662 research outputs found

    Graphical models for visual object recognition and tracking

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 277-301).We develop statistical methods which allow effective visual detection, categorization, and tracking of objects in complex scenes. Such computer vision systems must be robust to wide variations in object appearance, the often small size of training databases, and ambiguities induced by articulated or partially occluded objects. Graphical models provide a powerful framework for encoding the statistical structure of visual scenes, and developing corresponding learning and inference algorithms. In this thesis, we describe several models which integrate graphical representations with nonparametric statistical methods. This approach leads to inference algorithms which tractably recover high-dimensional, continuous object pose variations, and learning procedures which transfer knowledge among related recognition tasks. Motivated by visual tracking problems, we first develop a nonparametric extension of the belief propagation (BP) algorithm. Using Monte Carlo methods, we provide general procedures for recursively updating particle-based approximations of continuous sufficient statistics. Efficient multiscale sampling methods then allow this nonparametric BP algorithm to be flexibly adapted to many different applications.(cont.) As a particular example, we consider a graphical model describing the hand's three-dimensional (3D) structure, kinematics, and dynamics. This graph encodes global hand pose via the 3D position and orientation of several rigid components, and thus exposes local structure in a high-dimensional articulated model. Applying nonparametric BP, we recover a hand tracking algorithm which is robust to outliers and local visual ambiguities. Via a set of latent occupancy masks, we also extend our approach to consistently infer occlusion events in a distributed fashion. In the second half of this thesis, we develop methods for learning hierarchical models of objects, the parts composing them, and the scenes surrounding them. Our approach couples topic models originally developed for text analysis with spatial transformations, and thus consistently accounts for geometric constraints. By building integrated scene models, we may discover contextual relationships, and better exploit partially labeled training images. We first consider images of isolated objects, and show that sharing parts among object categories improves accuracy when learning from few examples.(cont.) Turning to multiple object scenes, we propose nonparametric models which use Dirichlet processes to automatically learn the number of parts underlying each object category, and objects composing each scene. Adapting these transformed Dirichlet processes to images taken with a binocular stereo camera, we learn integrated, 3D models of object geometry and appearance. This leads to a Monte Carlo algorithm which automatically infers 3D scene structure from the predictable geometry of known object categories.by Erik B. Sudderth.Ph.D

    Representing and Inferring Visual Perceptual Skills in Dermatological Image Understanding

    Get PDF
    Experts have a remarkable capability of locating, perceptually organizing, identifying, and categorizing objects in images specific to their domains of expertise. Eliciting and representing their visual strategies and some aspects of domain knowledge will benefit a wide range of studies and applications. For example, image understanding may be improved through active learning frameworks by transferring human domain knowledge into image-based computational procedures, intelligent user interfaces enhanced by inferring dynamic informational needs in real time, and cognitive processing analyzed via unveiling the engaged underlying cognitive processes. An eye tracking experiment was conducted to collect both eye movement and verbal narrative data from three groups of subjects with different medical training levels or no medical training in order to study perceptual skill. Each subject examined and described 50 photographical dermatological images. One group comprised 11 board-certified dermatologists (attendings), another group was 4 dermatologists in training (residents), and the third group 13 novices (undergraduate students with no medical training). We develop a novel hierarchical probabilistic framework to discover the stereotypical and idiosyncratic viewing behaviors exhibited by the three expertise-specific groups. A hidden Markov model is used to describe each subject\u27s eye movement sequence combined with hierarchical stochastic processes to capture and differentiate the discovered eye movement patterns shared by multiple subjects\u27 eye movement sequences within and among the three expertise-specific groups. Through these patterned eye movement behaviors we are able to elicit some aspects of the domain-specific knowledge and perceptual skill from the subjects whose eye movements are recorded during diagnostic reasoning processes on medical images. Analyzing experts\u27 eye movement patterns provides us insight into cognitive strategies exploited to solve complex perceptual reasoning tasks. Independent experts\u27 annotations of diagnostic conceptual units of thought in the transcribed verbal narratives are time-aligned with discovered eye movement patterns to help interpret the patterns\u27 meanings. By mapping eye movement patterns to thought units, we uncover the relationships between visual and linguistic elements of their reasoning and perceptual processes, and show the manner in which these subjects varied their behaviors while parsing the images

    Action recognition in depth videos using nonparametric probabilistic graphical models

