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Abstract

We have designed and implemented a physics-based adaptive Bayesian pattern
classification model that uses a passive thermal infrared imaging system to automatically
characterize non-heat generating objects in unstructured outdoor environments for mobile
robots. In the context of this research, non-heat generating objects are defined as objects
that are not a source for their own emission of thermal energy, and so exclude people,
animals, vehicles, etc. The resulting classification model complements an autonomous
bot's situational awareness by providing the ability to classify smaller structures
commonly found in the immediate operational environment. Since GPS depends on the
availability of satellites and onboard terrain maps which are often unable to include
enough detail for smaller structures found in an operational environment, bots will
require the ability to make decisions such as "go through the hedges" or "go around the
brick wall." A thermal infrared imaging modality mounted on a small mobile bot is a
favorable choice for receiving enough detailed information to automatically interpret
objects at close ranges while unobtrusively traveling alongside pedestrians. The
classification of indoor objects and heat generating objects in thermal scenes is a solved
problem. A missing and essential piece in the literature has been research involving the
automatic characterization of non-heat generating objects in outdoor environments using
a thermal infrared imaging modality for mobile bots. Seeking to classify non-heat
generating objects in outdoor environments using a thermal infrared imaging system is a
complex problem due to the variation of radiance emitted from the objects as a result of
the diurnal cycle of solar energy. The model that we present will allow bots to "see
beyond vision" to autonomously assess the physical nature of the surrounding structures
for making decisions without the need for an interpretation by humans.

Our approach is an application of Bayesian statistical pattern classification where
learning involves labeled classes of data (supervised classification), assumes no formal
structure regarding the density of the data in the classes (nonparametric density
estimation), and makes direct use of prior knowledge regarding an object class's existence
in a bot's immediate area of operation when making decisions regarding class
assignments for unknown objects. We have used a mobile bot to systematically capture
thermal infrared imagery for two categories of non-heat generating objects (extended and
compact) in several different geographic locations. The extended objects consist of
objects that extend beyond the thermal camera's field of view, such as brick walls,
hedges, picket fences, and wood walls. The compact objects consist of objects that are
within the thermal camera's field of view, such as steel poles and trees. We used these
large representative data sets to explore the behavior of thermal-physical features
generated from the signals emitted by the classes of objects and design our Adaptive
Bayesian Classification Model. We demonstrate that our novel classification model not
only displays exceptional performance in characterizing non-heat generating outdoor
objects in thermal scenes but it also outperforms the traditional KNN and Parzen
classifiers.



Table of Contents

Page

Dedication vii
Acknowledgements viii
List of Symbols X
List of Figures Xiii
List of Tables XX1
Chapter 1 Introduction and Overview 1
1.1 Purpose of Dissertation 1
1.2 Non-Heat Generating Objects 5
1.3 Autonomous Robotics Systems 6
1.3.1 Detect the Object 9

1.3.2 Segment the Object 12

1.3.3 Classify the Object - 12

1.4 Infrared Thermography 16
1.4.1 Active vs. Passive Thermography 17

1.4.2 Advantages & Disadvantages of Thermal Infrared Imaging 18

1.4.3 Multi-Mode Heat Transfer Mode! 20

1.5 Overview of the Dissertation 23
Chapter 2 Data Acquisition | 37

2.1 Introduction 37



ii

Page

2.2 Robotic Thermal Imaging System 37
2.2.1 Hardware 37
2.2.2 Signal Preprocessing 40

2.2.2.1 Signal Degradation ' 40

2.2.2.2 AC Coupling 42

2.2.2.3 Automatic Gain Control 44

2.2.2.4 Filters 47

2.2.2.5 Capturing Thermal Imagery 48

2.3 Data Collection 48
2.4 Summary | 51
Chapter 3 Thermal Feature Generation 70

3.1 Introduction 70

3.2 “Ugly Duckling” Features ' 71

3.3 Thermal Image Representation 77

3.4 Meteorological Features 80
3.4.1 Ambient Temperature 80
3.4.2 Ambient Temperature Rate of Change 81

3.5 Micro Features 81
3.5.1 Emissivity Variation by Material Type - 82
3.5.2 Emissivity Variation by Viewing Angle 83
3.5.3 Emissivity Variation by Surface Quality 83

3.5.4 Emissivity Variation by Shape and Surface Temperature 84



1ii

Page

3.5.5 Other Directional Variation Enhancers 85
3.5.6 Emissivity-based Features 87

3.6 Macro Features 95
3.6.1 First-order Statistical Features 96
3.6.1.1 Object Scene Radiance 97

3.6.1.2 Contrastl 98

3.6.1.3 Smoothness 98

3.6.1.4 Third Moment 98

3.6.1.5 Uniformity 99

3.6.1.6 Entropyl 99

3.6.2 Second-order Statistical Features 102
3.6.2.1 Constrast2 105

3.6.2.2 Correlation 105

3.6.2.3 Energy 106

3.6.2.4 Homogenéity 106

3.6.2.5 Entropy2 107

3.6.2.6 Most Favorable Pixel Distances 107

3.7 Thermal Feature Application 110
3.8 Curvature Algorithm 114
3.9 Summary ~115
Chapter 4 Thermal Feature Selection 140

4.1 Introduction 140



4.2

4.3

4.4

4.5

4.6

“No Free Lunch” Classifiers
Preliminary Feature Analysis
Classifiers
4.4.1 Bayesian Classifier
4.4.2 K-Nearest-Neighbor (KNN) Classifier
4.4.3 Parzen Classifier
4.4.4 General Remarks
4.4.4.1 Choices for Parameters K and h
4.4.4.2 Prior Knowledge
4.4.4.3 Ties
Model Performance and Feature Selection
4.5.1 Feature Selection Method
4.5.1.1 Feature Extraction
4.5.1.2 Feature Selection
4.5.2 Performance Criterion
4.5.3 Error Estimation Method
4.5.4 Checkpoint Summary
4.5.5 Extended Object Performance and Feature Selection
4.5.6 Compact Object Performance and Feature Selection
Sensitivity Analysis
4.6.1 Viewing Angle Variations

4.6.2 Window Size Variations

iv

Page
141
145
151
151
158
160
162
162
164
165
166
168
169
173
174
176
178
179
183
187
188

190



4.7

4.6.3 Rotational Variations

Summary

Chapter 5 Adaptive Bayesian Classification Model

5.1

5.2

5.3

54

5.5

5.6

5.7

Introduction
Distance Metrics for Hyperconoidal Clusters
Adaptive Bayesian Classifier Design
Adaptive Bayesian Classifier Appraisal
5.4.1 Blind Data Performance
5.4.2 Analysis of Misclassifications
5.4.2.1 Misclassifications of Extended Objects
5.4.2.2 Misclassifications of Compact Objects
5.4.2.3 Misclassifications Discussion
Adaptive Bayesian Classification Model Design
Adaptive Bayesian Classification Model Application
5.6.1 Performance on Blind Data (with Classes = Training Set)
5.6.2 Performance on Blind Data (with Classes # Training Set)

Summary

Chapter 6 Conclusions and Future Research Directions

6.1 Introduction

6.2 Contributions

6.3

Limitation of a Thermal Infrared Imaging System

6.4 Future Research

Page
193
194
250
250
252
258
263
264
267
268
273
276
278
284
285
288
292
363
363
363
366

369



6.4.1 Augmentation of Robotic Thermal Imaging System
6.4.2 Fuzzy Logic Classifier
6.4.3 Bayesian Multi-Sensor Data Fusion

6.4.4 Prior Knowledge Based on Satellite Imagery

6.5 Concluding Remarks

Bibliography

Vita

vi

Page
369
371
375
378
379
387

397



To those who serve, allowing us to express our thoughts freely.

vii



Viii

Acknowledgements

I am sincerely grateful to many people and organizations for their support and assistance
while pursuing my PhD, conducting interesting and original research, and completing this
dissertation.

As always, I thank my life-long partner and best friend, Valerie Fehlman, for her
continued support and wise counsel throughout this assignment and, particularly, in being
the first-line reviewer of this manuscript. I would also like to thank both of my
daughters, Blaire Fehlman and Caroline Fehlman, for assisting me with maneuvering
rMary and capturing thermal images.

[ am very grateful to my advisor, Professor Mark Hinders, for providing me with the
guidance and framework to conduct this interesting and important research. I am
honored to have him as a colleague, mentor, and friend as we continue our life-long
research opportunities.

Thank you to Professor Zia-ur Rahman, Professor Leah Shaw, Professor Eugene Tracy,
and Professor Deonna Woolard for reviewing my work as committee members.
Particularly, I am thankful to Professor Rahman for introducing me to digital imaging
processing and Professor Tracy for teaching me the fundamentals of Bayesian
probability. ;

[ respectfully thank the Department of Mathematical Sciences at the United States
Military Academy for providing me with this opportunity to earn my PhD and return to
West Point to teach, mentor, and develop our future Army officers.

[ am very grateful to Ms. Cara Campbell and Ms. Danielle Dumond for assisting me in
capturing thermal images of objects during extreme environmental conditions. Thank
you to Mr. Jonathan Stevens for his technical expertise in designing and constructing
rMary.

[ am sincerely thankful for the support received in part by a grant of computer time from
the DoD High Performance Computing Modernization Program at the Army Research
Laboratory Major Shared Resource Center, using computational facilities at The College
of William & Mary which were enabled by grants from Sun Microsystems, the National
Science Foundation, and Virginia's Commonwealth Technology Research Fund, and by
the General Omar N. Bradley Research Fellowship in Mathematics provided by the Omar
N. Bradley Foundation. Particularly, I thank Dr. Juan Chaves from the Ohio
Supercomputer Center (OSC), and Dr. Stephen Landowne, from the United States
Military Academy, for making it possible for me to use the DoD high performance
computing system. I thank Mr. Chris Bording in assisting me with porting my computer
code to the computational facilities at The College of William & Mary. I also thank the
folks at the U.S. Army Research Laboratory’s Weapons and Materials Research
Directorate (WMRD) at Aberdeen Proving Ground, Maryland, for their collaborations
during my research.

Last but not least, I would like to thank rMary for remaining fully operational during our
deployments around Virginia, West Virginia, and New York.



List of Symbols

The following is a list of symbols used in this dissertation.

C specific heat (kJ -kg™'-°C™")
°C degrees Celsius
cor'npgl . 7 component (or scalar projection) of the

s

pattern fy onto the first principal

eigenvector ¢,

D, feature vector generated from an unknown
target’s signal received by sensor n

D, normal distance between a pattern i and first

principal eigenvector ¢,

e, first principal eigenvector of object class O,

°F degrees Fahrenheit

H Shannon’s entropy

h parameter for Parzen Classifier

h, free convection coefficient

K parameter for K-Nearest-Neighbor Classifier

K..K,, K, in-plane and transverse thermal conductivity
of the object (W m™! "C*‘)

L L, thermal radiance emitted by an object and

reference emitter and detected by a thermal
infrared camera (W -m™ -sr™")



T’T()’Tb7Ta

6t

Greek Letters

E,E , E

o r

M

irradiance energy on a target from the

surrounding background environment
(W-m™-sr™")

likelihood function weighted by the distance
function d, (Z,gl j.)

total feature vectors from object class O, ’s
data set

object class with index j
unconditional probability
conditional probability
joint probability

probability density function

heat flux (W -m™)

temperature; object surface temperature;

background surface temperature; ambient
temperature

time; relaxation time

volume of a hypersphere

emissivity; object emissivity;
reference emitter emissivity

central moments (nth moment about the
mean)

micro-meters (also called microns)



Feature Labels

Col

Co?2

Cr2

Enl

En2

Eo

Er2

Ho2

Lb

Lo

Lob

Lor

Lr

Mol

Xi
density (kg m'3)
Stephan-Boltzmann coefficient

atmospheric transmission coefficient

contrast, first-order statistic
(macro feature)

contrast, second-order statistic
(macro feature)

correlation, second-order statistic
(macro feature)

entropy, first-order statistic
(macro feature)

entropy, second-order statistic
(macro feature)

emissivity (micro feature)

Energy, second-order statistic
(macro feature)

homogeneity, second-order statistic
(macro feature)

background irradiance (micro feature)
object surface radiance (micro feature)
Lo/Lb (micro feature)

Lo/Lr (micro feature)

reference emitter radiance (micro feature)

object scene radiance, first-order statistic
(macro feature)



Mob1

Morl

Sol

T1

Ta

Tol

Uol

Superscripts

Overbar

Subscripts

U nderbar

Mo1/Lb, first-order statistic
(macro feature)

Mol/Lr, first-order statistic
(macro feature)

smoothness, first-order statistic
(macro feature)

ambient temperature rate of change
(meteorological feature)

ambient temperature
(meteorological feature)

third moment, first-order statistic
(macro feature)

uniformity, first-order statistic
(macro feature)

sample mean (or average)

vector

Xii



List of Figures
Figure Page

1.1 Unstructured environments as potential areas of operation for autonomous
robots. [www .flickr.com] 26

1.2 Visible and thermal images of a wooden fence. (a) visible image of the
fence during the day, (b) visible image captured at 2030 hrs on
7 September 2007 with light source illuminating on the fence,
(c) thermal image of the fence captured at the same time as the visible
image in (b) and at an ambient temperature of 71.90 F. 27

1.3 Mobile robotic 3D sonar scanning system, »William (on right) and thermal
imaging system, *Mary (on left). 28

1.4 Thermal scene consisting of heat and non-heat generating objects. Heat
generating objects include the human walking on the sidewalk and squirrel
running from behind the tree. Non-heat generating objects include the trees
and steel pole used by the street light. 29

1.5 Geometric measurements generated from thermal images of heat
generating objects for classification. (a) measurements generated to

classify people [2]. (b) measurements generated to classify vehicles [3]. 30
1.6  Roomba vacuum cleaning robot [iRobot, www.irobot.com]. 31
1.7  Automower™ Solar Hybrid [Husqvarna, www. husqvarna.com]. 31

1.8  Autonomous unmanned ground vehicle platforms designed to support
various military and commercial applications. (a) military reconnaissance
application [www.globalsecurity.org], (b) Battlefield Extraction and
Retrieval Robot [Vecna Robotics, www.vecnarobotics.com] for
ambulatory applications, (c) remote monitoring and surveillance
applications [PatrolBot, MOBILEROBOTS, Inc., www.mobilerobots.com]. 32

1.9  Infrared range sensor with detection range from 1 to 5.5 m.
[Sharp, www.acroname.com] 33

1.10  Spectral radiance of a blackbody. Long-wave infrared band
( 7 — 14 microns) is denoted by the blue shaded region. 34

1.11  Pattern classification model design cycle. 35

1.12  Intelligence algorithm with pattern classification model. 36


http://www.flickr.com
http://www.irobot.com
http://husqvarna.com
http://www.globalsecurity.org
http://www.vecnarobotics.com
http://www.mobilerobots.com
http://www.acroname.com

Xiv
Figure Page
2.1  Robotic thermal imaging system hardware: (a) robot platform front

view, (b) robot platform rear view, (c) Raytheon thermal imaging video
camera, (d) VideoAdvantage USB video capture device, (¢) Samsung

tablet PC w/ Powerbank. 52
2.2 Thermal image prior to preprocessing. 53
2.3 Control IR Manager main menu. 54
24  Control IR Manager video settings. 55
2.5  Control IR Manager advanced video settings. 56

2.6 Thermal image with preprocessing on temporal/spatial signal degradations
and dead pixels. AGC is enabled. 57

2.7  AC coupling. (a) Scene with different temperature regions, (b) Gray-level
shades of regions in thermal image. 59

2.8  Enabled AGC experiment with cardboard tubes (left tube at constant
temperature of ~86.5 deg F and right tube heated to 110.8 deg F and
allowed to cool to 65.8 deg F). (a) Image of tubes with right (heated)
tube at 110.8 deg F, (b) Image of tubes with right (heated) tube at
65.8 deg F, (¢) Variations of gray-levels of constant and heated tubes
as a function of temperature. 60

2.9  Disabled AGC experiment with cardboard tubes (left tube at constant
temperature of ~86.5 deg F and right tube heated to 110.4 deg F and
allowed to cool to 65.8 deg F). (a) Image of tubes with right (heated)
tube at 110.4 deg F, (b) Image of tubes with right (heated) tube at
65.8 deg F, (c) Variations of gray-levels of constant and heated tubes
as a function of temperature. 62

2.10 Thermal image with preprocessing on temporal/spatial signal degradations
and dead pixels. AGC is disabled. 63

2.11 Thermal image of segment of brick wall: (a) without high pass filter,
(b) with high pass filter. 64

2.12  (a) Robotic thermal imaging system capturing an image of a wood fence.
(b) Thermal image of the wood fence displayed with VideoAdvantage
software. 65



Xv
Figure Page

2.13  Visible and thermal images of extended objects from the training data set.
(a) brick wall, (b) hedges, (c) wood picket fence, and (d) wood wall. 66

2.14  Visible and thermal images of compact objects from the training data set.
Steel poles: (a) brown painted surface, (b) green painted surface,
(c) octagon shape w/ aged brown painted surface. Tree: (d) basswood
tree, (e) birch tree, (f) cedar tree. 67

2.15 Ambient temperature distributions for training, test, and blind data
collected from 15 March to 5 November 2007. 69

3.1 Thermal Image Representation: (a) sources of radiance emitted from
fence segment and received by the camera, (b) thermal image of fence
segment, (c) data array of gray-level intensities from segment of thermal
image. 116

3.2 Aluminum plate low emissivity. (a) visible image of aluminum plate.
(b) thermal image of aluminum plate. 117

3.3  Glass plate with high emissivity and opaque to IR radiation. (a) visible
image of glass plate in front of pine tree log. (b) thermal image of glass
plate in front of log. (c) thermal image of log without glass plate in front. 118

3.4  Variation of emissivity with viewing angle for a number of
(a) nonmetallic and (b) metallic materials. [72] 119

3.5  Variation of emissivity with object shape and surface temperature. 120

3.6  Directional variation of emissivity for a pine tree log outdoors.
(a) experimental setup, (b) pine tree log with brick wall irradiance,
(c) pine tree log with dry wall irradiance. (d) gray-level comparisons
of brick wall vs. dry wall. 121

3.7  Halo effect resulting from a (a) “hot” target and “cold” foreground and
(b) “cold” target and “hot” foreground. 122

3.8  (a) Thermal radiance received by the thermal imaging camera.
(b) Thermal image of cedar tree captured at 0545 hrs on 17 March 2006. 123

