0 

3 

23 
3 

15.00 

19 
29.27 

22 

Actual Obiect CI ----- - --- -----

Hedges Picket Fence Wood Wall 
3 0 6 
19 0 I 
0 18 5 
0 3 5 

1 2 6 

23 23 23 
3 3 12 

13.64 14.29 70.59 

Actual Obiect CI -
Hede:es Picket Fence Wood Wall 

3 0 6 
14 0 1 
0 16 4 
0 2 4 

6 5 8 

23 23 23 
3 2 11 

17.65 11.11 73.33 

Posterior Threshold= 0.7 

Assigned 
Object 
Class 

Brick Wall 
Hedges 

Picket Fence 
Wood Wall 

Rejections by Class 

Total Objects in Class 
Errors by Class 
Error Rate by Class(%) 

Total Errors 
Average Error Rate(%) 
Total Rejections 

Posterior Threshold = 0.9 

Assigned 
Object 
Class 

Brick Wall 
Hedges 

Picket Fence 
Wood Wall 

Rejections by Class 

Total Objects in Class 
Errors by Class 
Error Rate by Class(%) 

Total Errors 
Average Error Rate(%) 
Total Rejections 

Brick Wall 
17 
3 
0 
0 

3 

23 
3 

15.00 

21 
28.41 

12 

Brick Wall 
15 
1 
0 
0 

7 

23 
I 

6.25 

15 
30.54 

33 

Actual Obiect CI --· - --
Hede:es Picket Fence Wood Wall 

3 0 6 
20 0 1 
0 17 5 
0 3 5 

0 3 6 

23 23 23 
3 3 12 

13.o4 15.00 70.59 

Actual Object Class -
Hedges Picket Fence WoodWalll 

3 0 6 
13 0 I 
0 15 3 
0 I I 

7 7 12 

23 23 23 
3 I 10 

18.75 6.25 90.91 

Table 5.5a Confusion matrices of the Adaptive Bayesian Classification Model with various threshold values for the extended 
objects. Fixed threshold values are noted in the upper left comer. Threshold with a varied value is noted at the upper left 
comer of each matrix. Thresholds highlighted in green colored text are selected as most favorable for the Adaptive Bayesian 
Classification Model applied to the extended objects. 
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Committee Mode Frequency Threshold= 4 
Ties Threshold = 0 
Posterior Threshold = 0.6 
Absolute Posterior Difference Threshold= 0.10 

Required Class Votes Threshold= 1 

Assigned 
Object 
Class 

Brick Wall 

Hedees 
Picket Fence 
Wood Wall 

Rejections bv Class 

Total Objects in Class 
Errors by Class 
Error Rate by Class(%) 

Total Errors 
Averaee Error Rate(%) 
Total Rejections 

Brick Wall 
18 

3 
0 
0 

2 

23 
3 

14.29 

21 
28.20 

11 

Required Class Votes Threshold= 100 

Assigned 
Object 
Class 

Brick Wall 
Hedees 

Picket Fence 
Wood Wall 

Rejections bv Class 

Total Objects in Class 
Errors by Class 
Error Rate by Class(%) 

Total Errors 
Avera2e Error Rate(%) 
Total Rejections 

Brick Wall 
18 
3 
0 
0 

2 

23 
3 

14.29 

21 
28.20 

11 

~--·---
0 - __ .,. -----

Hed2es Picket Fence Wood Wall 
3 0 6 
19 0 1 

0 18 5 
0 3 5 

1 2 6 

23 23 23 
3 3 12 

13.64 14.29 70.59 

Actual Obiect Cl --

Hedges Picket Fence Wood Wall 
3 0 6 
19 0 1 
0 18 5 
0 3 5 

1 2 6 

23 23 23 
3 3 12 

13.64 14.29 70.59 

Required Class Votes Threshold= SO 

Assigned 
Object 
Class 

Brick Wall 
Hedges 

Picket Fence 
Wood Wall 

Rej_ections II!. Class 

Total Objects in Class 
Errors by Class 
Error Rate IJy Class(%) 

Total Errors 
Average Error Rate(%) 
Total Rejections 

Brick Wall 
18 

3 
0 
0 

2 

23 
3 

14.29 

21 
28.20 

11 

Required Class Votes Threshold= 250 

Assigned 
Object 
Class 

Brick Wall 
Hedees 

Picket Fence 
Wood Wall 

Rejections by Class 

Total Objects in Class 
Errors by Class 

Error Rate by Class(%) 

Total Errors 
Average Error Rate(%) 
Total Rejections 

Brick Wall 
18 

3 
0 
0 

2 

23 

3 
14.29 

21 
28.20 

11 

Actual Obiect Cl ... - -
Hedees Picket Fence Wood Wall 

3 0 6 
19 0 I 
0 18 5 
0 3 5 

1 2 6 

23 23 23 
3 3 12 

13.64 14.29 70.59 

Actual Object Class 
Hedges Picket Fence Wood Wall 

3 0 6 
19 0 1 
0 18 5 
0 3 5 

1 2 6 

23 23 23 
3 3 12 

13.64 14.29 70.59 

Table S.Sb Confusion matrices of the Adaptive Bayesian Classification Model with various threshold values for the extended 
objects. Fixed threshold values are noted in the upper left corner. Threshold with a varied value is noted at the upper left 
corner of each matrix. Thresholds highlighted in green colored text are selected as most favorable for the Adaptive Bayesian 
Classification Model applied to the extended objects. Continued 
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Required Class Votes Threshold = 400 

Assigned 
Object 
Class 

Brick Wall 
Hedges 

Picket Fence 
Wood Wall 

Rejections by Class 

Total Objects in Class 
Errors by Class 
Error Rate by Class (%) 

Total Errors 
Average Error Rate(%) 
Total Rejections 

Brick Wall 
19 
2 
0 
0 

2 

23 
2 

9.52 

21.00 
27.25 
9.00 

Table 5.5b Continued 

Actual Object Class 
Hedges Picket Fence 

3 0 
19 0 
0 19 
0 3 

1 1 

23 23 
3 3 

13.64 13.64 

Wood Wall 
6 
2 
5 
5 

5 

23 
13 

72.22 
I 
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Required Class Votes Tbreshold = I 
Ties Threshold= 0 
Posterior Threshold = 0.6 
Absolute Posterior Difference Threshold = 0.10 

Committee Mode Frequency Threshold= 1 

Assigned 
Object 
Class 

Brick Wall 
Hed2es 

Picket Fence 
Wood Wall 

Re.iections by Class 

Total Objects in Class 
Errors by Class 
Error Rate by Class(%) 

Total Errors 
Avera2e Error Rate(%) 
Total Rejections 

Brick Wall 
17 
3 
0 
0 

3 

23 
3 

15.00 

22 
28.79 

11 

Committee Mode Frequency Threshold = 3 

Assigned 
Object 
Class 

Brick Wall 
Hedges 

Picket Fence 
Wood Wall 

Rejections by Class 

Total Objects in Class 
Errors by Class 
Error Rate by Class(%) 