    Get PDF
    Action recognition involves automatically labelling videos that contain human motion with action classes. It has applications in diverse areas such as smart surveillance, human computer interaction and content retrieval. The recent advent of depth sensing technology that produces depth image sequences has offered opportunities to solve the challenging action recognition problem. The depth images facilitate robust estimation of a human skeleton’s 3D joint positions and a high level action can be inferred from a sequence of these joint positions. A natural way to model a sequence of joint positions is to use a graphical model that describes probabilistic dependencies between the observed joint positions and some hidden state variables. A problem with these models is that the number of hidden states must be fixed a priori even though for many applications this number is not known in advance. This thesis proposes nonparametric variants of graphical models with the number of hidden states automatically inferred from data. The inference is performed in a full Bayesian setting by using the Dirichlet Process as a prior over the model’s infinite dimensional parameter space. This thesis describes three original constructions of nonparametric graphical models that are applied in the classification of actions in depth videos. Firstly, the action classes are represented by a Hidden Markov Model (HMM) with an unbounded number of hidden states. The formulation enables information sharing and discriminative learning of parameters. Secondly, a hierarchical HMM with an unbounded number of actions and poses is used to represent activities. The construction produces a simplified model for activity classification by using logistic regression to capture the relationship between action states and activity labels. Finally, the action classes are modelled by a Hidden Conditional Random Field (HCRF) with the number of intermediate hidden states learned from data. Tractable inference procedures based on Markov Chain Monte Carlo (MCMC) techniques are derived for all these constructions. Experiments with multiple benchmark datasets confirm the efficacy of the proposed approaches for action recognition

    Recent advances in directional statistics

    Get PDF
    Mainstream statistical methodology is generally applicable to data observed in Euclidean space. There are, however, numerous contexts of considerable scientific interest in which the natural supports for the data under consideration are Riemannian manifolds like the unit circle, torus, sphere and their extensions. Typically, such data can be represented using one or more directions, and directional statistics is the branch of statistics that deals with their analysis. In this paper we provide a review of the many recent developments in the field since the publication of Mardia and Jupp (1999), still the most comprehensive text on directional statistics. Many of those developments have been stimulated by interesting applications in fields as diverse as astronomy, medicine, genetics, neurology, aeronautics, acoustics, image analysis, text mining, environmetrics, and machine learning. We begin by considering developments for the exploratory analysis of directional data before progressing to distributional models, general approaches to inference, hypothesis testing, regression, nonparametric curve estimation, methods for dimension reduction, classification and clustering, and the modelling of time series, spatial and spatio-temporal data. An overview of currently available software for analysing directional data is also provided, and potential future developments discussed.Comment: 61 page

    Generative modeling of dynamic visual scenes

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 301-312).Modeling visual scenes is one of the fundamental tasks of computer vision. Whereas tremendous efforts have been devoted to video analysis in past decades, most prior work focuses on specific tasks, leading to dedicated methods to solve them. This PhD thesis instead aims to derive a probabilistic generative model that coherently integrates different aspects, notably appearance, motion, and the interaction between them. Specifically, this model considers each video as a composite of dynamic layers, each associated with a covering domain, an appearance template, and a flow describing its motion. These layers change dynamically following the associated flows, and are combined into video frames according to a Z-order that specifies their relative depth-order. To describe these layers and their dynamic changes, three major components are incorporated: (1) An appearance model describes the generative process of the pixel values of a video layer. This model, via the combination of a probabilistic patch manifold and a conditional Markov random field, is able to express rich local details while maintaining global coherence. (2) A motion model captures the motion pattern of a layer through a new concept called geometric flow that originates from differential geometric analysis. A geometric flow unifies the trajectory-based representation and the notion of geometric transformation to represent the collective dynamic behaviors persisting over time. (3) A partial Z-order specifies the relative depth order between layers. Here, through the unique correspondence between equivalent classes of partial orders and consistent choice functions, a distribution over the spaces of partial orders is established, and inference can thus be performed thereon. The development of these models leads to significant challenges in probabilistic modeling and inference that need new techniques to address. We studied two important problems: (1) Both the appearance model and the motion model rely on mixture modeling to capture complex distributions. In a dynamic setting, the components parameters and the number of components in a mixture model can change over time. While the use of Dirichlet processes (DPs) as priors allows indefinite number of components, incorporating temporal dependencies between DPs remains a nontrivial issue, theoretically and practically. Our research on this problem leads to a new construction of dependent DPs, enabling various forms of dynamic variations for nonparametric mixture models by harnessing the connections between Poisson and Dirichlet processes. (2) The inference of partial Z-order from a video needs a method to sample from the posterior distribution of partial orders. A key challenge here is that the underlying space of partial orders is disconnected, meaning that one may not be able to make local updates without violating the combinatorial constraints for partial orders. We developed a novel sampling method to tackle this problem, which dynamically introduces virtual states as bridges to connect between different parts of the space, implicitly resulting in an ergodic Markov chain over an augmented space. With this generative model of visual scenes, many vision problems can be readily solved through inference performed on the model. Empirical experiments demonstrate that this framework yields promising results on a series of practical tasks, including video denoising and inpainting, collective motion analysis, and semantic scene understanding.by Dahua Lin.Ph.D