3.9  Visible and thermal images of objects captured on 10 February 2007
to evaluate the emissivity feature. (a) steel pole, (b) birch tree log,
(c) concrete cylinder, (d) hedges, and (e) wood wall. 124



Xvi
Figure Page

3.10  Gray-level Co-occurrence Matrix. (a) spatial relationship of neighboring
pixels, (b) gray-level array of a thermal image, (c)-(f) GLCMs with
distance D = 1 and directions 0, 45, 90, and 135 degrees, respectively. 127

3.11 Visible and thermal images of extended objects used for pixel distance
analysis and selection. (a) brick wall, (b) hedges, (c) picket fence, and
(d) wood wall. 128

3.12 Extended objects pixel distance analysis. Pixel Distance vs.
(a) Contrast2, (b) Correlation, (c) Energy, (d) Homogeneity,
(e) Entropy?2. 129

3.13  Extended objects absolute sum of the differences for (a) Energy and
(b) Entropy?2 features as a function of pixel distance (D). 130

3.14 Visible and thermal images of compact objects used for pixel distance
analysis and selection. (a) brown steel pole, (b) green steel pole,
(c) octagon steel pole, (d) basswood tree (e) birch tree, (f) cedar tree. 131

3.15 Compact objects pixel distance analysis. Pixel Distance vs. (a) Contrast2,
(b) Correlation, (¢) Energy, (d) Homogeneity, (¢) Entropy2. 132

3.16 Compact objects absolute sum of the differences for (a) Energy and
(b) Entropy?2 features as a function of pixel distance (D). 133

3.17 Visible and thermal images of objects used to evaluate thermal features.
Extended objects: (a) brick wall, (b) hedges, (¢) wood wall.
Compact objects: (d) concrete cylinder, (e) steel pole, (f) pine tree log. 134

3.18 Visible and thermal images of objects used to demonstrate curvature
algorithm. Segmented regions in thermal images are used to compute
the average radiances used in the curvature algorithm. (a) tree,

(b) square metal pole, (c) brick wall. 138
4.1 Scatter plot of extended object thermal features Col vs. Sol. 197
42  Scatter plot of extended object thermal features Uol vs. Enl. 197
43 Dot plot of extended object thermal feature Tol. 198

4.4  Scatter matrix of remaining extended object thermal features after a
preliminary feature analysis. 199



Xvii

Figure Page
4.5  Scatter plot of compact object thermal features Col vs. Sol. 200
4.6  Scatter plot of compact object thermal features Uol vs. Enl. 200
4.7 Dot plot of compact object thermal feature Tol. 201

4.8 Scatter matrix of remaining compact object thermal features after a
preliminary feature analysis. 202

49  K-Nearest-Neighbor density estimation. 203

4.10 Principal component analysis used to project patterns onto eigenvector
in direction of maximum variance of the patterns. 204

4.11 General trend for extended objects of dotplots with average error rates
for each classifier and error estimation method observed in each
dimension. 208

4.12 Extended object scatter plot of average error rates (%) for KNN
classifier (with holdout error estimation method) and KNN classifier
(with leave-one-out error estimation method) in three dimensions.
Feature vector < 1, 6, 18 > results in the minimum average error rates
with the smallest absolute difference in the error rates on the test data
set for each error estimation method used by the KNN classifier. 217

4,13  General trend for compact objects of dotplots with average error rates
for each classifier and error estimation method observed in each
dimension. 225

4,14 Visible images and thermal images for each viewing angle of extended
objects used in sensitivity analysis for the variations in the camera’s
viewing angle. The viewing angles of the thermal images are arranged
from left to right as -600 from normal incidence, -450 from normal
incidence, -300 from normal incidence, normal incidence, 300 from
normal incidence, 450 from normal incidence, and 600 from normal

incidence. (a) brick wall, (b) hedges, (c) picket fence, (d) wood wall. 240

4.15 Visible images and thermal images for extended objects used in
sensitivity analysis for the variations in the window size of the thermal
scene. The first (largest) and 100th (smallest) window segments out of
the 100 window sizes are enclosed by the solid red borders. (a) brick
wall, (b) hedges, (¢) picket fence, (d) wood wall. 243



Xviii
Figure Page

4.16  Brick wall sensitivity analysis for the variations in the window size of
the thermal scene. (a) Posterior probabilities for the brick wall feature
vectors and (b) macro feature values with variations in window size
indexed from 1 (largest window) to 100 (smallest window). 244

4.17 Hedges sensitivity analysis for the variations in the window size of the
thermal scene. (a) Posterior probabilities for the hedges feature vectors
and (b) macro feature values with variations in window size indexed
from 1 (largest window) to 100 (smallest window). 245

4.18 Picket fence sensitivity analysis for the variations in the window size
of the thermal scene. (a) Posterior probabilities for the picket fence
feature vectors and (b) macro feature values with variations in window
size indexed from 1 (largest window) to 100 (smallest window). 246

4,19 Wood wall sensitivity analysis for the variations in the window size of
the thermal scene. (a) Posterior probabilities for the wood wall feature
vectors and (b) macro feature values with variations in window size
indexed from 1 (largest window) to 100 (smallest window). 247

420 Visible image and thermal images for the pine tree log used in the
sensitivity analysis for the variations in the rotational orientation.
(a) 00, (b) 450, (c) 900, (d) 1350, (¢) 1800. The portion of the pine
tree log segmented for the analysis is enclosed by the solid red borders
in each thermal image. 248

5.1  First principal eigenvectors each projected through the hyperconoidal
cluster of their respective object class in a 3-dimensional feature space. 298
52  Distance metrics comp, Zij and D, used to analyze the behavior of

each object class’s patterns /7” about the respective first principal

eigenvector ¢, ;. 299

5.3  Extended object distance metric relations for given most favorable
feature vector. 300

54  Compact object distance metric relations for given most favorable
feature vector. 310



XiX
Figure Page

5.5  Portion of hyperconoidal clusters presented in Fig. 5.1 with an
unknown pattern displayed as the black star in the feature space. 327

5.6  Visible and thermal images of extended objects from the training
data set. The thermal images display the thermal radiance and contrast
that are typically found in the scenes for each object class and reference
emitters in their respective training data set. (a) brick wall (b) hedges,
(c) picket fence, and (d) wood wall. 337

5.7  Visible and thermal image of brick wall from the blind data set that
was misclassified as a hedge by the adaptive Bayesian classifier.
The thermal image was captured on 24 September 2007 at 1005 hrs. 338

5.8  Visible and thermal image of hedges from the blind data set that was
misclassified as a brick wall by the adaptive Bayesian Classifier.
The thermal image was captured on 15 August 2007 at 1048 hrs. 339

5.9  Visible and thermal images of a picket fence from the blind data set
that was misclassified as a wood wall by the adaptive Bayesian
Classifier. The thermal image was captured on 6 October 2007 at
1240 hrs. 340

5.10 Visible and thermal images of wood walls from the blind data set that
were misclassified by the adaptive Bayesian Classifier.
(a) misclassified as a brick wall (captured on 15 August 2007 at
1034 hrs), (b) misclassified as a picket fence (captured on 24 September
2007 at 1029 hrs, same object as in (c) but viewed at normal incidence),
(c) misclassified as hedges (captured on 24 September 2007 at 1030 hrs,
same object as in (b) but at 45 degrees from normal viewing angle). 341

5.11 Visible and thermal images of compact objects from the training data
set. The thermal images display the thermal radiance and contrast that
are typically found in the scenes for each object class and reference
emitters in their respective training data set. Steel poles: (a) brown
painted surface, (b) green painted surface, (c) octagon shape, w/ aged
brown painted surface. Tree: (d) basswood tree, (€) birch tree,
(f) cedar tree. 342

5.12  Visible and thermal images of a steel pole from the blind data set that
was misclassified as a tree by the adaptive Bayesian Classifier. The
thermal image was captured on 5 November 2007 at 1428 hrs. 343



Figure Page

5.13  Visible and thermal images of a tree from the blind data set that was
misclassified as a steel pole by the adaptive Bayesian Classifier. The
thermal image was captured on 18 September 2007 at 1407 hrs. 344

5.14 Adaptive Bayesian Classification Model Algorithm. 345

5.15 Visible and thermal images of extended blind objects that include
classes outside the given training data set. (a) brick wall with moss on
the surface, (b) concrete wall, (c) bush, (d) gravel pile, (e) steel picket
fence, (f) wood bench, and (g) wood wall of a storage shed. 359

5.16 Visible and thermal images of compact blind objects that include classes
outside the given training data set. (a) square steel pole, (b) aluminum
pole for dryer vent, (c) concrete pole, (d) knotty tree, (e) telephone pole,
(f) 4x4 wood pole, and (g) pumpkin. 360

6.1  (a) visible image, (b) thermal images, (c) frequency spectrum, and
(d) polar spectrum of a wood wall. 382

6.2  (a) visible image, (b) thermal images, (c) frequency spectrum, and
(d) polar spectrum of a brick wall. 383

6.3  Scaled frequency energy histograms: (a) wood wall and (b) brick wall. 384

6.4  Bayesian multi-sensor data fusion architecture involving thermal
infrared and sonar sensors. 385

6.5  Autonomous robot estimates prior probabilities of objects in area of
~operation using satellite imagery to assist in classifying objects within
field-of-view of onboard sensors. 386



Table

2.1

2.2

2.3

24

3.1
3.2

33
34
35
3.6

4.1

4.2

4.3

List of Tables

Page
Procedure to normalize the camera and store the reference in the camera’s
memory to perform non-uniformity correction on subsequent thermal
image frames [Private conversation with Field Application Engineer, L-3
Communications Infrared Products, 27 January 2007]. : 58
Procedure to disable AGC by making modifications in the Raytheon
ControlIR 2000B’s memory using the Control IR Manager software
[Private conversation with Field Application Engineer, L-3
Communications Infrared Products, 27 January 2007]. ' 61
Distribution of training and test data collected from 15 March to 3 July
2007. 68
Distribution of blind data collected from 6 July to 5 November 2007. 68
Thermal image capture times and temperatures for objects in Fig. 3.9
captured on 10 February 2007, 125

Feature values generated from the thermal image of objects in Fig. 3.9

captured on 10 February 2007. 126
Summary of meteorological, micro, and macro features. 135
Feature values generated from the thermal image of objects in Fig. 3.17. 136
Curvature Algorithm used to distinguish compact and extended objects. 137
Curvature Algorithm demonstration results using objects in Fig. 3.17. 139
Confusion matrix example that assesses a classification model’s
performance on test data set consisting of extended objects. - 205
Extended object thermal features and labels used in the exhaustive search
feature selection method. Feature categories are color coded for
convenience during the analysis. 206

Total number of extended object thermal feature combinations for feature
vectors from 1 to 18 dimensions. The first 11 dimensions (highlighted

in yellow) satisfy the rule of thumb to ensure peak performance of the
classification models. 207



XXii
Table : Page

4.4  Extended object comparison of the lowest average error rates (%) of
each classifier with the respective error estimation method across each
feature vector dimension. 209

4.5 Extended object candidates for most favorable feature vectors. 214

4.6  Extended object set of most favorable feature vectors for each classifier
with the respective error estimation method. 216

4.7  Extended object comparison of the lowest average error rates (%) for
combinations of a classifier and error estimation methods across each
feature vector dimensions. 218

4.8 Extended object set of most favorable feature vectors for combinations
of a classifier and error estimation methods. 221

4.9  Extended object set of most favorable feature vectors (combined feature
vectors from Tables 4.6 and 4.8). 222

4.10 Compact object thermal features and labels used in the exhaustive search
feature selection method. Feature categories are color coded for
convenience during the analysis. 223

4.11 Total number of compact object thermal feature combinations for feature
vectors from 1 to 15 dimensions. All 15 dimensions (highlighted in
yellow) satisfy the rule of thumb to ensure peak performance of the
classification models. 224

4.12  Compact object comparison of the lowest average error rates (%) of each
classifier with the respective error estimation method across each feature
vector dimension. 226

4.13 Compact object candidates for most favorable feature vectors. 230

4.14 Compact object set of most favorable feature vectors for each classifier
with the respective error estimation method. 233

4.15 Compact object comparison of the lowest average error rates (%) for
combinations of a classifier and error estimation methods across each
feature vector dimensions. 234



XXiii
Table _ Page

4.16 Compact object set of most favorable feature vectors for combinations
of a classifier and error estimation methods. 237

4.17 Compact object set of most favorable feature vectors (combined feature
vectors from Tables 4.14 and 4.16). 238

4.18 Variations in the camera’s viewing angle effect on feature values and
classification performance of a Bayesian classifier for each extended
object in the left column. The object class assigned by the classifier as
well as the posterior probabilities for each object class is presented in
the columns on the right. 242

4.19  Effect variations in the rotational orientation on feature values and
classification performance of a Bayesian classifier of a pine tree log.
The object class assigned by the classifier as well as the posterior
probabilities for each rotation angle is presented in the columns on
the right. 249

5.1 Comparison of average error rates (%) for adaptive Bayesian classifiers
with KNN and Parzen classifiers using most favorable feature vectors
and blind data for extended objects. The table cells with the lowest
average error rates for each classifier are shaded in gold. The table cell
with the overall lowest average error rate is shaded in green. 328

5.2 Comparison of average error rates (%) for adaptive Bayesian classifiers
with KNN and Parzen classifiers using most favorable feature vectors
and blind data for compact objects. The table cells with the lowest
average error rates for each classifier are shaded in gold. The table cells
with the overall lowest average error rate are shaded in green. 329

53 Brick wall lowest error rates with respective feature vector and distance
function combination displayed in the upper left corner of each confusion
matrix. 331

5.4  Steel Pole and Tree lowest error rates with respective feature vector and
distance function combination displayed in the upper left corner of each
confusion matrix. 33s



Table

5.5

5.6

5.7

5.8

5.9

5.10

Confusion matrices of the Adaptive Bayesian Classification Model
with various threshold values for the extended objects. Fixed threshold
values are noted in the upper left corner. Threshold with a varied value
is noted at the upper left corner of each matrix. Thresholds highlighted
in green colored text are selected as most favorable for the Adaptive
Bayesian Classification Model applied to the extended objects.

Confusion matrices of the Adaptive Bayesian Classification Model
with various threshold values for the compact objects. Fixed threshold
values are noted in the upper left corner. Threshold with a varied value
is noted at the upper left corner of each matrix. Thresholds highlighted
in green colored text are selected as most favorable for the Adaptive
Bayesian Classification Model applied to the compact objects.

Comparison of confusion matrices of the best performing classification
models applied to the extended objects from the Adaptive Bayesian
Classification Model (via Committees of Experts), Adaptive Bayesian
Classifier with single distance function, KNN Classifier, and Parzen
Classtfier.

Comparison of confusion matrices of the best performing classification
models applied to the compact objects from the Adaptive Bayesian
Classification Model (via Committees of Experts), Adaptive Bayesian
Classifier with single distance function, KNN Classifier, and Parzen
Classifier. -

(a) Adaptive Bayesian Classification Model class assignments and
posterior probabilities on extended blind objects displayed in Fig. 5.15.
(b) Threshold values for the Adaptive Bayesian Classification Model.

(a) Adaptive Bayesian Classification Model class assignments and
posterior probabilities on compact blind objects displayed in Fig. 5.16.
(b) Threshold values for the Adaptive Bayesian Classification Model.

Xxiv

Page

346

352

357

358

361

362



Chapter 1 Introduction and Overview

1.1 Purpose of Dissertation

The goal of our research is to complement an autonomous robot’s situational awareness
by providing the ability to classify smaller structures commonly found in the immediate
operational environment. T‘hese are structures that cannot be assessed in enough detail by
GPS and onboard terrain mapping systems currently configured on bots. Situational
awareness is the bot’s interpretation of objects and physical processes in its internal
representation of the environment. Mobile bots operating independently in unstructured
outdoor environments must maintain situational awareness to permit sound decisions.
The bot’s internal representation of the environment is formed by the synthesis of prior
knowledge and information obtained from sensors. The bot develops an interpretation by
detecting, segmenting (or distinguishing), and classifying objects and physical processes
within its internal representation. Based on this interpretation, the bot can decide on how
to respond to situations and what actions are necessary to accomplish a given task.
Autonomous bots will require the ability to make decisions such as “go through the
hedges” or “go around the brick wall.” To carry out these types of actions, the bot must
have the ability to classify the unknown object as being eitﬁer hedges or a brick wall.
Therefore,-our interest is in the situation where the bot has already detected and
segmented a non-heat generating object but now needs to classify the object in a highly
unstructured outdoor environment, especially during conditions of limited visibility like

those presented in Fig. 1.1.
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We envision mobile bots that unobtrusively travel alongside pedestrians at a walking

pace in an unstructured environment. It is important that small mobile robots, with
wheels, legs, and/or tracks, normally travel at the same speed as the pedestrian traffic,
even if they traverse to quickly move down a vacant alley to conduct a reconnaissance or
slow down to characterize an obstacle, because people resent having to go around a slow
bot while they are also startled by machines su;:h as Segways and golf carts that overtake
them without warning. Furthermore, the type of sensors used to afford the bot with
situational awareness is tied to the speed of the bot. A thermal infrared imaging modality
mounted on a mobile robot is a favorable choice for receiving enough detailed
information to automatically interpret objects at close ranges relevant to walking speeds.
The technology necessary for thermal imaging has just recently become sufficiently
portable and inexpensive enough to mount on small robotic platforms. Furthermore,
passive thermal infrared imaging modalities do not pose z; risk to humans like one might
have with laser-based sensors, such as LADAR. Our use of a thermal infrared imaging
modality will not only afford the ability to identify targets during conditions of limited
visibility but it will also eliminate the need for a light source mounted on a bot to
illuminate targets for classification that could disclose the bot’s location. For example,
illuminating the fence in Fig. 1.2a with a visible light source as in Fig. 1.2b would reveal
the tactical position of the bot and perhaps compromise any reconnaissance missions. On
the other hand, the thermal infrared imaging system that simultaneously captured the
‘image of the fence in Fig. 1.2c acts as a passive system that does not emit any visible
signatures for enemy detection. The thermal infrared imaging sensor is a passive system

since there is no need for an onboard artificial illumination source to operate. The only
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source required for the fence to emit thermal energy is the sun that provides solar energy

during the daylight hours.