Total Errors 
Avera2e Error Rate(%) 
Total Rejections 

Brick Wall 
17 
3 
0 
0 

3 

23 
3 

15.00 

22 
28.79 

11 

Actual Object Class 
Hedges Picket Fence Wood Wall 

3 0 7 
19 0 I 
0 18 5 
0 3 5 

1 2 5 

23 23 23 
3 3 13 

13.64 14.29 72.22 

Actual Object Class -
Hed2es Picket Fence Wood Wall 

3 0 7 
19 0 I 
0 18 5 
0 3 5 
1 2 5 

23 23 23 
3 3 13 

13.64 14.29 72.22 

Committee Mode Frequency Threshold= 2 

Assigned 
Object 
Class 

Brick Wall 
Hedges 

Picket Fence 
Wood Wall 

Rejections by Class 

Total Objects in Class 
Errors by Class 
Error Rate by Class(%) 

Total Errors 
Average Error Rate(%) 
Total Re.iectioll!__ 

-

Brick Wall 
17 

3 
0 
0 

3 

23 
3 

15.00 

22 
28.79 

11 
- -

Committee Mode Frequency Threshold= 4 

Assigned 
Object 
Class 

Brick Wall 
Hedges 

Picket Fence 
Wood Wall 

Rejections by Class 

Total Objects in Class 
Errors by Class 
Error Rate by Class(%) 

Total Errors 
Average Error Rate(%) 
Total Rejectioll!_ 

-

Brick Wall 
18 
3 
0 
0 

2 

23 
3 

14.29 

21 
28.20 

11 
--

Actual Object Class 
Hedges Picket Fence Wood Wall 

3 0 7 
19 0 I 
0 18 5 
0 3 5 

l 2 5 

23 23 23 
3 3 13 

13.64 14.29 72.22 

Actual Object Class 
Hedges Picket Fence Wood Wall 

3 0 6 
19 0 I 
0 18 5 
0 3 5 

I 2 6 

23 23 23 
3 3 12 

13.64 14.29 70.59 

Table 5.5c Confusion matrices of the Adaptive Bayesian Classification Model with various threshold values for the extended 
objects. Fixed threshold values are noted in the upper left comer. Threshold with a varied value is noted at the upper left 
comer of each matrix. Thresholds highlighted in green colored text are selected as most favorable for the Adaptive Bayesian 
Classification Model applied to the extended objects. Continued 

w 
.J::.. 
\0 



Committee Mode Frequency Threshold = 5 

Assigned 
Object 
Class 

Brick Wall 
Hedges 

Picket Fence 
Wood Wall 

Rejections by Class 

Total Objects in Class 
Errors by Class 
Error Rate by Class (%) 

Total Errors 
Average Error Rate (%) 
Total Rejections 

Brick Wall 
19 
2 
0 
0 

2 

23 
2 

9.52 

20 
26.85 

10 

Actual Object Class 
Hedges Picket Fence 

3 0 
19 0 
0 19 
0 3 

1 1 

23 23 
3 3 
13.64 13.64 

Table 5.5c Continued 

Wood Wall 
6 
1 
5 
5 

6 

23 
12 

70.59 
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Committee Mode Frequency Threshold= 5 
Required Class Votes Threshold= 1 
Ties Threshold = 0 
Posterior Threshold= 0.6 

Absolute Posterior Difference Threshold= 0.01 

Assigned 
Object 
Class 

Brick Wall 
Hedges 

Picket Fence 
Wood Wall 

Rejections by Class 

Total Ob.jects in Class 
Errors by Class 
Error Rate by Class(%) 

Total Errors 
Average Error Rate(%) 
Total Rejections 

Brick Wall 
19 
2 
0 
0 

2 

23 
2 

9.52 

21 
26.16 

7 

Absolute Posterior Difference Threshold= 0.20 

Assigned 
Object 
Class 

Brick Wall 
Hedges 

Picket Fence 
Wood Wall 

Rejections by Class 

Total Objects in Class 
Errors by Class 
Error Rate by Class(%) 

Total Errors 
Average Error Rate(%) 

Total Rejections 

Brick Wall 
19 
2 
0 
0 

2 

23 
2 

9.52 

19 

26.92 
12 

A ---- -- ObiectC ----
Hedges Picket Fence Wood Wall 

3 0 7 
20 0 1 
0 19 5 
0 3 6 

0 1 4 

23 23 23 
3 3 13 

13.04 13.64 68.42 

Actual Obiect Cl -------

Hed2es Picket Fence Wood Wall 
3 0 6 
19 0 1 
0 19 5 
0 2 4 

1 2 7 

23 23 23 
3 2 12 

13.64 9.52 75.00 

Absolute Posterior Difference Threshold= 0.10 

Assigned 
Object 
Class 

Brick Wall 
Hedges 

Picket Fence 
Wood Wall 

Rejections by Class 

Total Objects in Class 
Errors by Class 
Error Rate by Class(%) 

Total Errors 
Averllgf Error Rate (%_1 
Total Re.jections -

Brick Wall 
19 
2 
0 
0 

2 

23 
2 

9.52 

20 
26.85 

_1_0 __ 

Absolute Posterior Difference Threshold = 0.30 

Assigned 
Object 
Class 

Brick Wall 
Hedges 

Picket Fence 
Wood Wall 

Rejections by Class 

Total Objects in Class 
Errors by Class 
Error Rate by Class(%) 

Total Errors 
Avera2e Error Rate(%) 
Total Rejections 

Brick Wall 
19 
2 
0 
0 

2 

23 

2 
9.52 

18 
25.79 

13 

Actual Obiect Cl - -

Hedges Picket Fence Wood Wall 
3 0 6 
19 0 1 
0 19 5 
0 3 5 

1 1 6 

23 23 23 
3 3 12 

13.64 13.64 70.59 

Actual Obiect C ----
Hedges Picket Fence Wood Wall 

3 0 6 
19 0 1 
0 19 5 
0 1 4 

1 3 7 

23 23 23 
3 1 12 

13.64 5.00 75.00 

Table 5.5d Confusion matrices of the Adaptive Bayesian Classification Model with various threshold values for the extended 
objects. Fixed threshold values are noted in the upper left comer. Threshold with a varied value is noted at the upper left 
comer of each matrix. Thresholds highlighted in green colored text are selected as most favorable for the Adaptive Bayesian 
Classification Model applied to the extended objects. 
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Committee Mode Frequency Threshold = 3 
Required Class Votes Threshold= 250 
Ties Threshold = 0 
Absolute Posterior Difference Threshold = 0.10 

Posterior Threshold = 0.6 
Actual Object Class -

Assigned 
Object Class 

Steel Pole 
Tree 

Rejections by Class 

Total Objects in Class 
Errors by Class 
Error Rate by Class (%) 

Total Errors 
Average Error Rate(%) 
Total Rejections 

Posterior Threshold = 0.8 

Assigned 
Object Class 

Steel Pole 
Tree 

Rejections by Class 

Total Objects in Class 
Errors by Class 
Error Rate by Class (%) 