    Unsupervised object candidate discovery for activity recognition

    Get PDF
    Die automatische Interpretation menschlicher BewegungsablĂ€ufe auf Basis von Videos ist ein wichtiger Bestandteil vieler Anwendungen im Bereich des Maschinellen Sehens, wie zum Beispiel Mensch-Roboter Interaktion, VideoĂŒberwachung, und inhaltsbasierte Analyse von Multimedia Daten. Anders als die meisten AnsĂ€tze auf diesem Gebiet, die hauptsĂ€chlich auf die Klassifikation von einfachen Aktionen, wie Aufstehen, oder Gehen ausgerichtet sind, liegt der Schwerpunkt dieser Arbeit auf der Erkennung menschlicher AktivitĂ€ten, d.h. komplexer Aktionssequenzen, die meist Interaktionen des Menschen mit Objekten beinhalten. GemĂ€ĂŸ der Aktionsidentifikationstheorie leiten menschliche AktivitĂ€ten ihre Bedeutung nicht nur von den involvierten Bewegungsmustern ab, sondern vor allem vom generellen Kontext, in dem sie stattfinden. Zu diesen kontextuellen Informationen gehören unter anderem die Gesamtheit aller vorher furchgefĂŒhrter Aktionen, der Ort an dem sich die aktive Person befindet, sowie die Menge der Objekte, die von ihr manipuliert werden. Es ist zum Beispiel nicht möglich auf alleiniger Basis von Bewegungsmustern und ohne jeglicher Miteinbeziehung von Objektwissen zu entschieden ob eine Person, die ihre Hand zum Mund fĂŒhrt gerade etwas isst oder trinkt, raucht, oder bloß die Lippen abwischt. Die meisten Arbeiten auf dem Gebiet der computergestĂŒtzten Aktons- und AktivitĂ€tserkennung ignorieren allerdings jegliche durch den Kontext bedingte Informationen und beschrĂ€nken sich auf die Identifikation menschlicher AktivitĂ€ten auf Basis der beobachteten Bewegung. Wird jedoch Objektwissen fĂŒr die Klassifikation miteinbezogen, so geschieht dies meist unter Zuhilfenahme von ĂŒberwachten Detektoren, fĂŒr deren Einrichtung widerum eine erhebliche Menge an Trainingsdaten erforderlich ist. Bedingt durch die hohen zeitlichen Kosten, die die Annotation dieser Trainingsdaten mit sich bringt, wird das Erweitern solcher Systeme, zum Beispiel durch das HinzufĂŒgen neuer Typen von Aktionen, zum eigentlichen Flaschenhals. Ein weiterer Nachteil des Hinzuziehens von ĂŒberwacht trainierten Objektdetektoren, ist deren FehleranfĂ€lligkeit, selbst wenn die verwendeten Algorithmen dem neuesten Stand der Technik entsprechen. Basierend auf dieser Beobachtung ist das Ziel dieser Arbeit die LeistungsfĂ€higkeit computergestĂŒtzter AktivitĂ€tserkennung zu verbessern mit Hilfe der Hinzunahme von Objektwissen, welches im Gegensatz zu den bisherigen AnsĂ€tzen ohne ĂŒberwachten Trainings gewonnen werden kann. Wir Menschen haben die bemerkenswerte FĂ€higkeit selektiv die Aufmerksamkeit auf bestimmte Regionen im Blickfeld zu fokussieren und gleichzeitig nicht relevante Regionen auszublenden. Dieser kognitive Prozess erlaubt es uns unsere beschrĂ€nkten Bewusstseinsressourcen unbewusst auf Inhalte zu richten, die anschließend durch das Gehirn ausgewertet werden. Zum Beispiel zur Interpretation visueller Muster als Objekte eines bestimmten Typs. Die Regionen im Blickfeld, die unsere Aufmerksamkeit unbewusst anziehen werden als Proto-Objekte bezeichnet. Sie sind definiert als unbestimmte Teile des visuellen Informationsspektrums, die zu einem spĂ€teren Zeitpunkt durch den Menschen als tatsĂ€chliche Objekte wahrgenommen werden können, wenn er seine Aufmerksamkeit auf diese richtet. Einfacher ausgedrĂŒckt: Proto-Objekte sind Kandidaten fĂŒr Objekte, oder deren Bestandteile, die zwar lokalisiert aber noch nicht identifiziert wurden. Angeregt durch die menschliche FĂ€higkeit solche visuell hervorstechenden (salienten) Regionen zuverlĂ€ssig vom Hintergrund zu unterscheiden, haben viele Wissenschaftler Methoden entwickelt, die es erlauben Proto-Objekte