The objective of this dissertation is to design and implement a physics-based pattern
classification model to characterize non-heat generating outdoor objects in thermal scenes
for autonomous robots. The classification of indoor objects and heat generating objects is
a solved problem. However, a missing and essential piece in the literature is research
involving the automatic characterization of non-heat generating objects in outdoor
environments using a thermal infrared imaging modality for mobile robotic systems.
Seeking to classify non-heat generating objects in outdoor environments using a thermal
infrared imaging system is a complex problem due to the variation of radiance emitted
from the objects as a result of the diurnal cycle of solar energy. Our desired model will
allow bots to “see beyond vision” to autonomously assess the physical nature of the
surrounding structures as well as report classes of objects while performing security or
reconnaissance missions. We will design a classification model that retains the original
physical interpretation of the information in the signal data throughout the classification
process. This emphasis will result in a framework that allows the human analyst to
understand the reason for a bot’s classification of an unknown object by associating the
final classification decision with the thermal-physical properties found in the original
signal data. Additionally, our approach will afford bots with the intelligence to
automatically interpret the information in signal data to make decisions without the ﬁeed
for an interpretation by humans.

The research presented in this dissertation evolved from a broader work, by the

Nondestructive Evaluation Laboratory at The College of William & Mary, to automate



the fusion and interpretation of data streams from various active and passive sensor
systems to enable autonomous mobile robot operations in a wide variety of unstructured
outdoor environments. We feel that it is the fusion of an active sensor, such as sonar (air-
coupled ultrasound), and a passive sensor, such as thermal infrared and RGB video,
systems that has the potential for the greatest advancements because of the
complementary nature of the modalities. Two mobile robots, displayed in Fig. 1.3, are
currently being used to collect systematic ultrasonic and infrared imagery data streams
about The College of William & Mary campus, the adjacent colonial area, York County,
Virginia, in a village and on a farm outside of Buffalo, New York, and on mountainous
terrain in Eleanor, West Virginia. We have used these large data sets to explore the
behavior of features generated from the signal data of classes of outdoor objects and
design single-sensor classification algorithms that afford mobile robots the ability
characterize outdoor objects. The research presented in this dissertation is an extension
to our previous work involving sonar sensor interpretation by mobile robots [1]. This
research involves the design of algorithms to distinguish outdoor objects such as trees,
poles, fences, walls, and hedges based on features generated from backscattered sonar
echoes. Our novel model involving thermal infrared imagery presented in Chapter 5 of
this dissertation affords a complementary technique to classify the same types of objects.
Since both ultrasound and infrared are independent of lighting conditions, they are
appropriate for use both day and night. In Chapter 6, we will discuss our future research
that is aimed towards designing a framework that fuses information from the bot's
thermal infrared imaging and ultrasonic sensors to perform intelligent actions, such as

decision-making and learning.



1.2 Non-Heat Generating Objects

Non-heat generating objects are defined as objects that are not a source for their own
emission of thermal energy, and so exclude people, animals, vehicles, etc. Non-heat
generating objects can be natural or human-made. Our choices of natural objects that do
not generate their own thermal energy include trees and bushes. Human-made objects
include brick walls, wood walls, fences, and steel poles. Consequently, the ability of
non-heat generating objects to display a thermal signature depends partly on the thermal
energy received from heat generating sources in the environment. The primary heat
generating source is the sun. However, there may also exist other o'bjects in the local
environment that generate and emit their own thermal energy and/or reflect thermal
energy emitted from other sources. The ability for a non-heat generating object to
display a thermal signature also depends on its physical composition. We will discuss the
thermal emission éharacteristics of non-heat generating objects in Chapter 3.

Identifying heat generating objects in thermal scenes, using pattern classification
techniques, has become relatively trivial because infrared imaging cameras are very
sensitive to detecting the thermal contrast between the object and surrounding surfaces.
For instance, the human walking on the sidewalk and squirrel running from behind the
tree in Fig. 1.4 can be identified by generating geometric features from various points on
the body such as those presented in Fig. 1.5a. Features are unique representations of an
object class that are generated from an object’s signal received by a sensor. These
features are used by a pattern classification model to distinguish one object class from
another and provide class assignments to unknown objects. Géometric features can also

be generated from tires and different segments of vehicle surfaces for class assignments
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as displayed in Fig. 1.5b. However, generating features from the thermal image of a non-

heat generating object like the trees and steel poles in Fig. 1.4 for classification is a more
subtle process due to the variation in thermal radiance of objects in the scene primarily
caused by the diurnal cycle of solar energy. We will provide a detailed discussion on
techniques used to generate features for heat and non-heat generating objects in Chapter 3
and present various classifiers used in classification models in Chapter 4. In Chapter 5,
we will present our novel classification model that outperforms the traditional classifiers

when characterizing non-heat generating objects in outdoor environments.

1.3 Autonomous Robotic Systéms

Robots have many uses in the military, industry, health care services, and neighborhood
homes. A general summary of the current uses of robots is provided in [4]. Robots
categorized as unmanned ground, marine, and aerial vehicles are normally found in the
military. In industry, robots are commonly used on assembly lines in automotive and
food processing plants.” These robots are usually in the category of machine vision and
used to assemble products and/or detect defects in the products. In health care, robots are
now used to assist during surgical procedures. Robotic devices are also starting to be
used to assist elderly people, particularly in Japan. We can also find robots in homes in
“the form of vacuum cleaners and even lawn mowers. Each type of robot operates at
specific level of autonomy. The level of autonomy afforded to robots usuaily depends on
the size and mobility capabilities of the bot and level of risk in harming humans and pets.
Though the Roomba vacuum cleaner in Fig. 1.6 is semi-autonomous, we would have no

problem with letting it roam anywhere around the house since the bot is ankle high. On
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the other hand, we would expect the robotic lawn mower in Fig. 1.7 to have a higher level

of intelligence so the neighbor's favorite tulips are not misclassified as a blade of grass.
Our objective is to design the intelligence algorithms required by mobile autonomous
bots to correctly make decisions regarding non-heat generating objects that exist in their
path.

A mobile autonomous robotic system is a ground, marine, or aerial vehicle consisting
of all the integrated components (mobility platform, sensors, computers, and algorithms)
required to perceive, learn, and adapt in the environment to make intelligent decisions for
navigating, communicating, and accomplishing required tasks. A historical background
on advances in the state of the art for unmanned ground vehicles from 1959 to 2002 is
presented in [5]. The focus of our research is to support autonomous unmanned ground
vehicles; however, the framework of our classification model presented in Chapter 5
could be applied to marine and aerial vehicle applications as well.

The robotic platform design is not an issue anymore. Whether the robot will serve the
military or be a part of the civilian workforce, the platform will be designed to support
the required application. For instance, Fig. 1.8a presents a robotic platform that could be
used for military reconnaissance missions, Fig. 1.8b shows a robotic platform designed
for ambulatory applications, and Fig. 1.8c shows a robotic platform designed for
monitoring and surveillance applications. However, the greatest challenge is how to
design the intelligence software that will allow the bot to use relevant sensors to learn and
make decisions. We obviously hope that the autonomous military reconnaissance vehicle
would make the correct classification and decision to go through hedges and not a

misclassification that results in the bot attempting to go through a six meter high brick



wall. Furthermore, we would expect that an unmanned ambulatory vehicle will extract
injured personnel from a burning building and not garbage cans due to misclassifications.
Analogous to living organisms using their senses to understand the environment,
autonomous bots will have to interpret information received by their sensors to detect,
segment, and classify natural and human-made objects. Sensors used to detect, segment,
and classify objects are either active or passive sensors. Active sensors require an
external or onboard source to transmit a signal that is reflected by the target and then
received by the bot’s sensor. Passive sensors do not require an active onboard source to
transmit energy at a target. Thus, passive sensors receive signal information that is
naturally emitted from an object’s surface. Detec'tion involves comparing signals
received within a sensor’s field of view to determine whether an object is present. Once
detected the object is segmented to distinguish it from the surrounding environment. The
segmented object is then assigned to a specific object class based on the bot’s assessment
of the object and previous knowledge about the local area of operation. The autonomous
bot can then make a decision pertaining to the classified object depending on the required
task or mission. For instance, if the object is a trash can, the bot may be required to
report the trash can and quietly go around it when on a reconnaissance mission or pick it
up and empty the can in the dumpster when performing janitorial duties. In any case, the

autonomous bot must have the intelligence to classify non-heat generating objects.



1.3.1 Detect the Object

Detection of obstacles by bots is quite trivial nowadays. For instance, with an active
sensor system, a source simply transmits some pulse of energy from the robot’s platform
and onboard sensors receive the energy after being reflected from an object in the path.
The bot’s intelligence software analyzes contrasting information in the reflected signals
received within the field of view of the sensor to determine the ranges, sizes, ’an‘d_
locations of objects. Consequently, detection usually coincides with obstacle avoidance.
Thus,’ the bot simply knows the location and size of an unknown object in its path and
travels around the object to avoid a collision. The Defense Advanced Research Projects
Agency (DARPA) Grand Challenge,b that took place in the Mojave Desert of
southwestern United States on 8 October 2005, proved that sophisticated semi-
autonomous robots are able navigate along a grueling roﬁte by using multiple sensors to
detect obstacles and map the terrain [www.darpa.mil]. Active sensors normally used by
bots to detect objects include laser detection and ranging (LADAR), synthetic aperture
radar (SAR), ultrasound, and infrared sensors. An advantage of LADAR is that it has
exceptional resolution; however, a disadvantage is that it is affected by dust and smoke
that may be interpreted as an object in the bot’s path [5]. Additionally, certain tactical
situations may limit the use of LADAR due to its potential risks to humans. Although
SAR performs well in the presence of obscurants, it lacks spatial resolution and may not
detect non-metallic objects depending on their moisture content [5]. Ultrasound
transducers display exceptional performance in detecting objects during conditions of

limited visibility and in the presence of obscurants such as dust, smoke, and fog at short
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ranges. Furthermore, ultrasound does not have any safety concerns like those associated

with LADAR. An example of how ultrasound sensors can be used to detect and avoid
obstacles is given in [6]. An infrared sensor performing in an active role requires a
transmitter to emit energy at an object and the sensor to receive the energy reflected from
the object’s surface. For instance, the infrared detection and range sensor system in Fig.
1.9 transmits a pulse of infrared energy from an emitter that is a fixed distance from the
detector. If the energy hits an object, reflected waves are received by a specific portion
of a linear charge-coupled device (CCD) array in the detector based on the angle of the
wave. The angles in the triangle formed by the emitter, point of reflection, and detgctor
vary based on the distance to the object. Thus, the sensor uses the reflected wave’s point
of impact on the CCD array to complete the triangle and estimate the distance to thé
object. A method for detecting and estimating distances to objects using ultrasound and
active infrared sensors is discussed in [7]. An emerging active sensor that operates at 110
GHz to 10 THz, between microwaves and the infrared bands, in the electromagnetic
spectrum involves terahertz-pulsed imaging. Research interests using terahertz-pulsed
imaging involve applications such as detection of concealed weapons and explosives [8].
An advantage of using terahertz radiation for these applications is that metals are opaque
to the radiation. Additionally, terahertz radiation poses no health risk to humans. A
limiting factor is that most non-metals, such as non-heat generating wooden fences, are
transparent to terahertz and propagation distance is limited at the higher frequencies.
However, this limitation could be abated by the terahertz band’s sensitivity to the
presence of water, which may be of use for not only detecting (and characterizing) the

disease states of human tissue [9] but also other living objects such as trees and bushes.
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Passive sensors include red, green, blue (RGB) vision cameras and thermal infrared

detectors. RGB cameras provide excellent resolution but are limited to operation during
times when no obscurants are present and the target is illuminated with light. In a passive
role, the infrared sensor is usually a focal plane array (FPA) of thermal (or long-wave)
infrared detectors that operate at 7 to 14 £ m in the electromagnetic spectrum. Unlike the
1-dimensional array used by the active infrared range sensor, the passive thermal infrared
sensor consists of a 2-dimensional FPA of detectors. Thermal radiance emitted by an
object and received on the FPA is converted to an analog signal. This analog signal is
then converted to a digital signal for display as a thermal image. Objects are detected
using the thermal infrared iméging sensor by analyzing thermal contrasts in the signal
information received passively from the surrounding environment within the field of
view of the sensor. A comparison of thermal infrared detection algorithms is found in
[10]. Since the thermal infrared imaging sensor is used in our current research, we will
delay our discussions of the characteristics of this sensor until Section 1.4 and subsequent
chapters in this book. To complement a bot’s ability to detect objects, the intelligence
algorithm normally uses more than one type of sensor. Object detection and avoidance
methods using vision and ultrasonic sensors for mobile bots are discussed in [11, 12, 13].
A technique for detecting objects using ultrasound and passive infrared sensors is

discussed in [14].
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1.3.2 Segment the Object

Once a target is detected by displaying a signal difference from other objects in the
sensor’s field of view, it is segmented from its surroundings and prepared for
classification by the bot’s intelligence algorithm. Discussions on the detection and
segmentation of objects in infrared images are found in [15, 16]. Techniques for
segmentation of objects in general images are discussed in [17]. Preparing the segmented
signal information for the classification phase involves preprocessing to minimize the
effects of temporal and spatial signal degradations. The preprocessing must avoid thc use
of filters that would lead to loss of relevant signal information used in the classification
phase. We provide a detailed discussion on acquisition and preprocessing of thermal

infrared images in Chapter 2.

1.3.3 Classify the Object

After segmenting and preprocessing the unknown object, the bot uses its intelligence
algorithms to classify the object. The autonomous bot can then make a decision
pertaining to the classified object depending on the required task or mission. The design
of the classification model continues to be the most challenging phase for any
intelligence system. In this research we will assume that the bot has already detected and
segmented an unknown object. Therefore, our objective is to design and implement a
model that will allow the bot to classify the unknown object. Two approaches can be
used to design a mode] that will assign a class to an unknown object — theoretical models

(analytical or numerical) and observational models. Theoretical models normally involve
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the use of differential equations to compute the estimated value of physical variables

associated with unknown objects for comparison with measured values from known
objects. Class assignment is determined by the computed values’ closeness to the
measured values. Theoretical models usually require at least one measured value for the
parameters in the model. These measured values are obtained by using an instrument that
makes contact with the object. One possibility for obtaining physical measurements from
an unknown object is by equipping a bot with touch sensors [18]. However, a bot that
can classify objects using non-contact sensors is more practicable. We will continue our
discussion on a specific theoretical model known as the multi-mode heat transfer model

in Section 1.4.

Our method of choice for designing a classification algorithm is the observational
model approach. An observational model estimates class assignments of unknown
objects based on inferences made from empirical knowledge and prior knowledge. The
empirical knowledge is obtained by observing information received by the sensors. The
prior knowledge is based on observations regarding the presence of objects existing in the
bot’s area of operation before entering the area. The empirical knowledge and prior
knowledge are combined to produce posterior knowledge that yields a class assignment
for the unknown object. Observational models are used in the field of pattern
classification (or recognition). Pattern classification is the process of characterizing an
unknown object based on an assessment of attributes (also called features or patterns) that
are generated from the object’s signal received by a sensor. The class assignment of the
unknown pattern is made by a classification model consisting of a classifier and features

that uniquely represent each object class requiring classification. The success of a
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classification model relies primarily on the selection of features that provide the most

favorable distinction between each object class. However, a poor choice of feature types
and/or generating features that are not representative of objects in the bot’s area of
operations will result in ambiguity with separation of object classes and ultimately an
increase in the misclassification rate. We will provide a detailed discussion on choices
for features and approaches for pattern recognition in Chapters 3 and 4, respectively.
While designing our classification model, presented in Chapter 5, we will make
considerable effort to provide guidance on how to analyze features to understand their
underlying physics and select most favorable sets of features that minimize the
misclassification of unknown objects. Additionally, our approaches to feature selection
and classification will retain the original physical interpretation of the information in the

signal data throughout the classification process.

Our classification of non-heat generating objects (brick walls, hedges, picket fences,
wood walls, steel poles, and trees) in outdoor environments could be placed in the
category of terrain classification. There are many approaches found in the literature that
effectively use various sensors to classify objects in outdoor environments. The design of
algorithms to distinguish outdoor objects such as trees, poles, fences, walls, and hedges
based on features generated from backscat‘;ered sonar echoés for interpretation by mobile
robots is discussed in [1]. Discussions on LADAR sensors and object recognition
approaches using 3-dimensional LADAR and SAR imagery are presented in [9]. Terrain
classification using LADAR to distinguish surfaces (ground surface, rocks, large tree

trunk), linear structures (wires, thin branches, small tree trunks), and porous volumes
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(foliage, grass) for autonomous robot navigation is discussed in [19]. Terrain

classification methods using a color vision camera and LADAR to discriminate between
soil, Vegetation, tree trunks, and rocks for autonomous off-road navigation is presented in
[20]. A methlod for terrain classification involving inertial, motor, ultrasonic, active
infrared, microphone, and wheel encoder sensors to classify gravel, sand, asphalt, grass,
and dirt is discussed in [21]. The ultrasonic and infrared range sensors were mounted on
the robotic platform and aimed downward to the ground to classify the terrain based on
the periodogram of the reflected signal (in the frequency domain) and range signal (in the

time domain).

The LADAR, SAR, sonar, terahertz-pulsed imaging, and RGB vision modalities
presented above all have the capability to cdmplement a bot’s intelligence algorithm that
is designed to classify objects at close ranges (~2-3 meters) relevant to walking speeds.
A thermal infrared imaging modality mounted on a mobile robot is also a favorable
choice for receiving enough detailed information to automatically interpret objects at
close ranges relevant to walking speeds. However, as we will further discuss in Chapter
3, a missing and essential piéce in the literature is research involving the automatic
characterization of non-heat generating objects in outdoor environments using a thermal
infrared imaging modality for mobile robotic systems. Seeking to classify non-heat
generating objects in outdoor environments using a thermal infrared imaging system is a
complex problem due to the variation of radiance emitted from the objects as a result of
the diurnal cycle of solar energy. Our approach of using a thermal infrared imaging
camera for pattern classification makes use of concepts found in the fields of

nondestructive evaluation, remote sensing, and digital image processing. Our novel
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classification model will provide an approach that can make use of thermal infrared

imagery as a stand-alone sensor or in combination with other existing sensors to
complement the intelligence of a bot. Additionally, the framework of our classification
model could also be used in other applications requiring the characterization of unknown
objects based on features that witness variations due to natural cyclic events. A
somewhat more speculative extension would be an application to autonomous Lunar or
Martian rovers, since the diurnal heating effects that we are exploring do not require an
atmosphere. On the other hand, ultrasound sensors would not support applications in this

environment since nobody can hear you “scream” on the moon or Mars.