Total Errors 
Average Error Rate(%) 
Total Rejections 

Steel Pole Tree 
15 0 
3 19 

2 1 

20 20 
3 0 

16.67 0 

3 
8.33 

3 

Actual Object Class 
Steel Pole Tree 

14 0 
3 18 

3 2 

20 20 

3 0 
17.65 0 

3 
8.82 

5 

Posterior Threshold = 0. 7 

Assigned 
Object Class 

Steel Pole 
Tree 

Rejections by Class 

Total Objects in Class 
Errors by Class 
Error Rate by Class (%) 

Total Errors 
Average Error Rate(%) 
Total Rejections 

Posterior Threshold = 0.9 

Assigned 
Object Class 

Steel Pole 
Tree 

Rejections by Class 

Total Objects in Class 
Errors by Class 
Error Rate by Class(%) 

Total Errors 
Average Error Rate(%) 
Total Rejections 

Actual Object Class 
Steel Pole Tree 

14 0 
3 19 

3 1 

20 20 
3 0 

17.65 0 

3 
8.82 

4 

Actual Object Class 
Steel Pole Tree 

14 0 
2 16 

4 4 

20 20 
2 0 

12.50 0 

2 
6.25 

8 

Table 5.6a Confusion matrices of the Adaptive Bayesian Classification Model with various threshold values for the compact 
objects. Fixed threshold values are noted in the upper left comer. Threshold with a varied value is noted at the upper left 
comer of each matrix. Thresholds highlighted in green colored text are selected as most favorable for the Adaptive Bayesian 
Classification Model applied to the compact objects. 
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Committee Mode Frequency Threshold = 3 
Ties Threshold = 0 
Posterior Threshold = 0.6 
Absolute Posterior Difference Threshold= 0.10 

Required Class Votes Threshold= 1 
Actual Object Class 

Assigned 
Object Class 

Steel Pole 
Tree 

Rejections by Class 

Total Ob.iects in Class 
Errors by Class 
Error Rate by Class (%) 

Total Errors 
Average Error Rate(%) 
Total Rejections 

Required Class Votes Threshold= 100 

Assigned 
Object Class 

Steel Pole 
Tree 

Rejections by Class 

Total Objects in Class 
Errors by Class 
Error Rate by Class (%) 

Total Errors 
Average Error Rate(%) 
Total Rejections 

Steel Pole Tree 
15 0 
3 I9 

2 I 

20 20 
3 0 

I6.67 0 

3 
8.33 

3 

Actual Object Class 
Steel Pole Tree 

I5 0 
3 I9 

2 I 

20 20 
3 0 

I6.67 0 

3 
8.33 

3 

Required Class Votes Threshold= 50 

Assigned 
Object Class 

Steel Pole 
Tree 

Rejections by Class 
Total Objects in Class 
Errors by Class 
Error Rate by Class (%) 

Total Errors 
Average Error Rate(%) 
Total Rejections 

-~ 

Required Class Votes Threshold = 250 

Assigned 
Object Class 

Steel Pole 
Tree 

Rejections by Class 

Total Objects in Class 
Errors by Class 
Error Rate by Class (%) 

Total Errors 
Average Error Rate(%) 
Total Rejections 

Actual Object Class 
Steel Pole Tree 

15 0 
3 I9 

2 I 
20 20 
3 0 

I6.67 0 

3 
8.33 

3 

Actual Object Class 
Steel Pole Tree 

I5 0 
3 I9 

2 I 

20 20 

3 0 
I6.67 0 

3 
8.33 

3 
-- -~~ 

Table 5.6b Confusion matrices of the Adaptive Bayesian Classification Model with various threshold values for the compact 
objects. Fixed threshold values are noted in the upper left comer. Threshold with a varied value is noted at the upper left 
comer of each matrix. Thresholds highlighted in green colored text are selected as most favorable for the Adaptive Bayesian 
Classification Model applied to the compact objects. Continued 
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Required Class Votes Threshold = 320 

Assigned 
Object Class 

Steel Pole 
Tree 

Rejections by Class 

Total Objects in Class 
Errors by Class 
Error Rate by Class (%) 

Total Errors 
Average Error Rate (%•) 
Total Rejections 

Actual Object Class 
Steel Pole Tree 

15 0 

3 19 

2 1 

20 20 

3 0 

16.67 0 

3 
8.33 

3 

Table 5.6b Continued 
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Required Class Votes Threshold= I 
Ties Threshold = 0 
Posterior Threshold= 0.6 
Absolute Posterior Difference Threshold = 0.10 

Committee Mode Frequency Threshold = I 
Actual Object Class -

Assigned 
Object Class 

Steel Pole 
Tree 

Rejections by Class 

Total Objects in Class 
Errors by Class 
Error Rate by Class (%) 

Total Errors 
Average Error Rate(%) 
Total Rejections 

Steel Pole Tree 
15 0 
3 19 

2 1 

20 20 
3 0 

16.67 0 

3 
8.33 

3 

Committee Mode Frequency Threshold = 3 

Assigned 
Object Class 

Steel Pole 
Tree 

Rejections by Class 

Total Objects in Class 
Errors by Class 
Error Rate by Class (%) 

Total Errors 
Average Error Rate(%) 
Total Rejections 

Actual Object Class 
Steel Pole Tree 

15 0 
3 19 

2 1 

20 20 
3 0 

16.67 0 

3 
8.33 

3 

Committee Mode Frequency Threshold = 2 
Actual Object Class -

Steel Pole Tree 
Assigned 

Object Class 
Steel Pole 

Tree 

Rejections by Class 

Total Objects in Class 
Errors by Class 
Error Rate by Class (%) 

Total Errors 
Average Error Rate(%) 
Total Rejections 

Committee Mode Frequency Threshold = 4 

15 0 
3 19 

2 1 

20 20 
3 0 

16.67 0 

3 
8.33 

3 

Actual Object Class -
Steel Pole Tree 

Assigned 
Object Class 

Steel Pole 
Tree 

Rejections by Class 

Total Objects in Class 
Errors by Class 
Error Rate by Class (%) 

Total Errors 
Average Error Rate(%) 
Total Rejections 

15 0 
3 19 

2 1 

20 20 
3 0 

16.67 0 

3 
8.33 

3 

Table 5.6c Confusion matrices of the Adaptive Bayesian Classification Model with various threshold values for the compact 
objects. Fixed threshold values are noted in the upper left comer. Threshold with a varied value is noted at the upper left 
comer of each matrix. Thresholds highlighted in green colored text are selected as most favorable for the Adaptive Bayesian 
Classification Model applied to the compact objects. 
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Committee Mode Frequency Threshold= 4 
Required Class Votes Threshold= l 
Ties Threshold = 0 
Posterior Threshold = 0.6 

Absolute Posterior Difference Threshold = 0.01 
Actual Object Class 

Assigned 
Object Class 

Steel Pole 
Tree 

Rejections by Class 

Total Objects in Class 
Errors by Class 
Error Rate by Class (%) 