zu lokalisieren. Allen diesen Algorithmen ist gemein, dass möglichst wenig statistisches Wissens ĂŒber tatsĂ€chliche Objekte vorausgesetzt wird. Visuelle Aufmerksamkeit und Objekterkennung sind sehr eng miteinander vernkĂŒpfte Prozesse im visuellen System des Menschen. Aus diesem Grund herrscht auf dem Gebiet des Maschinellen Sehens ein reges Interesse an der Integration beider Konzepte zur Erhöhung der Leistung aktueller Bilderkennungssysteme. Die im Rahmen dieser Arbeit entwickelten Methoden gehen in eine Ă€hnliche Richtung: wir demonstrieren, dass die Lokalisation von Proto-Objekten es erlaubt Objektkandidaten zu finden, die geeignet sind als zusĂ€tzliche ModalitĂ€t zu dienen fĂŒr die bewegungsbasierte Erkennung menschlicher AktivitĂ€ten. Die Grundlage dieser Arbeit bildet dabei ein sehr effizienter Algorithmus, der die visuelle Salienz mit Hilfe von quaternionenbasierten DCT Bildsignaturen approximiert. Zur Extraktion einer Menge geeigneter Objektkandidaten (d.h. Proto-Objekten) aus den resultierenden Salienzkarten, haben wir eine Methode entwickelt, die den kognitiven Mechanismus des Inhibition of Return implementiert. Die auf diese Weise gewonnenen Objektkandidaten nutzen wir anschliessend in Kombination mit state-of-the-art Bag-of-Words Methoden zur Merkmalsbeschreibung von Bewegungsmustern um komplexe AktivitĂ€ten des tĂ€glichen Lebens zu klassifizieren. Wir evaluieren das im Rahmen dieser Arbeit entwickelte System auf diversen hĂ€ufig genutzten Benchmark-DatensĂ€tzen und zeigen experimentell, dass das Miteinbeziehen von Proto-Objekten fĂŒr die AktivitĂ€tserkennung zu einer erheblichen Leistungssteigerung fĂŒhrt im Vergleich zu rein bewegungsbasierten AnsĂ€tzen. Zudem demonstrieren wir, dass das vorgestellte System bei der Erkennung menschlicher AktivitĂ€ten deutlich weniger Fehler macht als eine Vielzahl von Methoden, die dem aktuellen Stand der Technik entsprechen. Überraschenderweise ĂŒbertrifft unser System leistungsmĂ€ĂŸig sogar Verfahren, die auf Objektwissen aufbauen, welches von ĂŒberwacht trainierten Detektoren, oder manuell erstellten Annotationen stammt. Benchmark-DatensĂ€tze sind ein sehr wichtiges Mittel zum quantitativen Vergleich von computergestĂŒtzten Mustererkennungsverfahren. Nach einer ÜberprĂŒfung aller öffentlich verfĂŒgbaren, relevanten Benchmarks, haben wir jedoch festgestellt, dass keiner davon geeignet war fĂŒr eine detaillierte Evaluation von Methoden zur Erkennung komplexer, menschlicher AktivitĂ€ten. Aus diesem Grund bestand ein Teil dieser Arbeit aus der Konzeption und Aufnahme eines solchen Datensatzes, des KIT Robo-kitchen Benchmarks. Wie der Name vermuten lĂ€sst haben wir uns dabei fĂŒr ein KĂŒchenszenario entschieden, da es ermöglicht einen großen Umfang an AktivitĂ€ten des tĂ€glichen Lebens einzufangen, von denen viele Objektmanipulationen enthalten. Um eine möglichst umfangreiche Menge natĂŒrlicher Bewegungen zu erhalten, wurden die Teilnehmer wĂ€hrend der Aufnahmen kaum eingeschrĂ€nkt in der Art und Weise wie die diversen AktivitĂ€ten auszufĂŒhren sind. Zu diesem Zweck haben wir den Probanden nur die Art der auszufĂŒhrenden AktivitĂ€t mitgeteilt, sowie wo die benötigten GegenstĂ€nde zu finden sind, und ob die jeweilige TĂ€tigkeit am KĂŒchentisch oder auf der Arbeitsplatte auszufĂŒhren ist. Dies hebt KIT Robo-kitchen deutlich hervor gegenĂŒber den meisten existierenden DatensĂ€tzen, die sehr unrealistisch gespielte AktivitĂ€ten enthalten, welche unter Laborbedingungen aufgenommen wurden. Seit seiner Veröffentlichung wurde der resultierende Benchmark mehrfach verwendet zur Evaluation von Algorithmen, die darauf abzielen lang andauerne, realistische, komplexe, und quasi-periodische menschliche AktivitĂ€ten zu erkennen
    • 

    corecore