1.4 Infrared Thermography

Thermography is the study of internal and/or surface heat distributions of a structure -
using various instruments that measure thermal energy. Such instruments could require
contact techniques such as a probe to measure surface temperatures on the structure. On
the other hand, non-contact techniques afford the ability to study heat distributions by
measuring the thermal radiation emitted from the surface of the structure using an
infrared detector. These noninvasive techniques are used in infrared thermography,
which is the foundation for our research presented in this dissertation.

The techniques of infrared thermography are used in the field of nondestructive
evaluation (NDE) or thermographic nondestructive testing (TNDT or NDT) to
noninvasively assess the behavior of what is at the subsurface of an object. Infrared
thermography is widely used in NDE to examine the nature of objects for suitability and

quality. Applications are found in areas of preventive maintenance for aircraft (to include
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space launch vehicles), electrical utilities, and building construction [22, 23].

Applications involving infrared thermography in NDE are also being researched in the
field of medicine [24]. Infrared thermography is also used in surveillance operations
involving the military, law enforcement, and search and rescue [23].

The applications mentioned in the previous paragraph normally involve a human
operator assessing the thermal image of an object. As we will discuss in great detail in
Chapter 3, many techniques exist using pattern recognition methods to automatically
classify a target without the need for a human operator. In the military, these approaches
are normally referred to as automatic target recognition (ATR) algorithms. However, the
majority of the methods available in the literature, using thermal infrared imaging to
classify objects, involve heat generating targets. The only use of thermal infrared
imaging to classify non-heat generating objects in outdoor environments was found in the
area of rembte sensing to discriminate between vegetation and soil. We have not
identified any previous research in the literature involving the assignment of classes to
non-heat generating objects in outdoor environments using a thermal infrared imaging

sensor for autonomous robotic systems.

1.4.1 Active vs. Passive Thermography

Analogous to the active and passive functions that the sensors described in Section 1.3
have, a thermal infrared imaging system can have either an active or passive role. As
mentioned previously, active systems have an external or onboard source to transmit
signal energy that is reflected by the target and then received by the sensor. In active

thermal infrared imaging, thermal energy from a source is directed towards the specimen
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being inspected to create differences in the thermal image that identify anomalies in the

structure and/or analyze the diffusion of thermal waves to estimate the physical properties
of the material. The active heat source used to estimate thermal properties of a given
material are formaHy the boundary conditions that we will present in Section 1.4.3
involving the heat transfer model. Methods used to stimulate a specimen with an external
source include pulsed thermography, step heating, lock-in thermography, and
vibrothermography [22].

Passive thermography does not require an active source to transmit thermal energy at a
target. Thus, passive thermal infrared imaging sensors receive thermal radiance that is
naturally emitted from an object’s surface. The research presented in this dissertation
uses passive thermal infrared thermography where the only mandatory source of thermal

energy is the sun that provides solar energy during the daylight hours.

1.4.2 Advantages & Disadvantages of Thermal Infrared Imaging

Every sensor has its own advantages and disadvantages. A major advantage of using a
thermal infrared imaging sensor is that it provides the ability to identify objects during
conditions of limited visibility. Conditions of limited visibility such as night and the
presence of obscurants (smoke, light dust, and light haze) have a minimal attenuating
effect oﬁ long-wave infrared waves. Our choice of a therma1 (long-wave) infrared
detector yields an operating band of 7 to 14 4 m in the electromagnetic spectrum. Long-
wave infrared has an advantage over the other bands in the infrared region: near infrared

(0.7 —-1.1 g m), short-wave infrared (1.1 — 2.5 g m), and mid-wave infrared (2.5 - 7.0
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um). Fig. 1.10 displays the spectral radiance of a perfect emitter of thermal radiation

(blackbody) across a band of wavelengths in the electromagnetic spectrum and at various
surface temperatures of the blackbody as described by Planck’s law. As we can see, the
long-wave infrared band (denoted by the blue shaded region) yields the highest thermal
radiance for the range of ambient and non-heat generating object surface temperatures
encountered by an autonomous mobile robotic system on Earth. Consequently, a thermal
infrared imaging camera will maximize the detection of thermal radiance emitted by an
object compared to detectors that operate in the near, short-wave, and mid-wave infrared
spectral bands.

We will discuss more details of the limitation of using a thermal infrared imaging
sensor in Chapter 6. However, we will note a few disadvantages of using this sensor
right now. A minor disadvantage is that the thermal infrared imaging camera cannot
discriminate between the radiance detected at each wavelength. Thus, in contrast to how
the human eye can distinguish the colors red and blue, the thermal infrared imaging
camera only “sees” a total radiance from the entire long-wave band of wavelengths.
However, this deficiency is tolerated for our applicatibn since the FPA of detectors in the
thermal infrared imaging camera receives different levels of radiance across the 2-
dimensional array to yield a thermal image with related gray-level values. We will
discuss the characteristics of the thermal infrared imaging camera in Chapters 2 and 3.

Since our application takes place outdoors, environmental conditions will exist where
the surfaces of a target and surrounding objects will emit approximately the same level of
thermal radiance. This phenomenon, known as thermal crossover [23], results in minimal

thermal contrast between the surfaces of objects and the surrounding environment within
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the thermal infrared camera’s field of view. Thus, these periods of thermal crossover

could result in a limitation in our ability to classify non-heat generating objects in an
outdoor environment using a thermal imaging sensor. We will revisit the phenomenon of
thermal crossover again in Chapters 4, 5, and 6.

One possible critical disadvantage of using a thermal infrared imaging camera for
autonomous mobile robotic applications is that glass is opaque to infrafed radiation.
Consequently, a bot will not be able to detect objects that are behind glass. We will
revisit this ability of objects to emit thermal energy when we discuss the thermal property
known as emissivity in Chapter 3.

The disadvantages found with any sensor obviously provide the reason why multi-
sensor data fusion systems are normally more successful in classification applications
than systems with a single sensor. Thus, the interpretations of relevant information
received by different types of sensors used in a multi-sensor framework are fused to
complement the overall performance of the classification process. We will discuss our
plans for integrating our current pattern classification model using thermal infrared

imagery into a multi-senor data fusion framework in Chapter 6.

1.4.3 Multi-Mode Heat Transfer Model

A multi-mode heat transfer equation is a differential equation, along with the
corresponding initial and boundary condif[ions, that models the flow of heat energy by
conduction, convection, and radiation. Thus, the multi-mode heat transfer equation is a
theoretical model. The governing multi-mode heat transfer model for an anisotropic

object with no internal heat source is given as [25]:
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- where T'is the temperature of the object and T, is the ambient temperature; p and C are
the density and specific heat of the object, respectively; K, K, and K, are the in-plane

and transverse thermal conductivity of the object; ¢, is the relaxation time; # is the

vector normal to the object’s surface; Q is the heating flux; 4, is the free convection

coefficient; ¢ is the object’s emissivity; o is the Stephan-Boltzmann coefficient; indices
s and d specify the object specimen and defect, respectively; and indices cd, cn, and r
specify conductive, convective, and radiative heat transfer mechanisms, respectively. Eq.

1.2 is the initial condition; Eq. 1.3 describes heating and cooling at the object’s surface
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boundary; Eqs. 1.4 and 1.5 represent the continuity of temperature and heat flux at the

boundaries between inner layers, including defects.

To make use of this theoretical model, given by Egs. 1.1-1.5, in an autonomous
robotic application for categorizing objects we would first solve the model for some
physical variable for comparison with measured values from known objects. Class
assignment is determined by the computed values’ closeness to the measured values.
However, this model is nonlinear and rather complicated. As we can see, T is a function
of many variables, T (t, p, & C, 0 K ) The problem becomes even more involved with
the fact that variables such as conductivity, specific heat, and emissivity may be
dependent on time, position, and the object’s temperature. Thus, distinct classes of
objects heat up and cool at different rates based on their thermal-physical properties. For
instance, the surface temperature of low specific heat objects, such as the leaves on
hedges, tend to track the availability of solar energy [23]. On the other hand, objects with

a high specific heat, such as a birch tree trunk (~2.4 &J-kg™'->C™") [22], will tend to heat

up more slowly with increasing solar energy and cool more slowly-as the amount of solar
energy begins to decrease in the late afternoon (around 1600 hrs.). Furthermore, for
outside objects, windy conditions may influence convective heat transfer.

Simplified model versions of Eqs. 1.1-1.5 are usually used to directly solve for a
unique temperature solution using the initial and boundary conditions. There are
numerous texts that provide methods to solve the direct problem, two classic texts are
[26, 27]. One could also use simplified models to estimate the thermal-physical
parameters, which is called the inverse problem. Methods involving inverse problems

can be found in [22, 28]. A review of both direct and inverse heat transfer methods is
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found in [29]. These excellent references provide both analytical and numerical methods

to solve simplified heat transfer problems. However, when seeking to generate features
from signal data produced by a given object in an unstructured outdoor environment, we
must consider the complexities of the real world. Consequently, we must consider the
multi-mode heat transfer model and the fact that the thermal-physical variables are
dependent upon time, space, and the object’s temperature. Rather than attempting to
solve the direct or inverse problems mentioned above, we will use the observational
model approach to design a pattern classification model that generates thermal-physical
features from an objects thermal image. As we will see in Chapter 3, our thermal-
physical features are generated from information in the thermal image that encompasses
the thermal-physical properties of the object that depend on the diurnal cycle of solar

energy.

1.5 Overview of the Dissertation

The primary objective of this dissertation is to design and implement a pattern
classification model used by an intelligence algorithm to characterize non-heat generating
outdoor objects in thermal scenes for autonomous robotic systems. Our approach to meet
this objective is outlined in the model design cycle illustrated in Fig. 1.11. The
dissertation chapter that discusses each step is noted in this design cycle flowchart. Since
the goal in designing a classification model is to assign unknown objects to classes with
minimal classification errors, the results of the evaluation may require repeating certain
steps to achieve acceptable performance by the model. In Chapter 2 we will present our

robotic thermal imaging system and methodology used to preprocess the thermal signals
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received by the thermal infrared imaging camera. We will also discuss our procedures to

acquire representative data sets for non-heat generating objects to assist in designing and
assessing the performance of our classification models. We will present a literature
review on feature types and our approach to generating thermal features in Chapter 3. A
classification model is defined by at least one classifier and set of features. The
performance of a classifier is a function of the feature set. Consequently, the evaluation
of classifiers and selection of feature sets are done simultaneously as indicated by the
flowchart for the model design cycle. In Chapter 4 we will provide a literature review on
approaches to pattern classification and discuss our methodology for selecting thermal
features. We will select our most favorable sets of features using the traditional Bayesian,
K-Nearest-Neighbor, and Parzen classifiers. In Chapter 5 we will present our Adaptive
Bayesian Classification Model that outperforms these traditional classifiers for our
application. In Chapter 6 we will offer some conclusions and discuss future research
directions.
A possible intelligence algorithm that could be supported by oﬁr model is illustrated in

‘Fig. 1.12. The steps with the regions shaded in yellow highlight this dissertation's
contributions to the intelligence process. A thermal infrared imaging sensor receives
thermal energy emitted from an unknown object's surface. The signal received by the
sensor is preprocessed to minimize the effects of temporal and spatial degradations and
dead pixels that would have a negative impact on the bot’s ability to generate relevant
features from the thermal image and classify unknown objects. The object is detected
and segmented in the thermal scene by identifying its thermal contrast with other surfaces

in the surrounding environment within the camera's field of view. Features are generated
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from the segmented object and used by the classification model to assign the unknown

object to a specific class with a given degree of confidence represented by the respective
posterior probability. If the classification model's decision satisfies specific rules, the
class assignment is accepted for post-processing. Otherwise, the class assignment is
rejected and the bot is required to capture another image to classify the unknown object.
The post-processing step uses the classification model's accepted output to decide on the
bot’s next required action [report the object and/or (if the object is a hedge, go through
the object or if the object is a brick Wall, go around the object or if the object is a trash

can, pick up the object)].



Fig. 1.1 Unstructured environments as potential areas of operation for
autonomous robots. [www.{lickr.com]
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Fig. 1.2 Visible and thermal images of a wooden fence. (a) visible image of the fence
during the day, (b) visible image captured at 2030 hrs on 7 September 2007 with light
source illuminating on the fence, (¢) thermal image of the fence captured at the same
time as the visible image in (b) and at an ambient temperature of 71.9° F.

27



Fig. 1.3 Mobile robotic 3D sonar scanning system, rWilliam (on right) and thermal imaging system, rMary (on
left).
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Fig. 1.4 Thermal scene consisting of heat and non-heat generating objects. Heat generating
objects include the human walking on the sidewalk and squirrel running from behind the tree.
Non-heat generating objects include the trees and steel pole used by the street light.
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(b)
Fig. 1.5 Geometric measurements generated from thermal images of heat generating objects
for classification. (a) measurements generated to classify people [2] . (b) measurements generated
to classify vehicles [3]
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Fig. 1.6 Roomba vacuum cleaning robot [iRobot, www.irobot.com].

Fig. 1.7 Automower™ Solar Hybrid [Husqvarna, www. husqvarna.com].
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Fig. 1.8 Autonomous unmanned ground vehicle platforms designed to support various
military and commercial applications. (a) military reconnaissance application
[www.globalsecurity.org], (b) Battlefield Extraction and Retrieval Robot

[Vecna Robotics, www.vecnarobotics.com] for ambulatory applications, (c) remote
monitoring and surveillance applications [PatrolBot, MOBILEROBOTS, Inc.,
www.mobilerobots.com].


http://www.globalsecurity.org
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Fig. 1.9 Infrared range sensor with detection range from
1 to 5.5 m. [Sharp, www.acroname.com]
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Fig. 1.10 Spectral radiance of a blackbody. Long-wave infrared band ( 7 — 14 microns)
is denoted by the blue shaded region.
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Fig. 1.11 Pattern classification model design cycle.
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Chapter 2 Data Acquisition

2.1 Introduction

In this chapter, we will present the first step in our pattern classification model design
process — data acquisition. We will first introduce our robotic thermal imaging system.
This system consists of the hardware and software that is used to acquire the image data.
We will also discuss the methodology used to preprocess and collect our representative

data set prior to the feature generation step discussed in the next chapter.

2.2 Robotic Thermal Imaging System
2.2.1 Hardware

The hardware for our robotic thermal imaging system is displayed in Fig. 2.1. Fig. 2.1a
shows the front view of the robot platform. A metal container encloses the thermal
camera to ensure the camera is on a stable platform and protected from the outside
environment. The underside of the adjustable 1id on the metal container consists of a
polished aluminum plate to reflect thermal radiance emitted from a target to the thermal
camera. The polished aluminum plate is a good reflector of thermal radiation due to its
low emissivity value (approximately 0.09 for wavelengths of 8-14 gy m at 212 ° F) [23].
Consequently, the combination of the thermal camera, metal container, and polished
aluminum plate act as a periscope. A Futaba remote control module (displayed in the

bottom right corner of Fig. 2.1a) is used to navigate the robot platform.
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The thermal camera secured at the bottom of the metal container and displayed in Fig.

2.1c is a Raytheon ControlIR 20008 long-wave (7-14 micron) infrared thermal imaging
video camera with a 50 mm focal length lens. The key specifications of the Raytheon
ControlIR 2000B include: 320 X 240 pixel resolution, 30 Hz frame rate, 18°x 13.5° field
- of view (with 50 mm lens), and ferroelectric staring focal plane array detector type. As
discussed in Chapter 1, Planck’s blackbody radiation law tells us that the magnitude of
the radiation emitted by an object varies with wavelength for a given temperature. A

perfect emitter (or blackbody) with a surface temperature in the interval from 32 to

100 ° F radiates a greater magnitude of thermal energy in the wavelength interval of 7-14
microns compared to shorter wavelengths. Therefore, radiation emitted from non-heat
generating objects oufdoors will peak in the long-wavelength range. In the context of this
research, not-heat generating objects are defined as objects that are not a source for their
own emission of thermal energy, and so exclude people, animals, vehicles, etc.
Consequently, a thermal imaging camera that is sensitive to long-wave thermal radiation
is an ideal sensor for our classification application involving non-heat generating objects.
Fig. 2.1b displays the rear view of the robot platform. Two metal lockers with hinged
doors are stacked behind the “periscope.” A Barnant 90 Digitql Thermometer is attached
to the top locker to allow the operator to record the ambient temperature. The bottom
locker provides storage for field supplies while the top locker holds a Samsung Tablet PC
and Powerbank (Fig. 2.1e). Samsung Tablet PC has an Intel Celeron 900 MHz processor,
504 MB of RAM, and Microsoft Windows XP Tablet PC Edition operating system. The
Powerbank extends the table PC’s battery life by allowing the operator to continuously

capture thermal images for up to approximately 2.5 hours.
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The process of capturing a thermal image of a specific target begins with the detectors

in the camera’s Focal Plane Array (FPA) receiving the thermal radiation emitted from all
of the surfaces of objects within the thermal scene. The thermal scene consists of all
objects within the camera’s field of view, which includes the target of interest and objects
in the foreground. In the contéxt of this research, we will define foreground as the region
in the scene consisting of objects behind the target of interest and within the thermal
camera’s field of view. Background is defined as the region either in front or to the side
of the target consisting of thermal sources that emit thermal energy onto the target’s
surface. The source emitting this thermal energy may or may not be in the camera’s field
of view. The thermal radiation received by the FPA is converted to an analog signal with
a 320X240 pixel resolution. This analog signal is transmitted from the camera through a
harness cable assembly to a Voyetra Turtle Beach Video Advantage USB Video Capture
device (see Fig. 2.1d) that is attached to the Samsung Tablet PC. The Voyetra Turtle
Beach Video Advantage USB Video Capture device converts the composite analog signal
from the camera to a digital signal. The tablet PC receives the digital signal and a
thermal image is displayed on the screen using the VideoAdvantage software that is
installed on the tablet*PC, discussed below. A camera control cable also connects the
camera to the Samsung Tablet PC. The Control IR Manager software installed on the
tablet PC, discussed in the following section, uses this cable to make modifications to the
camera’s memory. During thermal image capturing sessions, the door on the top locker
is closed to prevent glare on the tablet PC’s display screen caused by the sun. With the

door shut, the operator views the thermal image on the tablet PC’s display screen through
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the black eyepiece and captures thermal images with the VideoAdvantage software using

the mouse, both located on the top locker (see Fig. 2.1b).

2.2.2 Signal Preprocessing

In this section, we will discuss the software used to capture and preprocess a thermal
image of an object prior to generating features. The significance of preprocessing a
thermal image is evident when we view the thermal image in Fig. 2.2. The quality of this
thermal image is affected by temporal and spatial signal degradations and dead pixels. If
the magnitude of these typical degradation processes is not minimized, they will have a
negative impact on our ability to generate relevant features from the thermal image and

characterize unknown objects.