Total Errors 
Average Error Rate(%) 
Total Rejections 

Steel Pole Tree 
15 0 
3 19 

2 I 

20 20 
3 0 

16.67 0 

3 
8.33 

3 

Absolute Posterior Difference Threshold= 0.20 

Assigned 
Object Class 

Steel Pole 
Tree 

Rejections by Class 

Total Objects in Class 
Errors by Class 
Error Rate by Class (%) 

Total Errors 
Average Error Rate(%) 
Total Rejections 

Actual Object Class 
Steel Pole Tree 

15 0 
3 19 

2 I 

20 20 
3 0 

16.67 0 

3 

8.33 
3 

I 

I 

I 

Absolute Posterior Difference Threshold = 0.10 

Assigned 
Object Class 

Steel Pole 
Tree 

Rejections by Class 

Total Objects in Class 
Errors by Class 
Error Rate by Class(%) 

Total Errors 
Average Error Rate(%) 
Total Rejections 

Actual Object Class 
Steel Pole Tree 

15 0 
3 19 

2 I 

20 20 
3 0 

16.67 0 

3 
8.33 

3 

Absolute Posterior Difference Threshold = 0.30 

Assigned 
Object Class 

Steel Pole 
Tree 

Rejections by Class 

Total Objects in Class 
Errors by Class 
Error Rate by Class (%) 

Total Errors 
Average Error Rate(%) 
Total Re_iections 

Actual Object Class -
Steel Pole Tree 

15 0 
3 19 

2 I 

20 20 
3 0 

16.67 0 

3 
8.33 

3 

' 

Table 5.6d Confusion matrices of the Adaptive Bayesian Classification Model with various threshold values for the compact 
objects. Fixed threshold values are noted in the upper left comer. Threshold with a varied value is noted at the upper left 
comer of each matrix. Thresholds highlighted in green colored text are selected as most favorable for the Adaptive Bayesian 
Classification Model applied to the compact objects. 
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Adll)Jtive Bayesian Classification Model 
Committee Mode Frequency Threshold= 5 
Required Class Votes Threshold = I 
Ties Threshold= 0 
Posterior Threshold= 0.6 
Absolute Posterior Difference Threshold = 0.01 

Assigned 
Object 
Class 

Brick Wall 
Hedges 

Picket Fence 
Wood Wall 

Rejections by Class 
Total Objects in Class 
Errors by Class 
Error Rate by Class(%) 
Total Errors 
Average Error Rate(%) 
Total Rejections 

KNN Classifier 
<3,5,6,7,8,9,13,16>, K = 3 

Assigned 
Object 
Class 

Brick Wall 
Hedges 

Picket Fence 
Wood Wall 

Total Objects in Class 
Errors by Class 
Error Rate by Class(%) 
Total Errors 
Average Error Rate(%) 

Brick Wall 
19 
2 
0 
0 

2 
23 

2 
9.52 
21 

26.16 
7 

Brick Wall 
15 
6 
0 
2 
23 
8 

34.78 
31 

33.70 

Actual Object Class 
Hed2es Picket Fence Wood Wall 

3 0 7 
20 0 I 
0 19 5 
0 3 6 

0 I 4 
23 23 23 
3 3 13 

13.04 13.64 68.42 

ObiectCI 
Hedges Picket Fence Wood Wall 

3 0 5 
20 0 8 
0 20 4 
0 3 6 
23 23 23 
3 3 17 

13.04 13.04 73.91 

Assigned 
Object 
Class 

Brick Wall 
Hedges 

Picket Fence 
Wood Wall 

Total Objects in Class 
Errors by Class 
Error Rate by Class (%) 
Total Errors 
Average Error Rate(%) 

Parzen Classifier 
<1,3,4,6,11,12,14,18>, h = 0.044 

Assigned 
Object 
Class 

Brick Wall 
Hedges 

Picket Fence 
Wood Wall 

Total Objects in Class 
Errors by Class 
Error Rate by Class (%) 
Total Errors 
Average Error Rate(%) 

Brick Wall 
18 
5 
0 
0 

23 
5 

21.74 
26 

28.26 

Brick Wall 
14 
8 
0 
1 

23 
9 

39.13 
31 

33.70 

Actual Object Class 
Hedges Picket Fence Wood Wall 

3 0 8 
20 I 3 
0 22 6 
0 0 6 

23 23 23 
3 I 17 

13.04 4.35 73.91 

Actual Object Class 
Hedges Picket Fence Wood Wall 

3 0 5 
18 I 5 
1 21 5 
I 1 8 

23 23 23 
5 2 15 

21.74 8.70 65.22 

Table 5.7 Comparison of confusion matrices of the best performing classification models applied to the extended objects from the 
Adaptive Bayesian Classification Model (via Committees of Experts), Adaptive Bayesian Classifier with single distance function, 
KNN Classifier, and Parzen Classifier. w 
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Adaptive Bayesian Classification Model 
Committee Mode Frequency Threshold = 4 
Required Class Votes Threshold = I 
Ties Threshold = 0 
Posterior Threshold= 0.6 
Absolute Posterior Difference Threshold= O.OI 

Assigned 
Object Class 

Steel Pole 
Tree 

Rejections by Class 
Total Objects in Class 
Errors by Class 
Error Rate by Class (%) 
Total Errors 
Average Error Rate(%) 
Total Rejections 

KNN Classifier 
<6,7,12,I4>, K = 7 

Assigned 
Object Class 

Steel Pole 
Tree 

Total Objects in Class 
Errors by Class 
Error Rate by Class(%) 
Total Errors 
Average Error Rate(%) 

Actual Object Class -
Steel Pole Tree 

I5 0 
3 19 
2 I 
20 20 
3 0 

I6.67 0 
3 

8.33 
3 

Actual Object Class 
Steel Pole Tree 

I4 0 
6 20 
20 20 
6 0 

30.00 0 

6 
I5.00 

Assigned 
Object Class 

D 

Steel Pole 
Tree 

Total Ob.iects in Class 
Errors by Class 
Error Rate by Class(%) 
Total Errors 
Average Error Rate(%) 

Parzen Classifer 
<6,7,9,I4>, h = 0.0379 

Assigned 
Object Class 

Steel Pole 
Tree 

Total Objects in Class 
Errors by Class 
Error Rate by Class(%) 
Total Errors 
Average Error Rate(%) 

Actual Object Class 
Steel Pole Tree 

I6 0 
4 20 

20 20 
4 0 

20.00 0 
4 

IO.OO 

Actual Object Class 
Steel Pole Tree 

I4 0 
6 20 
20 20 
6 0 

30.00 0 
6 

I5.00 

Table 5.8 Comparison of confusion matrices of the best performing classification models applied to the compact objects from the 
Adaptive Bayesian Classification Model (via Committees of Experts), Adaptive Bayesian Classifier with single distance function, 
KNN Classifier, and Parzen Classifier. 
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(a) (b) (c) (d) 

(e) (f) 

Fig. 5.15 Visible and thermal images of extended blind objects that include classes outside the given training data set. 
(a) brick wall with moss on the surface, (b) concrete wall, (c) bush, (d) gravel pile, (e) steel picket fence, ( t) wood bench, 
and (g) wood wall of a storage shed. 
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(a) (b) (c) (d) 

(e) ( (g) 

Fig. 5.16 Visible and thermal images of compact blind objects that include classes outside the given training data set. 
(a) square steel pole, (b) aluminum pole for dryer vent, (c) concrete pole, (d) knotty tree, (e) telephone pole, 
(f) 4x4 wood pole, and (g) pumpkin. 
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96.23 
99.38 
92.00 

Steel Picket Fence 97.61 
Wood Bench 0 
Wood Wall on Shed 0 

(a) 

Ties I 0 
Posterior 60% 
Absolute Posterior Difference 0.01 

(b) 

Table 5.9 (a) Adaptive Bayesian Classification Model class assignments and posterior 
probabilities on extended blind objects displayed in Fig. 5.15. (b) Threshold values 
for the Adaptive Bayesian Classification Model. 
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Tree 

I Steel Pole 

~ ~ 

Tree -I 
Steel Pole 

(a) 

Ties 
Posterior 60% 
Absolute Posterior Difference 0.01 

(b) 

96.67 
99.65 
99.58 -

0 
85.54 
77.88 

Table 5.10 (a) Adaptive Bayesian Classification Model class assignments and posterior 
probabilities on compact blind objects displayed in Fig. 5.16. (b) Threshold values 
for the Adaptive Bayesian Classification Model. 
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Chapter 6 Conclusions and Future Research Directions 

6.1 Introduction 

In this dissertation, we have designed and implemented a novel pattern classification 

model to characterize non-heat generating outdoor objects in thermal scenes for 

application to autonomous robots. In the context of this research, we have defined non­

heat generating objects as objects that are not a source for their own emission of thermal 

energy, and so exclude people, animals, vehicles, etc. The resulting model complements 

the autonomous bot's situational awareness that supports decision-making in the overall 

intelligence process. In this final chapter, we will summarize the research contributions 

of this dissertation, identify the primary limitation to using a thermal infrared imaging 

system in our application, and discuss our future research directions. 

6.2 Contributions 

We have developed a set of methods and algorithms that use a thermal infrared imaging 

system to automatically characterize non-heat generating extended and compact objects 

in outdoor environments. The extended objects consisted of objects that extend beyond 

the thermal camera's field of view, such as brick walls, hedges, picket fences, and wood 

walls. The compact objects consisted of objects that are within the thermal camera's field 

of view, such as steel poles and trees. We included a systematic and detailed analysis on 

the acquisition and preprocessing of thermal images, generation and selection of thermal­

physical features from these non-heat generating objects within thermal images, and the 
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design of a novel physics-based model to automatically classify these objects. Many of 

our concepts and methods evolved by integrating techniques from various fields of study, 

such as thermography and pattern classification, to gain an understanding of the 

underlying physical behavior of the information in the thermal signal produced by a non­

heat generating object. During our research, we also designed our classification model to 

retain the original physical interpretation of the information in the signal data throughout 

the entire classification process. This emphasis resulted in a framework that allows the 

analyst to understand the reason for a bot's classification of an unknown object by 

associating the final classification decision with the thermal-physical properties found in 

the original features. Additionally, our approach affords bots with the intelligence to 

automatically interpret the information in signal data to make decisions without rendering 

high-quality imagery for human experts to interpret. 

Three primary contributions from this research are: ( 1) an Adaptive Bayesian 

Classification Model, (2) distance metrics used to describe the behavior of an object 

class's patterns about the eigenvector that projects through its respective hyperconoidal 

cluster, and (3) a curvature algorithm that will allow us to distinguish compact objects 

from extended objects. Our Adaptive Bayesian Classification Model presented in 

Chapter 5 outperformed the traditional KNN and Parzen classifiers. The design of our 

Adaptive Bayesian Classification Model makes it an appropriate method to support 

multiple scenarios. First, the Adaptive Bayesian Classification Model is a suitable choice 

for any classification application, such as ours, involving hyperconoidal clusters 

consisting of patterns in an n-dimensional feature space that are characterized by their 

behavior about their respective first principal eigenvector. Such applications involve 
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features that vary due to the effects of some natural cyclic events. Our model is designed 

to adapt to the behavior of these patterns from specified object classes to provide an 

accurate classification of unknown objects. Furthermore, the emphasis on designing the 

model so that the original physical interpretation of the information in the signal data is 

retained throughout the entire classification process affords human operators the ability to 

analyze the reason for a bot's class assignments by associating the final classification 

decision with the thermal-physical properties found in the original features. Also, the 

integration of the dynamical window technique and classification rules with the option to 

reject class assignments and capture another thermal image of the unknown object for 

classification, perhaps at another viewing angle, make our model appropriate for 

autonomous robotic systems that capture continuous frames. 

The two distance metrics, based on the scalar projection (Eq. 5.1) and normal distance 

(Eq. 5.2), were a precursor to our Adaptive Bayesian Classification Model. These two 

distance metrics give us the ability to "see" and understand the behavior of an object 

class's patterns within their respective hyperconoidal cluster in ann-dimensional feature 

space. Additionally, we demonstrated how our distance metrics give us the ability to 

"see" regions in an n-dimensional feature space where some object classes may tend to 

"look alike" and run the risk for misclassification by a classification model. 

Consequently, these metrics provide the researcher with a technique to analyze and select 

n-dimensional feature vectors as well as predict the classification performance of a given 

model when using the selected feature vectors. 

In Chapter 3, we introduced a curvature algorithm that allows us to distinguish 

compact objects from extended objects. During our analysis involving the generation of 
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thermal features used by our classification model, we discovered that certain factors 

caused variations in radiance on cylindrical-shaped objects. These factors consisting of 

directional variation of emissivity, irradiance from sources in the background, and/or halo 

effect assisted us in deriving a curvature algorithm used to distinguish compact objects 

from extended objects. In the context of this research, we defined background as the 

region either in front or to the side of the target consisting of thermal sources that emit 

thermal energy onto the target's surface. The source emitting this thermal energy may or 

may not be in the camera's field of view. On the other hand, we defined foreground as 

the region in the scene consisting of objects behind the target of interest and within the 

thermal camera's field of view. Our curvature algorithm is presented in Table 3.5. A 

demonstration of the curvature algorithm showed that we were able to correctly identify a 

tree and square metal pole as compact objects and a brick wall as an extended object. 

With further investigation the curvature algorithm has potential to serve as an exceptional 

technique to distinguish compact objects from extended objects. 

6.3 Limitation of a Thermal Infrared Imaging System 

Understanding the limitations of sensor systems used by any pattern classification model 

is important since depending..Q_n the environmental conditions the sensor may not be able 

to obtain relevant features to classify an unknown object due to the lack of signal 

information emitted from the object. In this case, our autonomous robot may have to rely 

on its other sensor(s) to classify the object. Since our application takes place outdoors, 

environmental conditions will exist where the surfaces of a target and surrounding objects 

will emit approximately the same level of thermal radiance. This phenomenon, known as 
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thermal crossover [23], results in minimal thermal contrast between the surfaces of 

objects and the surrounding environment within the thermal infrared camera's field of 

view. Thermal images of objects captured during thermal crossover run the risk of 

producing features that the bot will attribute to features from other object classes. 