2.2.2.1 Signal Degradations

Signal degradations consist of temporal and spatial signal degradations and dead pixels.
Temporal signal degradations consist of a temporal fluctuation in the signal at a low
frequency (drift), mechanical vibrations due to the movement of camera system relative
to the target (jitter), and noise (electronic, optical, and structural) [30, 22]. The spatial
signal degradations are displayed as the fine horizontal and vertical lines over-layed oﬁ
the thermal image in Fig. 2.2. These spatial signal degradations are due to the non-
uniformities in the responsivity of the detectors in the FPA [30, 22]. We can also see

dead pixels (white specks throughout the image) resulting from a defect in the
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instrumentation caused by events such as heat deterioration or a high incidence of static

electricity on a detector [31].

The Control IR Manager is software used to control the functionality of the Raytheon
ControlIR 2000B infrared thermal imaging video camera. The software is used to make
modifications to the camera’s memory that will preprocess the thermal images and
minimize the effects of the degradation processes. We will discuss the key software
features used to preprocess our thermal images. Fig. 2.3 displays the main menu of the
Control IR Manager software. The polarity switch in the upper left corner is set to White
Hot to imply obj ects with apparent high temperature (hot) surfaces, relative to other
objects in the camera’s field of view, to yield gray-scale values of 255 (white). On the
other hand, objects that have an apparent low temperature (cold) surface, fe]ative to other
objects in the camera’s field of view, will yield gray-scale values 0 (black).
Consequently, the thermal radiance from surfaces of objects in the entire scene could
result in various gray-scale values in the interval [0, 255]. This topic will lead us to an
important discussion on AC coupling and the AGC circuit that we will cover shortly.

We will now discuss the adjustments in the software to suppress the temporal and
spatial signal degradations and dead pixels. By selecting the Video icon from the Control
IR Manager software’s main menu (Fig. 2.3) we get the Video Settings menu (Fig. 2.4).
By enabling Frame Integration with 16 frames, we can reduce the effects of temporal
signal degradations by taking a frame-to-frame average of the scene over 16 frames (the
Raytheon ControlIR 2000B has a frame rate of 30 Hz). Moving back to the main menu
(Fig. 2.3) and selecting the Advanced icon, we go to the Advanced Video Settings menu

(Fig. 2.5). By enabling Normalization Correction in the Normalization Options menu, we
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are able to treat the spatial signal degradations due to the non-uniformity of the detectors

in the FPA. Our system uses a single-point non-uniformity correction method (Private
conversation with Field Application Engineer, L-3 Communications Infrared

Products, 27 January 2007) that normalizes (makes equal) the outputs for the individual
detectors over a uniform thermal scene. In single-point correction, the average of
multiple images of a uniform thermal scene (single thermal input intensity or temperature
reference) is subtracted from live video to remove the non-uniformity [30, 22]. Also
within the Normalization Options menu (Fig. 2.5), we can enable Pixel Substitution to
store locations of dead pixels in the FPA and substitute the dead pixels with the mean
value of horizontally adjacent good pixels. After suppressiﬁg the temporal and spatial
signal degradations and dead pixels found in Fig. 2.2, we obtain the resulting thermal
image in Fig. 2.6. Table 2.1 presents the procedure to normalize the camera and store the
reference in the camera’s memory to perform non-uniformity correction on subsequent

thermal image frames.

2.2.2.2 AC Coupling

As mentioned earlier, the polarity for the Raytheon ControlIR 2000B was set so the
thermal radiance of the surfaces of objects in the entire scene could map to various gray-
séale values in the interval [0, 255] where the extremes 0 (black) and 255 (white) imply
apparent cold and hot surfaces, respectively. Furthermore, we mentioned that the gray-
scale values of an object in a thermal image are assigned relative to other objects in the
camera’s field of view. This. is a characteristic of thermal cameras with FPA known as

AC coupling. AC coupling is integrated into the Raytheon ControlIR 2000B so that small
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variations of the surface radiance of objects in a scene can be amplified [23]. Also, a

thermal image is AC coupled horizontally along the rows in the image array. A
consequence of AC coupling is that a specific target in a scene with a constant thermal
radiance could be assigned a large or small gray-scale value depending on the other
surfaces in the surroundings within the camera’s field of view. Furthermore, a target can
only be seen in a thermal image when a thermal contrast exists between the target and
other objects in the camera’s field of view. Consequently, useful feature values to
distinguish objects can only be generated when a thermal contrast exist in the thermal
scene. Of course, this makes the objective to classify non-heat generating objects even
more challenging since these objects depend highly on prior solar energy absorption in
order to emit thermal radiation.

As aresult of AC coupling, a target is not radiometrically correct (i.e., the gray-level
valué is not a linear function of the apparent surface temperature). Fig. 2.7 shows an
example of AC coupling similar to one illustrated in [23]. Fig. 2.7a simulates a scéne
with uniform thermal physical surféce properties (i.e., emissivity, specific heat, etc.) but
with different temperature regions. Fig. 2.7b displays the resulting thermal imége of this

scene after AC coupling. As we can see, the ambient region maintains a constant

temperature of 76° F. However, with AC coupling applied horizontally along the rows
in the image, the regions in each row are assigned gray-levels relative to other objects in
the same row. As a result, the upper half of the ambient region appears “hot” in Row 1

and the lower half of the ambient region appears “cold” in Row 2.
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2.2.2.3 Automatic Gain Control

The effects of AC coupling alone will not hinder our ability to generate features to

- distinguish objects. However, problems do arise when the amplifications of the gray-
level values for an object at a constant temperature become extreme. This issue exists
when the Raytheon ControlIR 2000B’s automatic gain control (AGC) circuit is enabled.
The AGC is an image enhancer that is designed to.afford the operator with comfortable
image viewing. The AGC automatically adjustsu the gain (and offset) to ensure the
signals are within the camera’s dynamic range to minimize saturation of objects in the
scene [30]. As a result of the AGC, the thermal image of a bright object may be darker
and dark object may be brighter. Thus, the AGC amplifies the effects of AC coupling.
Similar to AC coupling, the AGC results in gray-level values assigned to objects relative
to other objects within a given window. The effects of the ACG circuit are illustrated in
Fig. 2.6. Even though the actual surface of the pole is approximately uniform in thermal
properties (to include temperature), its thermal image displays an apparent temperature
difference between the bottom portion of the pole (with the building in the foreground)
and top portion of the pole (with the sky in the foreground).

To investigate the affects of the AGC circuit further, we analyzed variations in gray-
level values of a cardboard tube with a constant surface temperature adjacent to a
cardboard tube that is heated to a given temperature and allowed to cool. The cardboard
tubes were secured in a thermally insulated box with an opening in the front and a
thermal insulator separating the tube on the left (at a constant temperature) from the tube
on the right (that was heated). The experiment was conducted in a controlled

environment with a constant surrounding radiance and ambient temperature of
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approximately 59.3° F. The left cardboard tube with a constant surface temperature was
maintained at approximately 86.5° F. The surface of the right cardboard tube was heated
to 110.8° F and allowed to cool to 65.8° F. Ten images of the scene consisting of the
two tubes were captured at increments of approximately 5° F based on the right
cardboard tube that was cooling. The mean gray-level values were recorded on the same |
segments of the two tubes for each image captured. Fig. 2.8 illﬁstrates the experimental
results with the AGC enabled. Fig. 2.8a and 2.8b display the first (right tube at 110.8° F)
and tenth (right tube at 65.8° F) images captured, respectively. By comparing Fig. 2.8a
and 2.8b, we can see that the tube on the left (maintained at a constant temperature)
varies in gray-levels due to the AGC. Fig. 2.8c displays the variations of the gray-levels
for the constant and heated tubes as a function of temperature. With the AGC enabled, o
the constant tube has a standard deviation of 13.84 and range of 44.98 in the gray-levels.
Consequently, these extreme variations in gray-level values for the constant tube would
hinder our ability to generate relevant features to distinguish objects. Fortunately, we can
make modifications to the Raytheon ControlIR 2000B’s memory, using the Control IR
Manager software, to disable the AGC by following the procedure presented in Table

2.2.

We conducted another experiment under the same conditions as described above with
the cardboard tubes, with the exception that the AGC was disabled. Once again, the left
cardboard tube with a constant surface temperature was maintained at approximately
86.5° F. The surface of the right cardboard tube was heated to 110.4° F and allowed to

cool to 65.8° F. Ten images of the scene consisting of the two tubes were captured at
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increments of approximately 5° F based on the right cardboard tube that was cooling.
Fig. 2.9 illustrates the experimental results with the AGC disabled. Fig. 2.9a and 2.9b
display the first (right tube at 110.4° F) and tenth (right tube at 65.8° F) images
captured, respectively. By comparing Fig. 2.9a and 2.9b, we can see that the tube on the
left (maintained at a constant temperature) appears to have minimal variation in gray-
levels when the AGC is disabled. Fig. 2.9c¢ displays the variations of the gray-levels for
the constant and heated tubes as a function of temperature. With the AGC disabled, the
constant tube has a standard deviation of 2.16 and range of 7.22 in the gray-levels. Thus,
by disabling the AGC, the variations in the gray-level values for the constant tube are
only due to AC coupling. Furthermore, by disébling the AGC on Fig. 2.6, we can now
obtain acceptable results for the variation of gray-levels on the pole as displayed in Fig.
2.10. Therefore, with the AGC disabled we can now generate relevant features from the
thermal images of object that will assist us in classifying objects.

At this point it is appropriate to mention the halo effect around the bottom portion of
the pole in Fig. 2.6. The halo effect is common with ferroelectric FPAs where accurate
imagery is assisted by a mechanical chopper wheel within the camera. As discussed in
[32], capturing a thermal image of a target is a cyclic process. Suppose the target is
emitting more thermal radiation than any other neighboring object in the scene (either
directly adjacent or behind the target). To capture a thermal image, the target first emits
radiation onto the back of the chopper wheel and the FPA obtains a charge reading from
the wheel. Next, the FPA obtains a charge directly from the actual target emitting the
thermal radiation. Lastly, the system electronically subtracts the charges with and

without the chopper wheel to produce the thermal image. However, the thermal radiation
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from the hot target that leaks through the camera’s chopper wheel is unfocused, leaving a

larger radiation imprint on the FPA than that of the actual target. When the system
subtracts the charges with and without the chopper wheel, a halo is created around the
“hot” target in the image that is darker than the “cold” foreground. As we will see in
Chapter 3, a “cold” target and “hot” foreground will result in a halo around the “cold”
target that is a lighter shade than the “hot” foreground. Fortunately, the halo effect will
not interfere with our ability to generate thermal features for classifying objects. Asa
matter of fact, we will discuss in Chapter 6 how we may be able to use the halo effect to

facilitate the segmentation of targets [33].

2.2.2.4 Filters

One of our goals in preprocessing is to suppress degradations in the signal without
degrading information that would assist in classifying objects in the scene.

Consequently, we will avoid filters that would lead to loss of relevant information used to
distinguish object classes. For example, in the Video Settings menu (Fig. 2.4) of the
Control IR Manager softWare we will disable Peaking since this functionality performs a
high-pass filter on the thermal image. Figs. 2.11 a and b display thermal images of the
séme segment of a brick wall without and with a high pass filter, respectively. As we can
see in Fig. 2.11b, applying a high pass filter results in a loss of relevant information that

could be used by thermal features to classify objects.
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2.2.2.5 Capturing Thermal Imagery

After the analog signal from Raytheon ControlIR 2000B is converted to a digital signal
by the Voyetra Turtle Beach Video Advantage USB Video Capture, the Samsung Tablet
PC receivgs the digital signal and a thermal image is displayed on the screen using the
VideoAdvantage software. Fig. 2.12 illustrates a scenario with the robotic thermal
imaging system capturing an image of a segment of a wood fence. The VideoAdvantage
software displays live video and is capablelof capturing continuous or still frames. Qur
current research will focus on classifying non-heat generating objects in thermal images
using still frames. However, we intend to extend our research to classify objects using
continuous {rames as discussed in Chapter 6. The final preprocessing step before the
feature generation phase is to convert the RGB (red, green, blue) image captured by the

VideoAdvantage software to a gray-scale image using MATLAB.

2.3 Data Collection

We now present the methodology used to collect the data used to train and evaluate our
pattern classification model. We will assume that the robot already makes use of
algorithms to detect and segment a specific target. In Chapter 6, we will discuss possible
techniques for automated detection and segmentation of objects that we intend to
integrate into our future research. Consequently, in the current research we will manually
segment our targéts.

Thermal imagery was captured on a variety of non-heat generating outdoor objects

during a nine-month period, at various times throughout the days and at various
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illumination/temperature conditions. The ambient temperature (in degrees Fahrenheit)

was recorded during each session. The images were captﬁred using a Raytheon
ControlIR 2000B long-wave (7-14 micron) thermal infrared imaging video camera with a
50 mm focal length lens at a distance of 2.4 meters from the given objects. The analog
signals with a 320X240 pixel resolution were converted to digital signals using a Voyetra
Turtle Beach Video Advantage USB Video Capture device attached to a Samsung Tablet
PC, all mounted on board a mobile robotic platform displayed in Fig. 2.1. The resulting
digital frames were preprocessed as discussed in Section 2.2.

The image data was divided into two categories: extended objects and compact
objects. The extended objects consist of objects that extend beyond the camera’s field of
view. QOur classes of extended objects consist of brick walls, hedges, wood picket fences,
and Wood walls. The compact objects consist of objects that are within the camera’s field
of view. Our classes of compact objects consist of steel poles and trees. The image data
éollected was partitioned into three mutually exclusive sets: training data, test data, and
blind data. The training data was used to design our pattern classification model. The
performance of the model was assessed using the test and blind data sets. Since the test
set was used as a validation set to tune the pattern classification model, it was part of the
training process and not being used to provide an independent error estimate. Therefore,
the blind data set was used for our independent performance evaluation of the pattern
classification model.

Our objective is to design a pattern classification model that displays exceptional
performance in classifying unknown non-heat generating objects in an outdoor

environment, To satisfy this objective, the data that we collect must completely and
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accurately represent the real world problem by consisting of all the meaningful variations

of field data instances that the system is likely to encounter. Thus, our representative
data was collected under diverse environments (climates), temperatures, solar energy
conditions, and viewing angles.

Figs. 2.13 and 2.14 display the visible and typical thermal images of extended and
compact objects, respectively, used for our training data that was collected from 15
March to 22 June 2007 about The College of William & Mary campus. The strips of
black electrical tape shown in the visible images and displaying a high thermal radiance
in some of the thermél images are used as a reference emitter for generating the thermal
features that we will discuss in Chapter 3. During each of the 55 sessions, the thermal
images were captured on each object from two different viewing angles: normal
incidence and 45 degrees from incidence. Table 2.3 and Fig. 2.15 present the frequencies
of the object classes and ambient temperature distribution for the training data,
respectively.

The thermal images used for the test data consisted of the same objects used in the
training data (Figures 2.13 and 2.14). The thermal images were captured at the same
viewing angles as the training data. However, the test data was collected over nine
sessions from 25 June to 3 July 2007. Table 2.3 and Fig. 2.15 present the frequencies of
the object classes and ambient temperature distribution for the test data, respectively.

The blind data set was collected over 14 sessions from 6 July to 5 November 2007.
The thermal images used for the blind data set consisted of the same classes and were
captured at the same viewing angles as the training data but were not the same objects. In

addition to some blind data being collected on The College of William & Mary campus,
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data was also collected throughout York County, Virginia, in a village and on a farm

outside Buffalo, New York, and on mountainous terrain in Eleanor, West Virginia. Table
2.4 presents the frequencies of the objects in the blind data set as well as the locations
that the data was collected. Fig. 2.15 displays the ambient temperature distribution of the
blind data set. Additionally, to evaluate the classification model’s response when
confronted with other blind objects, to include objects outside the classes in the training
data set, we included data consisting of a brick wall with moss on the surface, concrete
wall, bush, gravel pile, steel picket fence, wood bench, wood wall of a storage shed,
square steel pole, aluminum pole for a dryer vent, concrete pole, knotty tree, telephone

pole, 4x4 wood pole, and pumpkin.

2.4 Summary

In this chapter, we discussed the first step in our pattern classification model design
process — data acquisition. We introduced our robotic thermal imaging system consisting
of the hardware and software used to acquire thermal data. We will also discuss the
methodology used to preprocess and collect our representative data set. The
methodologies used in our data acquisition are implemented prior to the feature

generation step discussed in the next chapter.
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(a) (b)

(©) (d (e)

Fig. 2.1 Robotic thermal imaging system hardware: (a) robot platform front view,
(b) robot platform rear view, (c) Raytheon thermal imaging video camera,
(d) VideoAdvantage USB video capture device, (¢) Samsung tablet PC w/ Powerbank.
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Fig. 2.6 Thermal image with preprocessing on temporal/spatial signal degradations and dead pixels.
AGC is enabled.
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(1)Setup the Raytheon ControlIR 2000B approximately 2.5 meters
from a smooth, non-shiny, surface with a low thermal reflectivity
(i.e., high emissivity), such as plywood with black spray paint on the
surface. This uniform surface must take up the entire scene in the
camera’s field of view.

(2) Select the Factory icon (Fig. 2.3) and disable Norm Threshold in
the Factory Options menu.

(3) At the main menu (Fig. 2.3), disable Digital Zoom.

(4) Select the Advanced icon (Fig. 2.3) and the Normalization icon in
Advanced Video Settings (Fig. 2.5). Enable Normalization
Correction and Pixel Substitution in the Normalization Options menu.

(5) In the Normalization Options menu (Fig. 2.5), select the Full
Norm icon under Normalize System. Run Full Norm for at least 5
minutes and then select Stop.

(6) At the main menu (Fig. 2.3), enable Digital Zoom.

(7) Again, in the Normalization Options menu (Fig. 2.5), select the
Full Norm icon under Normalize System. Run Full Norm for at least
5 minutes and then select Stop.

(8) Select the Factory icon (Fig. 2.3) and enable Norm Threshold in
the Factory Options menu.