Thermal crossover was a factor that contributed to the misclassification of our blind 

objects in Chapter 5 and is seen as the primary limitation in our ability to accurately 

classify non-heat generating objects in an outdoor environment using a thermal imaging 

system. 

Thermal crossover will always occur as part of the natural diurnal cycle of solar 

energy. The length of time that the phenomenon occurs depends on the thermal 

properties of objects' surfaces, time history of solar radiation, and time of day. 

Environmental conditions such as low ambient temperatures and/or lack of direct solar 

energy on an object's surface (i.e., due to shady locations, clouds, or night time) reduce 

an object's emission of thermal radiance. Our ability to detect objects in thermal images 

captured at night depends on the thermal properties of the object and the time history of 

solar radiation. Thus, as we discussed in Chapter 3, the amount of thermal radiance 

emitted by an object depends on the emissivity of the object. The higher an object's 

emissivity, the more thermal radiance it will emit. Emissivity depends on surface 

temperature (as well as the type of material, viewing angle, and the object's surface 

quality and shape) and surface temperature depends on the specific heat (as well as 

conductivity and other thermal properties) of the object. Objects with a high specific 

heat, such as birch trees ( ~2.4 kJ · kg- 1
•

0 c-') [22], will tend to heat up more slowly with 

the increasing solar energy and cool more slowly as the amount of solar energy begins to 
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decrease in the late afternoon (around 1600 hrs.). On the other hand, the surface 

temperature of low specific heat objects, such as the leaves on hedges, tend to track the 

availability of solar energy [23]. When a cloud passes or the sun begins to set, the 

surface temperature of the hedges stays consistent with the lower ambient temperature. 

As a result, a low level of solar energy available to a low specific heat object results in 

less thermal radiation emitted. If a birch tree and hedges exist side-by-side and are in 

direct sunlight in the afternoon on a summer's day, an acceptable thermal contrast will 

exist in the scene to detect, segment, and classify both objects. Since the birch tree will 

emit more thermal radiance than the hedges after sunset, there will still exist enough 

thermal contrast between the two objects in the scene to segment the birch tree. 

However, the bot will more likely only be able to generate relevant thermal features from 

the surface of the birch tree. On a cloudy day with a low ambient temperature in the 

winter, both the birch tree and hedges will emit minimal thermal radiation. In this case, 

there will likely not exist enough thermal contrast in the scene for the bot to distinguish 

the two objects. An attempt to classify the objects in the scene will thus result in 

misclassifications. 

The best way to deal with periods of thermal crossover is have the bot avoid using the 

thermal infrared imaging modality when minimal thermal contrast exists in the scene. A 

feasible course of action would be to integrate a thermal contrast threshold rule into the 

detection phase of the intelligence process that requires a minimum amount of contrast in 

the scene to use the themml infrared imaging modality. If the rule is not satisfied, the bot 

must eliminate the use of the thermal infrared imaging sensor and rely on other sensors, 

such as ultrasound, that are available in the multi-sensor data fusion framework to 



369 

classify this specific target. The limitations found with any sensor obviously provide the 

reason why multi-sensor data fusion systems are normally more successful in 

classification applications than systems with a single sensor. Thus, the interpretations of 

relevant information received by different types of sensors used in a multi-sensor 

framework are fused to complement the overall performance of the classification process. 

In Section 6.4, we will discuss our plans for integrating our current pattern classification 

model using thermal infrared imagery into a multi-senor data fusion framework. 

6.4 Future Research 

The work presented in this dissertation has created new opportunities to continue the 

research in support of the goal to automate the fusion and interpretation of data streams 

from various active and passive sensor systems to enable autonomous mobile robot 

operations in a wide variety of unstructured outdoor environments as discussed in 

Chapter 1. In this section, we will discuss our future research directions that evolve from 

our current work and research involving sonar sensor interpretation by mobile robots [1]. 

6.4.1 Augmentation of Robotic Thermal Imaging System 

The design and implementation of our Adaptive Bayesian Classification Model has 

created new research opportunities. Research is required to determine if there exists a 

most favorable number of experts in each committee. Also, the selection of the most 

favorable threshold values requires additional research. The appropriate selection of 

threshold values will minimize the classification error rate and number of rejections. 
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Although our current research involved a parked robot capturing still frames and then 

moving to the next location before capturing another still frame, it is not difficult to 

envision a similar mobile robotic system that interprets objects in thermal images 

captured from continuous frames while moving. The robotic system could then capture 

thermal images at a frame rate of 30 images per second. Continuous frames would afford 

the bot with a "real-time" classification and quick response to capture another thermal 

image of an object that was previously rejected by the Adaptive Bayesian Classification 

Model for not satisfying the rules for a class assignment. 

Research involving classifying unknown objects from continuous frame will require 

the integration of detection and segmentation algorithms into the algorithm of the 

classification model. In this dissertation, we assumed that the bot had already detected 

and segmented an unknown object. There are many options for integrating detection and 

segmentation algorithms into the overall classification framework. In Chapter 1, we 

presented references that discuss detection and segmentation methods using various 

passive and active modalities, such as thermal infrared, RGB, and sonar sensors. In 

Chapter 2, we discussed how the halo effect, resulting from the mechanical chopper 

wheel within a thermal infrared camera, could produce a halo around targets. 

Consequently, this halo effect could serve to assist the bot in segmenting a target for 

classification [33]. Additionally, we will also automate the classification process to 

detect, segment, and classify targets in cluttered scenes. 

As we discussed in Chapter 5, the two primary factors that contributed to the 

misclassification of the blind objects were a lack of representative training data and the 

effects of thermal crossover. The integration of a thermal crossover threshold rule to 
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avoid misclassifications due to thermal crossover was introduced in Section 6.3. Thus, 

future research involving the use of thermal infrared imaging system will also need to 

include an expanded range of features in the training data set by capturing a more 

representative set of thermal images. 

The current robotic thermal imaging system design uses electrical tape as a reference 

emitter and crinkled aluminum foil to estimate the irradiance received by the target. The 

electrical tape and crinkled aluminum foil are attached to the target to capture their 

thermal images used to generate the required feature values discussed in Chapter 3. 

Research is required to determine how to estimate the thermal radiance emitted from a 

reference emitter and capture the irradiance received by the target without the need to 

pre-attach the electrical tape and aluminum foil. 