Table 2.1 Procedure to normalize the camera and store the reference in the camera’s
memory to perform non-uniformity correction on subsequent thermal image frames
[Private conversation with Field Application Engineer, L-3 Communications Infrared

Products, 27 January 2007].
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Fig. 2.7 AC coupling. (a) Scene with different temperature regions,

(b)

(b) Gray-level shades of regions in thermal image.
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Fig. 2.8 Enabled AGC experiment with cardboard tubes (left tube at constant
temperature of ~86.5 deg F and right tube heated to 110.8 deg F and allowed to
cool to 65.8 deg F). (a) Image of tubes with right (heated) tube at 110.8 deg F,
(b) Image of tubes with right (heated) tube at 65.8 deg F, (c) Variations of
gray-levels of constant and heated tubes as a function of temperature.
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(1) In the Video Settings menu (Fig. 2.4), select the Contrast
icon to display the Gain Control Settings. Set the Digital
Gain equal to 1, AGC Count Select to 6144 counts, and AGC
Window to 80 Rows.

(2) In the Video Settings menu (Fig. 2.4), select the
Brightness icon to display Brightness Control Settings.
Disable the Brightness Control.

(3) In the Control IR Manager main menu (Fig. 2.3), set the
Contrast Mode to Manual with a Value of 255 and
Brightness Mode to Manual with a Value of 25002.

Table 2.2 Procedure to disable AGC by making modifications in the Raytheon
ControlIR 2000B’s memory using the Control IR Manager software

[Private conversation with Field Application Engineer, L-3 Communications
Infrared Products, 27 January 2007].
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Gray-level Variations with AGC Disabled

l ==g— Constant Tebe —H - Heated TE]

178

176 e

174

g 17 A ~. )
:
170 -
K} .
.%. 168 A
lh A
£ // \
0 166 L 3 =-0
4 .
164 n_
A \ .
162 5
lm T T T T T T T T T
1104 1058 100.5 95.7 90.6 858 80.7 5.7 T8 658
Temperatare (deg F)
(©)

Fig. 2.9 Disabled AGC experiment with cardboard tubes (left tube at constant
temperature of ~86.5 deg F and right tube heated to 110.4 deg F and allowed to
cool to 65.8 deg F). (a) Image of tubes with right (heated) tube at 110.4 deg F,
(b) Image of tubes with right (heated) tube at 65.8 deg F, (c) Variations of
gray-levels of constant and heated tubes as a function of temperature.



Fig. 2.10 Thermal image with preprocessing on temporal/spatial signal degradations and dead pixels.
AGC is disabled.
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(b)

Fig. 2.11 Thermal image of segment of brick wall: (a) without high pass filter,
(b) with high pass filter.
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(b)
Fig. 2.12 (a) Robotic thermal imaging system capturing an image of a wood fence.
(b) Thermal image of the wood fence displayed with VideoAdvantage software.
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(© (d

Fig. 2.13 Visible and thermal images of extended objects from the training data set.
(a) brick wall, (b) hedges, (c) wood picket fence, and (d) wood wall.
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(a) (b)

(d) (e)

Fig. 2.14 Visible and thermal images of compact objects from the training data set. Steel poles: (a) brown painted
surface, (b) green painted surface, (c) octagon shape w/ aged brown painted surface. Tree: (d) basswood tree,
(e) birch tree, (f) cedar tree.

L9



OBJECT CLASSES

Tr ~105 | 107 | 107 | 105 | 318 | 318 | 1060
Test | 18 16 16 18 48 52 168

Table 2.3 Distribution of training and test data collected from 15 March to 3 July 2007.

R e

OBJECT CLASSES

unty. | 4 9 4 6 17 12 52
i 23 23 23 23 20 20 132

Table 2.4 Distribution of blind data collected from 6 July to 5 November 2007.
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Chapter 3 Thermal Feature Generation

3.1 Introduction

In Chapter 2 we discussed the procedures for acquiring our thermal images. We will now
present the second step in our pattern classification model design process — thermal
feature generation. These features are unique representations of a non-heat generating
object that are derived from the given object’s thermal image. In the context of this
research, non-heat generating objects are defined as objects that are not a source for their
own emission of thermal energy, and so exclude people, animals, vehicles, etc. Our goal
is to generate thermal features that not only assist in distinguishing one object class from
another but also have a physical interpretation. We will discuss three types of features —
meteorological, micro, and macro. We will also present a curvature algorithm that will
allow us to distinguish compact objects from extended objects. Compact objects consist
of objects that are within the thermal camera's field of view, such as steel poles and trees.
Extended objects consist of objects that extend beyond the thermal camera's field of
view, such as brick walls, hedges, picket fences, and wood walls. By generating feature
values from the thermal images of non-heat generating objects, we will witness how
trying to interpret the effects of the outdoor environment and thermal properties of
objects on these feature values is a subtle process. In the next chapter, we will evaluate

the features’ classification performance and select the most favorable set of features.
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3.2 “Ugly Duckling” Features

Our thermal-physical features are generated from an object’s signal data ‘received bya
Raytheon ControlIR 2000B long-wave infrared thermal imaging video camera. Through
the process of feature generation, the underlying physics of the information in the thermal
signal produced by a given object is analyzed to generate ﬁnique representations of the |
object. These features are used to distinguish one object class from another. Ideally,
features are chosen that have minimal variation with changes in the viewing angle and/or
distance between the object and sensor, temperature, and visibility. Since our objects do
not generate their own heat energy, their thermal signature depends on their thermal
properties and external heat sources such as the sun and other objects in the surrounding
environment. As a result, the amount of thermal radiation emitted from our objects
during conditions of limited visibility will depend on the time history of radiation
received from external sources. Consequently, the complexity of our application
increases due to the variation in thermal radiance of objects in the scene primarily caused
by the diurnal cycle of solar energy.

Thermal feature generation is a crucial step in our quest to design a pattern
classification model that will allow us to classify non-heat generating objects in an
outdoor environment. As we will see in Chapter 4, the performance of a classifier is a
function of the feature set. According to the Ugly Duckling Theorem [34], there is no
problem independent, universal, or “optimal” set of features. If a set of features appears
to perform better in a classification model than another, it is a result of its fit to the

particular pattern classification application. In our case, not only do we desire a set of
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features that maintain their discriminating information, we also seek features that retain

their physical interpretation.

There are many choices for the type of features to use in a classification model.
Reviews of the various types of features are found in [17, 35, 36, 37, 38, 39]. Two
popular types of features used in pattern recognition are moment invariants and Fourier-
Mellin descriptors. Moment invariants are geometric features that were first introduced
to the pattern recognition community by Hu [40]. Hu’s seven famous moments were
derived from the normalized central moments of an object’s image [35]. Since then,
various improvements have been made to Hu’s work. Mistakes in Hu’s theory were
corrected by Reiss [41]. Flusser [42] showed that Hu’s system of seven moments is not
independent, implying redundancy in the set of features. Considerable research has
focused on moments as geometric descriptors that are invariant with respect to
translation, rotation, scaling, illumination and blurring of an object in an image [43, 44,
45, 46]. However, moments have a tendency to be sensitive to noise [47]. Another set of
feaﬁures that permit objects in images to be classified according to their shapes are the
Fourier-Mellin descriptors, introduced by Casasent and Psaltis [48,49]. Fourier-Mellin
descriptors are generated from the frequency domain of an object’s image and used for
invariant pattern recognition [50, 51]. The Fourier-Mellin descriptors are also related to
Hu’s moment invariants [52]. Both moments and Fourier-Mellin descriptors are not a
desirable choice for our features since they lack physical meaning for cases above the
third order.

The majority of the classification research involving thermal imagery has involved

generating features based on the radiance emitted from heat generating objects or non-
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heat generating objects that require a thermal excitation in a controlled environment.

Heat generating objects could include people, ground vehicles, or marine vehicles. The
classification problems in the literature involving people usually involve identification
and tracking {2] and facial recognition [53]. Research involving the classification of
ground vehicles is found in [16, 54]. Fang and Wu [55] approached armored vehicle
classification by generating geometric features, based on Hu’s seven moment invariants,
from the thermal images of English letters used to represent the contours and wheels of
armored vehicles. The features were entered into a neural network where final
recognition of a letter was achieved through repeated computation and learning.
Classification of ships by comparing their silhouettes against a library of templates is
discussed in [56]. Common to these referenced applications is that classification is based
purely on geometric features, rather than thermal-physical features generated from the
target’s surface.

There have been only a few research studies found in the literature involving thermal-
physical features generated from a target’s surface for classification applications.
Nandhakumar and Aggarwal [57] generated features based on estimated values of surface
heat fluxes to interpret surfaces in an outdoor scene. Surface temperatures were
estimated from a thermal image by assuming that all objects in the scene have an
emissivity of approximately 0.9. A visual image of the same scene was used to estimate
surface absorptivity and relative orientation of the viewed surface. These estimations
were used together to estimate the heat fluxes at the surfaces in the scene. The
assumption of a relatively constant emissivity was continued in follow-on research to

generate thermo-physical and geometric invariant features from thermal images to
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classify ground vehicles [3]. Geometric features based on lines and conics were

generated from a given region in a thermal image to hypothesize the type of ground
vehicle and its pose. Thermal-physical features are formed from both temperature
estimates generated from the thermal image and material properties associated with the
hypothesized vehicle type and pose. The resulting thermal-physical features are
compared with a model prototype based on features expected from the hypothesized
vehicle to assess the hypothesized vehicle class. Bharadwaj and Carin [58] generate
temperature features estimated from the thermal radiance emitted from various regions on
ground vehicles. Vehicles are classified based on the correlation between the feature
vectors generated from the different regions on a vehicle and a given template. Maadi
and Maldague [59] generate features based on temperature estimations and geometries to
classify people and ground vehicles. A multisensor data fusion system using infrared
cameras, visual (CCD) cameras, and laser radar sensors for classifying ground vehicles is
described in [60]. The features used by this system include geometric attributes,
temperature estimations, and colors generated from the target.

There are also maﬁy machine vision industrial applications that rely on thermal
features generated from the surface of objects to monitor quality control [22, 61, 62].
These applications normally involve feature generation in a controlled indoors
environment using a thermal excitation to monitor packaging standards and detect
anomalies in products. For instance, in the food industry thermal features could be
generated to monitor the seals on food containers [63] or detect anomalies in food [31].

The feature generating techniques in the previous research discussed above are not an

appropriate choice for our application. Classification of objects in thermal imagery has
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mainly involved geometric features, rather than thermal-physical features generated from

the target’s surface. Consequently, classification of objects has traditionally involved
detecting and segmenting thermal “blobs” in the image and generating shape features that
are compared to those in database or library of templates. This limitation was mainly a
result of the state of the art available in thermal image based systems. Thermal imaging
systems did not have the resolution to obtain detailed information about an object’s
surface. However, our object classes do have a noticeable distinction when comparing
their surfaces in a thermal image. Thus, it appears that appropriate features for our
application will consider information about the objects’ surfaces found in the thermal
image.

The previous research that did involve the generation of thermal features from an
object’s surface required the visible spectrum and/or included temperature estimates.
However, to classify non-heat generating objects during conditions of limited visibility,
we should not generate features that rely on the visible spectrum. Moreover, thermal
cameras do not read temperature on an objects surface directly. To generate an estimated
temperature feature from thermal imagery, one must enter a measured or assumed
emissivity of the target’s surface [64]. Emissivity is a surface property that provides a
measure of an object’s ability to emit thermal energy. Furthermore, emissivity is a
function of the type of material, viewing angle, and the object’s surface quality, shape,
and temperature [23, 65, 66]. The level of radiance presented by an object’s surface in a
thermal image depends on the object’s emissivity. Consequently, we should not assume
an emissivity for an unknown object that we desire to classify. The remote sensing

community has successfully used emissivity as a feature to assist in discriminating
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between vegetation and bare soil [67]. Therefore, an appropriate choice for a feature

derived from the thermal image of a non-heat generating object in an outdoor
environment seems to be emissivity, not an apparent surface temperature.

Besides the emissivity feature used in remote sensing, we have not identified any
other previous research involving the generation of surface features from the thermal
imagery of a non-heat generating object in an outdoor environment. However, in the
visible spectrum, discriminating information about an object’s surface has been obtained
using texture features. Weszka, Dyer, and Rosenfeld [68] provide an informative study
that compares visual texture features for terrain classification in the field of remote
sensing. They concluded that texture features based on first-order and second-order
statistics displayed good terrain classification results. The term texture is difficult to
define and takes on many definitions in the literature. Furthermore, the concept of
texture has been traditionally motiyated by human’s visual perception of material
surfaces [37, 69]. We will adopt the definition of texture as a feature-dependent on the
spatial variation in pixel intensities (gray-level values) [37]. Using this definition of
texture allows us to denote an object’s variation in surface radiance as the spatial
variation in pixel intensities (gray-level values) observed in the object’s thermal image.
Since our object classes do have a noticeable distinction when comparing their surfaces
in a thermal image, first- and second-order texture features seem to be appropriate for our
application.

Since we are working with thermal images of non-heat generating objects, the
radiance of the objects not only depends on the diurnal cycle of éblar energy but also is a

function of the object’s thermo-physical properties. Consequently, features based on
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emissivity and texture seem appropriate since they are generated from information in the

thermal image that encompass the thermo-physicai properties of the object that depend on
the diurnal cycle of solar energy. In this research, the generation of these features from
segmented objects in thermal images are computed offline in MATLAB.

The remainder of this chapter will proceed as follows. In Section 3.3, we will discuss
the characteristics of our thermal gray-scale image used for generating features. Section
3.4 will present our meteorological features consisting of the ambient temperature and a
rate of change in the ambient temperature. In Section 3.5, we will discuss oﬁr micro
features based on the emissivity of our target’s surface. Section 3.6 will present our
macro features based on first- and second-order texture features. We will provide an
application involving our meteorological, micro, and macro features in Section 3.7.
Section 3.8 will present a curvature algorithm that will allow us to distinguish compact

objects from extended objects. Section 3.9 will provide a summary of the chapter.

3.3 Thermal Image Representation

In this section we will define how our thermal gray-scale (or gray-level) images are
represented throughout our research. Fig. 3.1a displays our robotic imaging system
capturing a thermal image (Fig. 3.1b) of a fence segment denoted with the rectangular
red-solid border. Assuming our object of interest is opaque to thermal radiation, the
thermal energy leaving the segmented region consists of energy emitted and reflected
from both the fence’s surface and surfaces behind the fence but viewed within the gaps
between the fence’s wood boards. For non-heat generating targets, the amount of energy

absorbed, emitted, and reflected from the surface depends on the target’s thermal and
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physical surface properties and amount of energy received by the surface from thermal

sources either in front or to the side of the target. The energy received by the target’s
surface from other thermal sources is called irradiance. The energy leaving the target’s
surface regardless of the physical cause (emitted plus reflected) is called radiosity.

Radiosity is a radiant flux defined as the rate at which thermal radiation leaves the
surface due to emission and reflection per unit area of the target’s surface (W -m ™).

Radiosity is the thermal energy received by the detectors in the thermal imaging camera.

*.sr™") to associate the

However, radiosity is normally expressed as radiance (W -m~
quantity to the thermal camera’s response displayed by the thermal image, analogous to
the human’s visual response to luminance [70]. Unless we specify the type of radiance
(i.e., emitted or reflected), we will assume all radiance received by the thermal camera is
derived from radiosity.

We will now define the terms foreground and background of our thermal scenes with
respect to the thermal camera’s position and field of view. Foreground is the region in
the scene consisting of objects behind the target of interest and within the thermal
camera’s field of view. Due to the opaqueness of our classes of objects, they are not
normally influenced by the thermal radiance emitted from the objects in the foreground.
On the other hand, the radiance emitted by the objects in the foreground could have an
effect on the thermal camera’s AC coupling. As discussed ih Chapter 2, AC coupling
could result in a target with a constant thermal radiance being assigned variations in gray-
level values depending on the radiance of the foreground. Fortunately, these variations in

the gray-level values of a target’s thermal image will not impact our ability to generate

features as long as the AGC is disabled. Background is defined as the region either in
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front or to the side of the target consisting of thermal sources that emit irradiance onto the

target’s surface. The source emitting this irradiance may or may not be in the camera’s
field of view. Referring back to Fig. 3.1, a portion of the total thermal radiance received
by the camera comes from the foreground radiance emitted from the gaps in wood fence
(denoted by the orange-dotted arrow) and background irradiance from the vinyl siding on
the building (yellow-dashed arrow) that is both reflected from the fence’s surface
(yellow-dashed arrow) and absorbed and then emitted from the fence’s surface (blue-
solid arrow).

Fig. 3.1c displays the gray-level array (or matrix) of the thermal image segment
denoted with the rectangular green-solid border in Fig. 3.1b. The gray-level array
consists of M rows and N columns such that each pixel element at coordinate (7, ¢) is
mapped to a gray-level Valmue from the range [0, 255] by the function /(7, ¢) that depends
on the radiance emitted by the surfaces in the thermal image. Thus, a surface emitting a
high amount of radiance is assigned a higher gray-level value compared to a surface thaf
is emitting a lower radiance. In the field of thermography for nondestructive testing
(NDT) (or nondestructive evaluation (NDE)), a thermal imaging camera is used to record
the distribution of apparent surface temperatures to assess the structure or behavior of
what is under the surface [22]. To compute these apparent femperatures of the structure’s
surface, the operator must input the object’s emissivity and ambient temperature [64, 23].
However, in our application we are seeking to assign a class to an unknown object.
Therefore, we do not know the target’s emissivity. Consequently, we will relate the gray-
level values to the amount of radiance emitted by the objects’ surfaces in a thermal

image, not their apparent surface temperatures. As shown in Fig. 3.1c the values of the
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gray-levels decrease from left to right indicating a region of higher radiance emission on

the left and lower emission on the right side of the segment in Fig. 3.1b. Moreover, the
object’s radiance input is not linearly related to the thermal camera’s digital gray-level

value output due to AC coupling.

3.4 Meteorological Features

S;nc’e the thermal properties (such as conductivity, emissivity, and specific heat) of our
non-heat generating objects primarily depend on solar energy, the amount of thermal
radiance emitted at the surface is dependent on solar energy as well. Therefore, we can
estimate current and historical effects of the diurnal cycle of solar energy on the amount
of radiance emitted from an object’s surface by generating features based on the ambient

temperature.

3.4.1 Ambient Temperature

The effects of solar energy on the amount of radiance emitted from an object’s surface is
estimated by the ambient temperature (° F') feature recorded in same vicinity of the target

at the time (¢) defined by:

Ta=T,[] (3-1)
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3.4.2 Ambient Temperature Rate of Change

The historical effects of solar energy on the amount of radiance emitted from an object’s
surface is determined by a first order backward difference quotient about the current time

(f) with Az =30 minutes.

T[t]-7,[t - ad] (3.2)
At

Tl=

3.5 Micro Features

Micro features are based on the thermal-physical properties of our targets’ surfaces.
Particularly, we will derive micro featur‘es based on the emissivity of an object. The ferm
emissivity is assigned to ideal materials and emittance is used to characterize real
materials with surface defects and irregularities [23]. However, we will use emissivity
for our real materials to avoid confusion since this term is used most often in the infrared
community.

Emissivity is a surface property that provides a measure of an object’s ability to emit
thermal energy. Emissivity is expressed as the ratio of thermal radiation emitted by an
object’s surface to the thermal radiation emitted by a perfect emitter (blackbody) under
the same surface temperatures, viewing angle, and spectral wavelengths [22]. Emissivity
is a unitless quantity on a scale from 0 to 1. A perfect emitter of thermal radiation has an
emissivity value of unity while a perfect reflector has an emissivity value of zero. When
an object is in thermal equilibrium with its local environment, Kirchhoff’s law implies

that the amount of thermal energy emitted by an object’s surface is approximately equal
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to the amount absorbed for a specified wavelength and direction. Therefore, a common

saying in the thermography community is that a good absorber is a good emitter and a
poor absorber is a good reflector.

A material’s emissivity is not a constant parameter. Emissivity is a function of the
type of material, viewing angle, and the object’s surface quality, shape, and temperature
[23, 65, 66, 71, 72, 22]. Emissivity could also vary with wavelength; however, in our
research we will assume all objects are graybody emitters. If an object is a graybody
emitter, its emissivity will not depend on wavelength [64]. The amount of thermal
radiance emitted by a target and detected by a thermal imaging camera depends on the
emissivity of the target. Thus, the higher an object’s emissivity, the more thermal

radiance it will emit.

3.5.1 Emissivity Variation by Material Type

Emissivity varies by the type of material (metallic or nonmetallic) and type of coating on
the surface (such as paint, dust, dirt, or corrosion due to oxidation). Polished metallic
surfaces generally have a low emissivity (appear very reflective), but the amount of
thermal emission can be increased by the presence of certain paints or oxide layers on the
surface. As an example of the reflective qualities of a polished metallic surface, consider
the visible image of the aluminum plate in Fig. 3.2a. The thermal image of the aluminum
plate in Fig. 3.2b displays the irradiance from a portion of a house in the background
being reflected off the plate. We may also have to contend with objects that have a high

emissivity but are also opaque to thermal radiation. For example, consider the plate of
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glass with an emissivity of approximately 0.92 [23] in front of the pine tree log in Fig.

3.3a. As we can see in Fig. 3.3b, the glass plate is opaque to the thermal radiation
emitted by the pine tree log displayed in Fig. 3.3c. The emissivity values of metallic and
nonmetallic materials are available in many references with topics involving

thermography and/or radiative heat transfer {23, 22, 71, 72].

3.5.2 Emissivity Variation by Viewing Angle

The variation of emissivity with the viewing angle of the thermal camera with respect to
the target also depends on the target’s surface material. Some typical trends in the
emissivity of nonmetallic and metallic materials are shown in Fig. 3.4, as given by [72].
For nonmetallic materials such as wood and vegetation, the emissivity remains rather
constant across variations in the viewing angle up to about 50° from normal incidence
[22]. On the other hand, the emissivity of smooth metallic surfaces tends to be lower at

normal incidence than at other viewing angles.

3.5.3 Emissivity Variation by Surface Quality

The effects of surface quality on the thermal radiance emitted from a target’s surfac;e are
difficult to model since the characteristics of smoothness or roughness may be very
different from surface to surface. A discussion on models used to measure surface
roughness is found in [72]. In general, smooth, polished surfaces like the aluminum plate
in Fig. 3.2a can result in a more specular reflection (lower emissivity) than rough surfaces

such as bricks that have a diffuse surface (higher emissivity).
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3.5.4 Emissivity Variation by Shape and Surface Temperature

When viewing a still frame of a vertically placed cylindrical object with uniform
irradiance using a thermal imaging camera, we should witness a variation in radiance as
we scan horizontally from the center to the periphery of the object in the image. This
variation in radiance is due to the object’s directional variation of émissivity. On the
other hand, we should not see any significant variation in radiance when scanning the
thermal image of a flat object in the same manner with the camera at normal incidence.
To demonstrate how emissivity varies with an object’s shape (directional variation) and
surface temperature, black electrical tape was wrapped around a cardboard cylindrical
tube placed in-a position such that the irradiance was constant and uniformly distributed.
The interior of the tube was heated to 114.8 ° F and thermal images were captured at

increments of 2 °F as the tube cooled to an ambient temperature of 56. 3 ° . An
averaged vertical radiance (gray-level) was computed using the thermal radiance from the
tape in each thermal image. Fig. 3.5 displays how the averaged radiance varies
horizontally along the segment of tape. Since the irradiance is constant and uniformly
distributed, the variation in radiance at each temperature increment is due to the
directional variation of emissivity. However, we must be aware that a higher surface
temperature does not necessarily yield a higher emissivity. The emissivity of a conductor
will increase with increasing surface temperature, but the emissivity of a nonconductor
may either increase or decrease with increasing surface temperature depending on the

specific material [71].
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3.5.5 Other Directional Variation Enhancers

Vertical cylindrical objects in an unstructured outdoor environment will not only display
variations in radiance due to the directional variation of emissivity, irradiance from the
background and solar energy could also have a significant effect on the variation in
radiance. Thus, the irradiance as well as the surface temperature may not be uniformly
distributed on the object. For instance, consider an experiment to capture a thermal
image of a pine tree log with varying irradiance from sources in the background.

Thermal images of a pine tree log were captured outside on 29 December 2006 with an
ambient temperature of 66.9 ° F . The thermal imaging camera captured the images
while facing the center segment of the log at normal incidence, 2.4 meters from the log.
The surface temperature measurements of the pine tree log at the time the images were
captured along with the experimental setup is shown in Fig. 3.6a. A building’s brick wall
with a surface temperature of 80.2 °F is located 3.4 meters to the left of the log and the
sun is located in the direction as displayed in Fig 3.6a. Fig. 3.6b shows the thermal
image of the log with the irradiance from the brick wall. Fig. 3.6¢ shows the thermal
image of the log with the irradiance from the wall blocked using a sheet of drywall
positioned 0.6 meters from the log. Fig. 3.6d compares the gray-level values as we scan
horizontally along the tape segment on the log of the irradiance from the brick wall and
the irradiance from the dry wall (brick wall blocked). The scenario presented in Fig. 3.6
allows us to see the simultaneous effects of solar energy, irradiance from the background,
and directional variation of the object’s surface emissivity. Perhaps we would expect a
decrease in the radiance on the left side of the log when the irradiance from the brick wall

was blocked using the sheet of drywall. On the contrary, the sheet of drywall introduced
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a new and greater source of irradiation. On the other hand, as we scan from the center to

the right of both images, the radiance remains approximately equal.

In Chapter 2, we introduced the halo effect commonly viewed in thermal images
where a strong thermal contrast exists between the target’s surface and foreground within
the camera’s field of view. As we discussed, this halo effect is the result of the
mechanical chopper wheel within the camera during cyclic process of capturing a thermal
image of an object. Two scenarios will result in a halo appearing around an object in its
thermal image. First, a “hot” target and “cold” foreground will result in a thermal image
with a halo around thie “hot” target that has a smaller gray-level value (darker shade) than
the “cold” foreground as displayed in Fig. 3.7a. The second scenario is a “cold” target
and “hot” foreground resulting in a thermal image with a halo around the “cold” target
that has a larger gray-level value (lighter shade) than-the “hot” foreground as displayed in
Fig. 3.7b. Consequently, the halo around the target in these two scenarios will also
influence how the camera’s AC coupling will effect the assignment of gray-level values
at the periphery in the target’s thermal image. Thus, the peripheries of the pine tree log
in Fig. 3.7a are assigned a large gray-level value (lighter shade) due to the neighboring
halo with a “colder” (smaller gray-level value) apparent temperature than the actual
foreground. On the other hand, the peripheries of the pine tree log in Fig. 3.7b are
assigned a small gray-level value (darker shade) due to the neighboring halo with a
“hotter” (larger gray-level value) apparent temperature than the actual foreground. These
two scenarios of the halo effect will also contribute to the variations in radiance that
already exist due to the directional variation of emissivity and irradiance from sources in

the background.
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The majority of our compact objects display variations in radiance from the center to

the peripheries due to the directional variation of emissivity, irradiance from sources in
the background, and/or halo effect. Since these larger variations in radiance at the
peripheries caused by irradiance from sources in the background and the halo effect may
interfere with our ability to generate relevant features, we will generate all our features

for compact objects using only their center segment in the thermal image.

3.5.6 Emissivity-based Features

The amount of thermal radiation emitted by our non-heat generating objects will depend
on their emissivity and thermal irradiance emitted from external sources in the
environment. The primary external source of thermal energy for our outdoor, non-heat
generating objects is the sun. Therefore, features based on emissivity will allow us to
capture variations in thermal-physical properties that depend on the solar energy and are
unique to an object class.

The fundamental equation that allows us to measure the radiance emitted from an

object’s surface is given by [70]:

L(T)=7e,L(T,)+7(1-¢,)L(T,)+(1-7)L(T,) (3.3)
where L is the radiance detected by the camera, L is the total radiance of a blackbody,
T, is the surface temperature of the object, T, is the background temperature, 7, is the

ambient temperature, 7 is the transmission coefficient of the atmosphere, and ¢, is the
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emissivity of the object (the object is assumed to be a graybody emitter and opaque).

Since we are maintaining a camera to target distance of 2.4 m, we can neglect any effects
by the atmosphere and assign an atmospheric transmittance of approximately 100% [22]

so that Eq. 3.3 becomes:
L,(T,)=¢, L(T,)+(1~¢,)L(T,) (34)

If we assume an opaque object with a diffuse surface, the distribution function

(1-&,)L(T,) is independent of the incidence reflection angles so that

(1 ~-g, )E (T A ) ~ (1_—8") E , where E is the irradiance energy on the target from the
T

surrounding background environment. As noted in [70], £ can be evaluated by
/2

measuring the radiance reflected by a diffuse surface, such as crinkled aluminum foil.

Aluminum foil is a good reflector of thermal radiation due to its low emissivity value

(approximately 0.04 for a wavelength of 10 z m at 78.8 °F') [23]. Letting our irradiance

. E
from the background be estimated by L, (T b ) =—, Eq. 3.4 becomes:
b2

L(T,)=¢, L(T,)+(1-£,)L,(T,) (3.5)

The scenario for the radiance received by the thermal imaging camera from an object’s

surface 1s displayed in Fig. 3.8a. Fig. 3.8b shows a thermal image of the cedar tree
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displayed in Fig. 3.8a captured at 0545 hrs (before sunrise) on 17 March 2006. The

ambient temperature was approximately 45.7 © F. The mobile robot was positioned as
displayed in Fig. 3.8a. Not only is the thermal imaging camera able to detect radiance
coming from the cedar tree but we can also see the influence of irradiance coming from
the brick wall as indicated by the higher radiance on the right side of the cedar tree in the
thermal image.

We will now derive an equation to estimate the emissivity of an object, ¢,, using a

reference emitter with a known emissivity of ¢, that is applied to the object so both are at

the same surface temperature, subject to the same thermal irradiance from the
background, and opaque. Let the radiance from the object’s surface be given by Eq. 3.5

and the radiance from the reference emitter’s surface be given by:
L(T,)=¢ L(T,)+(-¢,)L,(,) G.6)

We now solve Egs. 3.5 and 3.6 in terms L(T ' ), and algebraically combine the resulting

equations to eliminate L(T, ). From Eq. 3.5 we have:

£ L,(1,)-(1-¢,)L,(T,) (3.7)
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From Eq. 3.6 we have:

Ir ):Lr(To)—(l_gr)Lb(Tb) (3.8)

Combining these results we have:

L,(L,)-(1-¢,)L,(1,) L(1,)-(1-¢)L,(T,) (3.9)

Solving for ¢, we obtain our desired equation for the emissivity:

T,) . (3.10)
T,

Madding [64] uses this result to investigate how emissivity measurement accuracy affects
temperature measurement accuracy.

For our micro features, we will continue to recognize the surface radiances’
dependencies on temperature; however, we will simplify our emissivity equation by

letting L, = L, (T, ), L, =L.(T,),and L, = L,(T,). We will also change our notation for

emissivity so that Fo = ¢,. Therefore, our emissivity feature is defined by:

£, | (3.11)
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To compute the emissivity feature Eo, the valuesof L, L , and L, are first derived from

the mean of the thermal radiance (gray-level values) of surface segments in the thermal
images of the object, reference emitter, and aluminum foil, respectively. These values
are then substituted into Eq. 3.11 to obtain our estimate of Eo. As noted earlier,
emissivity is a function of the type of material, viewing angle, and the object’s surface
quality, shape, and temperature. Since compact objects (particularly cylindrical objects)
display variations in radiance from the center to the peripheries due to the directional
variation of emissivity, irradiance from sources in the background, and halo effect, the
emissivity feature was computed using the center image segment on all compact objects.
For thermal scenes of extended objects that lack thermal emissions from a foreground,

such as dense hedges and brick walls, the surface segment used to compute L, consists

of all the constituents that make up the object. For instance, the segment selected on the

hedges to compute L, primarily consists of leaves but also includes branches. The
segment selected on brick walls to compute L, consists of the brick and the mortar

between the bricks. For thermal scenes of extended objects that display a thermal

radiance from the foreground, such as wood walls and picket fences, only a segment of

the extended object’s surface is selected in the image to compute L, . Crinkled aluminum

foil with an emissivity of approximately 0.04 [23] was attached to the target afterwards to

compute the irradiance energy on the object from the surrounding background

environment, L, . The aluminum foil must not be attached to the target prior to capturing
the thermal image to compute L, in order to avoid disturbing the natural radiance being

emitted by the target. The reference emitter was black electrical tape attached to the
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object with a known emissivity ¢, of approximately 0.97 [23]. The black electrical tape

should be attached to the surface of the target well in advance to capturing thermal
images of the target to ensure the tape obtains the same surface temperature as the target.

The segmented region of the target used to compute L, does not include the reference

emitter.

As an example of our emissivity feature, thermal images of a steel pole, birch tree log,
concrete cylinder, hedges, and wood wall (see Fig. 3.9) were captured at various times on
10 February 2007. The black electrical tape used as the reference emitter is shown
attached to the targets in each thermal image. All thermal images were captured as
described in Chapter 2 with a distance of 2.4 meters between the Raytheon ControlIR
2000B long-wave infrared thermal imaging video camera and the object. The thermal
images were captured with the thermal camera facing the center of each object at normal
incidence. Table 3.1 provides the ambient temperatures of the environment and surface
temperatures of the objects at the times the thermal images were captured. The average
ambient temperatures are noted in Table 3.1 for each time interval. The surface
temperatures of the objects were recorded at the time the thermal image was captured.
All objects were influenced by the same solar conditions during each time interval.

Table 3.2 provides the generated feature values for the objects at the times the thermal
images were captured. By analyzing Table 3.2, we can notice trends in the emissivity
feature values that allow us to distinguish one object from another. Furthermore, a
detailed analysis of both Tables 3.1 and 3.2 reveals how the emissivity feature lets us also
consider the effects of other thermal properties. For instance, emissivity depends on

surface temperature (as well as the type of material, viewing angle, and the object’s
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surface quality and shape) and surface temperature depends on the specific heat (as well

as conductivity and other thermal properties) of the object. The surface temperature of
low-specific-heat objects, such as the leaves on the hedges, tend to track the availability
of solar energy [23]. When a cloud passes or the sun begins to set, the surface
temperature of the hedges stays consistent with the lower ambient temperature.
Moreover, a low level of solar energy available to a low specific heat object results in
less thermal radiation emitted as indicated by the hedges’ consistently low emissivity
presented in Table 3.2. On the other hand, objects withv a high specific heat, such as the
birch tree log (~2.4 &J -kg™"-*C™") [22], will tend to heat up more slowly with the
increasing solar energy and cool more slowly as the amount of solar energy begins to
decrease in the late afternoon (around 1600 hrs.). The emissivity of the birch tree log
first increases with the avéilability of solar radiation in the morning as indicated by the
positive rate of change in ambient temperature in the morning. As the solar energy
decreases throughout the afternoon, the emissivity of the birch tree log slightly lowers in
value as expected. Along with the possibility of some error in the temperature
measurement, we see no significant change in the surface temperature of the birch tree
log between 1330 and 1615 hrs. due to the effect of its specific heat. Even though the
steel pole has a low specific heat (~0.47 &/ - kg '-°C™") [22], its emissivity consistently
shows the highest value due to the light coating of black paint (& ~ 0.96.at 75.2° Fin a
controlled environment) [23] and oxidation on the surface. An interesting observation is
that the black electrical tape used as the reference emitter attached to the steel pole (Fig.
3.9a) emits a slightly higher radiance than the steel pole since the tape’s emissivity is

approximately 0.97.
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We can also notice that our emissivity values do not necessarily vary between 0 and 1

as is the case of experiments in a controlled inside laboratory environment. By observing
Eq. 3.11, we can see that the emissivity values could be quite sensitive to variations in the
thermal radiance of the object, reference emitter, and aluminum foil. For instance, as the
radiance of the reference emitter and the aluminum foil approach the same value, the
denominator in the equation for emissivity will become very small (either positive or
negative). As a result, the value of the emissivity in Eq. 3.11 would take on very large
values (either positive or negative). We will illustrate in Chapter 4 that these extreme
value of emissivity are rare and will be treated as outliers. To avoid such extreme feature

values, we use the following additional micro features derived from the emissivity given

in Eq. 3.11:
Lo=1, - (3.12)
Lr=1L : (3.13)
Ib=1, (3.14)
Lor:i (3-15)
L

Lop < Lo (3.16)
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Lr and Lb are only used in conjunction with features generated from the thermal radiance

emitted from the target and not used to discriminate targets as stand-alone features. The
features Lor and Lob were chosen to create a ratio value. Other types of features could be

used as well; however, additional choices, suchas L, —L, or L, —L,, will more likely

have a strong correlation with our existing features and result in redundancy in the feature

set.