6.4.2 Fuzzy Logic Classifier 

Research required to explore the integration of a fuzzy logic classifier into the Adaptive 

Bayesian Classification Model evolved from the observations, in Chapters 4 and 5, that 

classification models consistently misclassifte_d some patterns from specific object classes 

while other patterns were assigned to the correct class. We have determined that some 

object classes look alike when operating "beyond the visible spectrum" under certain 

thermal conditions (other than thermal crossover). These conditions result in objects that 

are imprecisely defined. For instance, under certain thermal conditions the feature 

vectors from a wood wall may look like a brick wall, and a picket fence under other 

conditions. This type of uncertainty presents a degree of vagueness that may call for the --· 
integration of fuzzy logic into the classification model [ 107, 1 08]. 
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We could introduce our use of fuzzy logic and membership functions based on a 

feature called sparsity that is generated from the 2-dimensional frequency spectrum of an 

object's thermal image [1]. Four sparsity features can be generated from an objects 

thermal image to measure how well defined the edge directions are on the object. After 

pre-processing the object's thermal image as discussed in Chapter 2, we take the 2D 

Fourier transform of the object's thermal image and take the absolute value to obtain the 

spectrum, which is then transformed to polar coordinates with angle measured in a 

clockwise direction from the polar axis and increasing along the columns in the 

spectrum's polar matrix. The linear radius (i.e., frequencies) in polar coordinates 

increases down the rows of the polar matrix. Figs. 6.1 and 6.2 display the visible image, 

thermal image, frequency spectrum, and polar spectrum of a wood wall and brick wall, 

respectively. Since the discrete Fourier transform used to produce the spectrum assumes 

the frequency pattern of the image is periodic, a high-frequency drop-off occurs at the 

edges of the image. These "edge effects" result in intense horizontal and vertical artifacts 

in the spectrum. Care needs to be taken when generating features from the 2-dimensional 

frequency domain since these edge effects may interfere with the ability to produce 

relevant features to classify objects. Fortunately, since these edge effects are consistent 

for all the thermal images, they will not have a negative impact on sparsity features. 

Next, the total energy of the frequencies along the spectral radius is computed for 

angles from 45 to 224 degrees. This range of angle values ensures that the algorithm 

captures all possible directions of the frequencies on the object in the scene. A histogram 

with the angle values along the abscissa and total energy of the frequencies on the 

ordinate is smoothed using a moving average filter. The values along the ordinate are 
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scaled to obtain frequency energy values ranging from 0 to 1 since we are only interested 

in how well the edges are defined about the direction of the maximum frequency energy, 

not the value of the frequency energy. The resulting histogram is plotted as a curve with 

peaks representing directions of maximum frequency energy. The full width at 80% of 

the maximum (FW(0.80)M) value on the curve is used to indicate the amount ofvariation 

in frequency energy about a given direction. Four features are generated from the 

resulting histogram defined by the terms: sparsity and direction. The sparsity value 

provides a measure of how well defined the edge directions are on an object. The value 

for sparsity is the ratio of the global maximum scaled frequency energy to the 

FW(0.80)M along a given interval in the histogram. Thus, an object with well defined 

edges along one given direction will display a curve in the histogram with a global 

maximum and small FW(0.80)M, resulting in a larger sparsity value compared to an 

object with edges that vary in direction. To compute the feature values, the intervals from 

45 to 134 degrees and from 135 to 224 degrees were created along the abscissa of the 

histogram to optimally partition the absolute vertical and horizontal components in the 

spectrum. The sparsity value, along with its direction, is computed for each of the 

partitioned intervals. A value of zero is provided for both the sparsity and direction if 

there is no significant frequency energy present in the given interval to compute the 

FW(0.80)M. 

By comparing the directions (in radians) of the maximum scaled frequency energy 

along each interval, four features are generated: Sparsity about Maximum Frequency 

Energy (12.03 for wood wall vs. 9.02 for brick wall), Direction of Maximum Frequency 

Energy (3.14 for wood wall vs. 1.55 for brick wall), Sparsity about Minimum Frequency 
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Energy (0.00 for wood wall vs. 7.80 for brick wall), Direction of Minimum Frequency 

Energy (0.00 for wood wall vs. 3.14 for brick wall). Fig. 6.3 compares the scaled 

frequency energy histograms for the wood wall and brick wall, respectively. 

As we can see in the histogram plot of the wood wall (Fig. 6.3a) the edges are more 

well defined in the horizontal direction, as expected. Furthermore, the vertical direction 

presents no significant frequency energy. On the other hand, the results for the brick wall 

(Fig. 6.3b) imply edge directions that are more well defined in the vertical direction. The 

brick wall also produces a sparsity value and direction associated with minimum 

frequency energy. Consequently, these particular results would lead to features that 

could allow us to distinguish the wood wall from the brick wall. 

Fuzzy membership functions could be explored for the sparsity features to translate 

the vagueness to a degree of membership that produces the "likeliness" of an object being 

present when given the associated sparsity feature values. It is important to note that the 

fuzzy logic classifier would be integrated into the Adaptive Bayesian Classification 

Model to complement the overall classification performance. For instance, the 

probabilistic (crisp) portion of the model would still recommend a class assignment along 

with a posterior probability for an unknown object. However, a fuzzy (non-crisp) portion 

of the model would fuzzify the sparsity feature values generated from the thermal image 

of the unknown object to produce an output from the fuzzy set using phrases, such as, 

Unlikely and Likely, associated to each object class that could be assigned. For example, 

for a specific set of sparsity feature the fuzzy classifier may output that the unknown 

object is Likely to be a Wood Wall and Unlikely to be a Brick Wall. The classification 



375 

model would make a final classification decision based on the recommendations by the 

crisp and fuzzy classifiers. 

6.4.3 Bayesian Multi-Sensor Data Fusion 

As discussed Section 6.3, the limitations found with any sensor obviously provide the 

reason why multi-sensor data fusion systems are normally more successful in 

classification applications than systems with a single sensor. Thus, the interpretations of 

relevant information received by different types of sensors used in a multi-sensor 

framework are fused to complement the overall performance of the classification process 

[109, 110]. 

Since both ultrasound and infrared are independent of lighting conditions, they are 

appropriate for use both day and night. Consequently, designing a framework that fuses 

information from the bot's thermal infrared imaging and ultrasonic sensors for performing 

intelligent actions, such as decision-making and learning, is an appropriate choice. We 

envision a Bayesian multi-sensor data fusion architecture involving thermal infrared 

imaging and sonar sensors as displayed in Fig. 6.4. The first requirement in the multi­

sensor data fusion architecture is to ensure the data from the different sensors are 

registered to common points of reference so that all the sensors are "looking at" the same 

target. As displayed in the given architecture, the passive thermal infrared imaging and 

active sonar sensors receive signal data from objects in the surrounding environment. 