3.6 Macro Features

Macro features provide a unique representation of a target based on the spatial variation
in radiance (gray-level values) observed in the thermal image. Macro features seek to
generate descriptors that not only considér radiant patterns found on the target’s surface
but also patterns observed in the entire thermal image of the target within the camera’s
field of view. Thus, macro features may also consider patterns formed by gaps in the
target that allow the camera to receive radiation emitted from the foreground. For
instance, m\acro features allow us to generate features that describe the periodic pattern of
wood boards on the fence in Fig. 3.1b. Since compact objects (particularly cylindrical
objects) display variations in radiance from the center to the peripheries due to the
directional variation of emissivity, irradiance from sources in the background, and halo
effect, we will always compute the macro features using the center image segment on all
compact objects. On the other hand, for our extended objects, we will compute their
macro features using the entire scene within the camera’s field of view. Our macro

features are derived from first- and second-order texture features.
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3.6.1 First-order Statistical Features

First-order statistics provide measures based on the probability of observing a gray-level
value at a random location in the thermal image. Our first-order statistics are generated
using a histogram of pixel intensities from an object’s thermal image. Our histograms
and first-order sfatistics follow from those presented in [17]. The histogram of each
thermal image has a total of 256 possible intensity levels in the interval [0, 255] defined

as a discrete function;

h(rk):nk G.17)

where r, is the kth intensity level on the interval [0, 255] and #, is the number of pixels
in the thermal image that have an intensity level of #,. The kth indices take on values

from 1 to 256 associated with the position of the gray-level value in [0, 255]. The

probability P(rk) of observing a gray-level value at a random location in the thermal

image is given by the normalized form of the histogram:

P(r)= (3.18)

where # is the total number of pixels in the thermal image. With this convention, we will

now define our first-order statistics.
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3.6.1.1 Object Scene Radiance

The object scene radiance is the average of the radiance coming from the target’s surface
and any foreground emitters within the field of view of the segmented target. The mean

for the first-order statistics is defined as:

256

Mol =", P(r,) (3.19)
k=1

The following two variations of Mol were used to consider the radiance emitted by the

reference emitter and background, respectively:

Morl = 222 (3.20)

Mol

Mob! = (3.21)

Since Lo = Mol for compact objects, Mol, Morl, and Mob1 only apply to extended
objects.

The mean radiance can also be used to generate texture features based on the nth

moment about the mean Mol:

sy =S (o — Mol) P(r,) (3.22)

k=1
However, we will limit our moments to order » = 3 so that our features maintain their
physical interpretations. The following two features are based on the second and third

moments, respectively.
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3.6.1.2 Contrastl

Contrast is a measure of the amount of variation in the radiance of an object in a thermal
image. The contrast feature is based on the standard deviation of the gray-level values

about the mean Mol given by:

256 323
Col = \/z(rk  MolP PG G2

3.6.1.3 Smoothness

Smoothness measures the variations in the intensity of the gray-level values of an

object’s thermal image as computed by:

1 . (3.24)

Sol=1- 5
i1+Col ’

Values of Sol close to zero represent surfaces with a constant gray-level value and values

close to unity imply surfaces with large deviations amongst its gray-level values.

3.6.1.4 Third Moment

The third moment is defined by:

Tol = f (rk - Mol)3 P(rk ) (3.25)

k=1
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The third moment measure the skewness of the distribution of gray-level values in the
histogram. When the histogram is symmetric, the value of the third moment is zero.
When the histogram is skewed to the right or left about the mean, the value of the third

moment is accordingly positive or negative, respectively.

3.6.1.5 Uniformity

The uniformity feature is defined by:

256

Uol =Y [P(r, )] (3.26)

k=1

The value of uniformity increases as the histogram of gray-level values approaches a
uniform distribution and is unity for a thermal image of an object with a constant surface

radiance.

'3.6.1.6 Entropyl

The entropy feature provides a measure of randomness (or complexity) in the intensity
(gray-level) values of an object’s thermal image. The use of the term entropy can easily
cause some confusion since there are continuous debates within the scientific community
concerning the correct definition of entropy. Therefore, before we present our use of
entropy and derive an equation for the term, we will first provide some background

information on entropy.
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The term entropy was first introduced in classical thermodynamics. However, the
definition has become rather subjective to fit the needs of other fields of study. Thus, one
can find different definitions in thermodynamics, chemistry, information theory, and
other fields. For instance, a search on the internet results in the following definitions:
entropy is a measure of randomness; entropy is a measure of the probability of a
particular result; entropy is a measure of the disorder of a system; entropy measures the
heat divided by the absolute temperature of a body. Some of the names associated with
the definition of entropy include Clausius, Gibbs, Boltzmann, Szilard, von Neumann,
Shannon, and Jaynes. Shannon was interested in communication theory and von

Neumann investigated quantum mechanical entropy. Shannon initiated the use of the
quantity H =-K Z P log P, (where K is a positive constant) in information theory as a

measure of “information, choice, and uncertainty” [73]. However, regarding a name for

H, Shannon stated [74]:

My greatest concern was what to call it. I thought of calling it ‘information,” but
the word was overly used, so I decided to call it ‘uncertain‘gy.’ When I discussed
it with John von Neumann, he had a better idea. Von Neumann told me, ‘You
should call it entropy, for two reasons. In the first place your uncertainty function
has been used in statistical mechanics under that name, so it already has a name.
In the second place, and more important, no one knows what entropy really is, so

in a debate you will always have the advantage.’
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As a result, Shannon’s entropy was introduced in information theory. In [73], Shannon

states, “In the discrete cése the entropy measures in an absolute way the randomness of
the chance variable.”

The next step is to find a definition of entropy that is applicable to classifying objects
in thermal imaging application. An appropriate definition for entropy is found in the
digital image processing community in the area of texture analysis and pattern
classification [17, 75, 36, 35, 76, 68, 77]. The entropy used in digital image processing is
consistent with Shannon. In digital image processing, entropy is defined as a statistical
measure of randomness in the intensity values of an object’s visible image, and used to
characterize the texture of objects in an imz;ge [77.]. For our application, we will adopt
the same definition; however, we will measure the randomness in the intensity (gray-
level) values pertaining to an object’s thermal image. From this definition, we can derive
our equation for the entropy feature.

Following the mathematical framework of information theory, our measure of

randomness in the gray level values is given by:
R(rk): ‘Ing(P(rk )) (3.27)

where the choice of the base is consistent with units, in bits, for measuring information.

Consequently, if only one gray level value, say r,, was present in the thermal image,

P(k,)=1 and R(k,)=0 so no randomness would occur. From Eq. 3.17, we have n,
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cases with randomness measure R(r, ), the average value of randomness in our object’s

thermal image follows from Eq. 3.18 and 3.27 as:

(3.28)

This last quantity, called the entropy, will provide our required measure of randomness in
the gray-level values of an object’s thermal image. Therefore, our entropy feature value

is computed by:

256

Enl=-S P(r,)log,(P(r,)) (3.29)

where Enl increases in value as the randomness in the gray-level values increases in the

object’s thermal image.

3.6.2 Second-order Statistical Features
Second-order statistics methods also provide a way to generate features that describe the
radiant patterns in the thermal image of an object. Thus, second-order statistics features

are our second type of macro features. However, unlike first-order statistical methods
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that depend only on individual gray-level values, second-order statistical methods involve

the interaction or co-occurrence of neighboring gray-level values. Second-order statistics
provide measures based on the probability of observing pairs of gray-level values with a
defined spatial relationship in an object’s thermal image. The spatial relationship
consists of a specified direction and distance between a pair of gray-level values. Thé
macro features are generated from the spatial relationships that are reported in a gray-
level co-occurrence matrix (GLCM), also known as a gray-level spatial dependence
matrix. Our second-order statistical features follow from those presented in [77] and are
based on the pioneering work of Haralick, Shanmugam, and Dinstein [75]. Other notable
discussion on second-order statistical features involving the GLCM are found in [68, 76].

The GLCM records how often a pixel of interest with a gray-level value of i occurs in
a specific spatial relationship to a pixel with a gray-level value of j in a thermal image. A
pixel of interest in a thermal image forms a spatial relationship with one of its
neighboring pixels defined by a pixel distance D and direction (angle) denoted by a row
vector with the pixel of interest as the origin as illustrated in Fig. 3.10a. We choose four
directions (0°, 45°, 90°, and 135°) to afford our macro features the ability to capture
discriminating information along various directions on a target’s surface. Our choice of
angles assumes that the thermal radiant patterns are symmetric along each direction about
the pixel of interest. The most favorable pixel distance D is the one that allows a spatial
relationship that captures an object class’s distinctive radiant patterns. We will discuss
our most favorable pixel distances for both extended and compact objects after we

present our second-order features below.
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Suppose Fig. 3.10b illustrates a gray-level array of a thermal image with gray-level

values ranging from 0 to 3. The four GLCMs for each direction and a distance D = 1 are
provided in Figs. 3.10c-f. The shaded regions in each GLCM displays the gray-level
values of the pixel of interest (i) along the first column and its neighboring pixel’s gray-
level values (j) along the first row. As we can see, the number of gray-level values in the
thermal image determines the size of the GLCM. Each element (7, j ) in the GLCM
provides the number times that a pixel with gray-level value i occurred in the specified
spatial relationship with the pixel with gray-level value in the thermal image. We will
denote this frequency by f(i,j). For example, ( 1, 0) in Fig. 3.10c presents f(1,0) =2
as the number of times that the pixel of interest with gray-level value i = 1 occurred at an
angle of zero degrees and distance of one pixel away from a pixel with gray-level value j
= 0. Let R denote the sum of all the frequencies f(i, j) in the GLCM for a specified
spatial relationship. For a GLCM defined by a particular spatial relationship, the
probability of observing a pixel of interest with a gray-level value of i in a specific spatial

relationship to a pixel with a gray-level value of j in a target’s thermal image is given by:

PG, j) = f (;, /) (3.30)
Eq. 3.30 is used to define the following second-order macro features. For each thermal
image of an object, four GLCMs are created where each matrix is defined by a specified
relationship (a distance and one of the four angular directions). For each second-order
feature, feature values are generated for all four GLCMs. The resulting four feature

values are averaged to ensure invariance under rotation as suggested in [75].
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3.6.2.1 Contrast2

The contrast feature (also known as inertia) is a measure of the amount of radiant
variations between a pixel and its specified neighbor over the entire thermal image. A
thermal image with a large amount of radiant variations will have a higher value for the
contrast feature compared to a thermal image with a small amount of radiant variations.
In terms of the GLCM, contrast is a measure of th¢ spread of P(i, j) values about the
main diagonal of the matrix. Contrast becomes larger in value with larger values of
P(i ] ) spreading away from the main diagohal. The contrast feature value is zero for a

thermal image of an object with a constant thermal radiance (gray-level value) across its

surface. Contrast?2 is defined as:

Co2=3 i~ jf PG.j) - (3D

3.6.2.2 Correlation

Correlation provides a measure of linear-dependencies between the gray-level value of
the pixel of interest and its specified neighbor over the entire image. The directions in a
thermal image consisting of a linear structure will have either a correlation value closer to
I (positively correlated) or —1 (negatively correlated). On the other hand, an uncorrelated
image with a lack of linear structure and/or high amount of noise will result in a
c;)rrelation value closer to zero. The correlation value for an image with a constant

thermal radiance across the surface is undefined. The correlation feature is defined by:
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Crzzzz(i—#x)(j—#y)f’(i,j) (3.32)

O'XO'y

where y, and o, are the mean and standard deviation of the rows sums of the GLCM

formed by P(i, ;) and 4, and o, are the statistics of the column sums.

3.6.2.3 Energy

Energy (also known as angular second moment) measures the uniformity of the gray-
level values in a thermal image. In a uniform image there are very few intense gray-level
transitions between the neighboring pixels. The values of energy become larger as the
GLCM has fewer entries of large P(i, J ) Such a case exists when the probabilities

P(i . ) are clustered near the main diagonal of the GLCM. The energy is unity for a
thermal image of an object with a constant surface radiance. On the other hand, the
values of energy approach zero as all P(z' J ) become more equal in value. The energy

feature is defined by:

Er2= ZZ[P(:', A (3.33)

3.6.2.4 Homogeneity

Homogeneity is similar to the energy feature. The values of homogeneity become larger

as larger values of P(i, /) become clustered near the main diagonal of the GLCM.
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Homogeneity approaches zero as the values of P(i, j ) become more equal and spread

away from the main diagonal, and is unity for a diagonal GLCM. Homogeneity is

defined by:

Hod = ZZ | (3.34)

1+l1 ]’

3.6.2.5 Entropy2

Similar to the case in first-order statistics, entropy in second-order statistics is a measure
of the complexity (or randomness) in the thermal image. A thermal image become more
complex as all the values of P(i, J ) in the GLCM approach equality, resulting in a larger

entropy. Entropy?2 is defined by:

En2= ZZP ') log, (PG, /)) (3.35)

3.6.2.6 Most Favorable Pixel Distances

As we mentioned previously, a pixel of interest in a thermal image forms a spatial
relationship with one of its neighboring pixels defined by a pixel distance D and angular
direction denoted by a row vector with the pixel of interest as the origin as illustrated in
Fig. 3.10a. In this section, we will discuss our most favorable pixel distances for both
extended and compact objects. The most favorable pixel distance D is the one that allows
a spatial relationship that captures an object class’s distinctive radiant patterns. We will

analyze various distances applied to the thermal images of extended and compact objects
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captured with approximately the same environmental conditions and location on 27

March 2007 between 1230 and 1300 hrs. The thermal images of the objects were
captured during a period where there was a low thermal contrast in the scenes. These
conditions will allow us to choose D values for both extended and compact objects that
are sensitive to radiant patterns in a thermal image where a low thermal contrast exists.
We will proceed to choose our D values by considering the extended and compact objects
in separate cases. The methodology for each case consists of first generating the second-

order statistical features from GLCMs with spatial relationships with a horizontal angular

direction and varying pixel distances D from 1 to 100, {[O,D]‘D =1,..,100 } Next, we

will compare the feature values and choose the D value that results in the greatest
distinction the object classes.

The extended objects used in our analysis to choose the most favorable pixel distance
D consist of the brick wall, hedges, picket fence, and wood wall displayed in Fig. 3.11.
As we can see in Fig. 3.12, Energy and Entropy2 provide the best separation of the object
classes. Based on these results, we can derive an equation that will assist us in choosing
the pixel distance that maximizes the discrimination between the object classes. This
equation is defined as the absoiute sum of the differences in object class feature values as

a function of pixel distance given by:

(Picket F(D)— Hedges(D))+ (Picket F(D)— Brick W (D))
Feat Diff (D) = |+ (Picket F(D)—Wood W(D))+ (Hedges(D)— Brick W(D) (3.36)
+ (Hedges(D)—Wood W(D)) + (BrickW (D)~ Wood W (D))
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By applying this equation to the Energy and Entropy2 features, we obtain the results

displayed in Fig. 3.13. The pixel distances that provide the best object class separation
for Energy is D = 8 and Entropy?2 1s D = 56. Comparing these pixel distances to each
result in Fig. 3.12, we can see that a pixel distance D = 8 provides an acceptable
séparation between the object classes for energy. However, a pixel distance of D = 8
does not result in an acceptable object class separation for the other features. On the
other hand, the pixel distance of D = 56 for Entropy?2 results in an acceptable object class
separation for all the second-order statistical features. Consequently, we will choose
D = 56 as the most favorable pixel distance for each spatial relationship involving
extended objects.

The compact objects used in our analysis to choose the most favorable pixel distance
D consist of the steel poles and trees displayed in Fig. 3.14. As we can see in Fig. 3.15,
Energy and Entropy2 provide the best separation of the object classes. As with the
extended objects we define an equation that will assist us in choosing the pixél distance
that maximizes the discrimination between the object classes. However, since we desire
to distinguish steel poles from trees for our compact object classes, our equation is given
below as the absolute difference of the mean feature values for the three steel poles and: )

three trees across all pixel distances:

[ (BrownSteelP(D)+ GreenSteelP(D)+ OctagonSteelP(D ))jl
3
B [(BasswoodT (D)+ BirchT(D) + CedarT (D))}
3

FeatDiff (D)= (3.37)
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By applying this equation to the Energy and Entropy?2 features, we obtain the results

displayéd in Fig. 3.16. Once again, we will choose the pixel distance that maximizes the
discrimination between the object classes. The pixel distances that-provide the best
object class separation for Energy is D = 8 and Entropy2 is D = 16. Comparing these
pixel distances to each result in Fig. 3.15, we can see that a pixel distance D = 8 provides
an acceptable separation between the steel pole and tree object classes for energy.
However, a pixel distance of D = 8 does not result in an acceptable object class
separation for the other features. On the other hand, the pixel distance of D = 16 for
Entropy?2 results in an acceptable object class separation for all the second-order
statistical features. Consequently, we will choose D= 16 as the most favorable pixel

distance for each spatial relationship involving compact objects.

3.7 Thermal Feature Application

We will now provide an application to analyze some of the characteristics of our thermal
features. However, we will not make any judgments regarding the worthiness of our
thermal features. A proper selection of a set of most favorable features will require an
exhaustive search using a high performance computing system to analyze the
classification performance of every possible combination of features across multiple
dimensions. During our exhaustive search, we eliminate redundant features and only
retain those sets of features that enhance our ability to distinguish object classes. We
delay this exhaustive search until the next chapter. Fig. 3.17 displays the thermal images
of extended objects (brick wall, hedges, and wood wall) and compact objects (concrete

cylinder, steel pole, and pine tree log) that were captured between 0930 and 1400 on 10
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February 2007 under approximately the same solar conditions and location. All thermal

images were captured as described in Chapter 2 at normal incidence with a distance of
2.4 meters between the Raytheon ControlIR 2000B long-wave infrared thermal imaging
video camera and the object. The thermal features were generated on segments of these
extended and compact objects using the equations derived in Sections 3.4-3.6 and
summarized in Table 3.3. The resulting feature values are presented in Table 3.4.

Since we intend to distinguish the object classes within either the category of extended
or compact objects, we will analyze the two categories separately as disjoint sets of
object classes. Beginning with the meteorological features in Table 3.4, we can see that
the object classes within each category are experiencing approximately the same ambient
temperatures and temperature rates of change. In the micro features, the object classes
within each category are also experiencing about the same background irradiance.
However, the wood wall and pine tree log are both emitting a higher surface radiance
compared to the other object classes within their respective category. This higher
radiance is partially due to the higher specific heat of the wood. Additionally, differences
in the radiance are attributed to other factors such as the type of material (including |
chemicals used on the pressure treated wood wall) and the object’s surface quality
(smooth vs. rough). Of course these factors also influence the feature values for
emissivity. As expected, the wood wall has a higher emissivity compared to the brick
wall and hedges. Within the compact objects category, the pine tree log has a median
value on th