Equivalent to the methodology outlined in this dissertation, the signals received by each 

sensor are preprocessed to minimize the effects of temporal and spatial signal 

degradations. The target within the field of view ofthe sensors is then detected and 



segmented. After the preprocessing phase, features are generated from the target's 

signals received by each sensor. 
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The Bayesian multi-sensor data fusion model has the same structure as the Bayesian 

Classifier discussed in Chapter 4. Thus, the Bayesian multi-sensor data fusion model 

consists of a likelihood function and prior knowledge to formulate a posterior probability 

used to classify based on features generated from the unknown target's signals received 

by each sensor. This logical inference also considers any other relevant background 

information I. The likelihood function, P(Dn I 0 1 ,!), n = l, ... ,M and}= l, ... ,J, provides 

a measure of the chance that we would have obtained the values in the feature vector D n 

generated from the unknown target's signal received by sensor n if the object class 0 1 

was given to be present. The prior probability P(01 I I) provides a measure of our state 

of knowledge regarding the object class being present before any signal data is collected 

by the sensors. This prior probability is based on information that we know about the 

objects in the given environment. If we feel that all the object classes could exist in the 

bot's local area of operation or have no reason to believe that one object class is more 

likely to be identified over another, then the "principle of indifference" prevails and we 

assign equal priors for all the object classes. In Section 6.4.4, we will discuss our future 

research plans to use satellite imagery to assist in developing prior knowledge in a bot's 

immediate area of operation. Once the likelihood function and the prior probability are 

established, we can use Bayes' theorem to obtain our posterior probability 
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"LP(DI, ... ,DM 1 oJ,I)P(oJ 1 I) 
(6.1) 

J=l 

J 

where the unconditional probability "LP(D 1 , ••• ,D M I OJ ,I) P(01 I I) is a normalization 
J=l 

J 

parameter (known as the evidence) that ensures L P(01 I D 1 , ••• ,D M ,I)= 1. Since the 
J=l 

signals received by the sensors are statistically independent, our likelihood function is 

M 

computed by P(D 1 , ••• ,D M I OJ,!)= IJ P(D n I OJ ,I). Thus, with our posterior, we can 
n=l 

determine the probability of the target being assigned to object class OJ given the feature 

vectors generated from the unknown target's signals received each sensor and prior 

knowledge of the object class existing in the current environment. The Bayesian Multi-

sensor Data Fusion Model will assign the target to the object class associated with the 

largest posterior probability. The Bayesian Multi-sensor Data Fusion Model can be 

designed in a framework analogous to our adaptive model presented in Chapter 5. Thus, 

this framework would also include classification rules that must be satisfied before the 

bot uses the class assignment to decide on the next required action in the inteliigence 

algorithm. 
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6.4.4 Prior Knowledge Based on Satellite Imagery 

We envision a bot having the ability to use real-time or archival satellite imagery to assist 

in developing knowledge regarding objects that may exist in an area of operation prior to 

the bot entering the given area. Hence, the information in the satellite imagery is used to 

estimate prior probabilities of objects in the bot's immediate area of operation that are 

used in our Bayesian classification models. We can picture a scenario similar to Fig. 6.5 

where a bot, denoted by the blue icon with the given latitude and longitude coordinates, is 

using satellite imagery to enhance its situational awareness by gaining knowledge of 

objects that may exist in the next immediate area of operation represented by the region 

enclosed by the yellow triangle. By partitioning the satellite image into various regions, 

represented by the enclosed areas with yellow borders and labeled as Paved Road, Yard, 

and Woods, we are creating surface regions that each consist of a mixture of object 

classes. For instance, we perhaps know from experience that the region labeled as 

Woods has a higher chance of containing trees and bushes than fences. The region 

labeled as Yard could have an equal chance of containing trees, bushes, and fences. On 

the other hand, the region labeled as a Paved Road could have no chance of containing 

trees, bushes, or fences. Consequently, we could associate an estimated probability for 

each of these objects existing in each of the respective regions. Thus, as the bot is 

moving along a specific path, it is conducting a pre-entry analysis of the next area of 

operation by using satellite imagery to gain prior knowledge of objects that the bot may 

encounter. The resulting prior probability estimates for each object class from the 

analyzed region is used in the bot's Bayesian classification model. 
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Next we need a method to assign a class label (i.e., Paved Road, Yard, and Woods) to 

the partitioned regions in the satellite image. As we can see in Fig. 6.5, each region 

enclosed by the yellow borders displays a RGB color histogram with distributions that 

distinguish it from the other regions' histograms. Consequently, we may be able to 

generate features that uniquely represent the different types of regions that we labeled in 

the satellite imagery. Now the bot captures the next immediate area of operation in its 

path, represented by the region enclosed by the yellow triangle, and generates feature 

vectors from the region's RGB histogram to assign a label to the enclosed region. 

Estimated prior probabilities are then given for the object classes associated with the 

respective type of enclosed region. These prior probability estimates are then used as 

inputs into the bot's Bayesian classification model for computing posterior probabilities 

of object classes that the bot detects in the next immediate area of operation. If no 

relevant satellite information is available to predict the region types or the there are ties 

for the type of region, then equal prior probabilities could be assigned for each object 

class. Additionally, since the partitions are not necessarily crisp in distinguishing region 

types, we could find a degree of vagueness that may call for the integration of fuzzy 

logic. Wang [111] describes a fuzzy supervised classification method for classifying land 

cover in Landsat images involving imprecise boundaries between land cover types. A 

review of methods used in the classification of remotely sensed data is found in [112]. 

6.5 Concluding Remarks 

We have designed and implemented a physics-based adaptive Bayesian pattern 

classification model that uses a passive thermal infrared imaging system to automatically 
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characterize non-heat generating objects in unstructured outdoor environments for mobile 

robots. The resulting model complements an autonomous robot's situational awareness 

and affords bots with the intelligence to automatically interpret the information in signal 

data emitted from targets to make decisions without the need for an interpretation by 

humans. We have demonstrated that our Adaptive Bayesian Classification Model 

outperforms the traditional KNN and Parzen classifiers. 

The framework of our classification model could also be used in other applications 

requiring the characterization ofunknown objects based on features that witness 

variations due to natural cyclic events. For instance, our model could be integrated into 

classification applications that use RGB video to generate features from the visible 

images of objects in outdoor scenes that depend on illumination from the sun. The 

Adaptive Bayesian Classification Model could also be used during quality control 

inspections on assembly lines in industry where a thermal pulse is used to stimulate a 

product's surface and time-varying features generated from the cooling object are used to 

improve the accuracy of characterizing anomalies in products and monitoring packing 

standards. 

Our work has also laid the foundation for continued research that will: (1) explore the 

integration of fuzzy logic to assist in classifying targets that emit signal information that 

imprecisely defines their respective class assignments, (2) design a multi-sensor 

framework to fuse the interpretations of relevant information received by different types 

of sensors to complement the overall performance of the classification process, and (3) 

afford a mobile bot with the ability to use real-time or archival satellite imagery to assist 

in developing knowledge regarding objects that may exist in an area of operation prior to 
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the bot entering the given area. These interesting and important areas of research are the 

cornerstone to further advancements in the capabilities of autonomous robotic systems. 



(a) (b) 

(c) 

(d) 

Fig. 6.1 (a) visible image, (b) thermal images, (c) frequency spectrum, and 
(d) polar spectrum of a wood wall. 
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(a) (b) 

(c) 

(d) 

Fig. 6.2 (a) visible image, (b) thermal images, (c) frequency spectrum, and 
(d) polar spectrum of a brick wall. 
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(a) 

(b) 

Fig. 6.3 Scaled frequency energy histograms: (a) wood wall and (b) brick wall. 
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