2,147 research outputs found

    A Multiresolution 3D Morphable Face Model and Fitting Framework

    Get PDF
    3D Morphable Face Models are a powerful tool in computer vision. They consists of a PCA model of face shape and colour information and allow to reconstruct a 3D face from a single 2D image. 3D Morphable Face Models are used for 3D head pose estimation, face analysis, face recognition, and, more recently, facial landmark detection and tracking. However, they are not as widely used as 2D methods - the process of building and using a 3D model is much more involved. In this paper, we present the Surrey Face Model, a multi-resolution 3D Morphable Model that we make available to the public for non-commercial purposes. The model contains different mesh resolution levels and landmark point annotations as well as metadata for texture remapping. Accompanying the model is a lightweight open-source C++ library designed with simplicity and ease of integration as its foremost goals. In addition to basic functionality, it contains pose estimation and face frontalisation algorithms. With the tools presented in this paper, we aim to close two gaps. First, by offering different model resolution levels and fast fitting functionality, we enable the use of a 3D Morphable Model in time-critical applications like tracking. Second, the software library makes it easy for the community to adopt the 3D Morphable Face Model in their research, and it offers a public place for collaboration

    A 3D Face Modelling Approach for Pose-Invariant Face Recognition in a Human-Robot Environment

    Full text link
    Face analysis techniques have become a crucial component of human-machine interaction in the fields of assistive and humanoid robotics. However, the variations in head-pose that arise naturally in these environments are still a great challenge. In this paper, we present a real-time capable 3D face modelling framework for 2D in-the-wild images that is applicable for robotics. The fitting of the 3D Morphable Model is based exclusively on automatically detected landmarks. After fitting, the face can be corrected in pose and transformed back to a frontal 2D representation that is more suitable for face recognition. We conduct face recognition experiments with non-frontal images from the MUCT database and uncontrolled, in the wild images from the PaSC database, the most challenging face recognition database to date, showing an improved performance. Finally, we present our SCITOS G5 robot system, which incorporates our framework as a means of image pre-processing for face analysis

    Fitting 3D Morphable Models using Local Features

    Get PDF
    In this paper, we propose a novel fitting method that uses local image features to fit a 3D Morphable Model to 2D images. To overcome the obstacle of optimising a cost function that contains a non-differentiable feature extraction operator, we use a learning-based cascaded regression method that learns the gradient direction from data. The method allows to simultaneously solve for shape and pose parameters. Our method is thoroughly evaluated on Morphable Model generated data and first results on real data are presented. Compared to traditional fitting methods, which use simple raw features like pixel colour or edge maps, local features have been shown to be much more robust against variations in imaging conditions. Our approach is unique in that we are the first to use local features to fit a Morphable Model. Because of the speed of our method, it is applicable for realtime applications. Our cascaded regression framework is available as an open source library (https://github.com/patrikhuber).Comment: Submitted to ICIP 2015; 4 pages, 4 figure

    Visual ageing of human faces in three dimensions using morphable models and projection to latent structures

    Get PDF
    We present an approach to synthesising the effects of ageing on human face images using three-dimensional modelling. We extract a set of three dimensional face models from a set of two-dimensional face images by fitting a Morphable Model. We propose a method to age these face models using Partial Least Squares to extract from the data-set those factors most related to ageing. These ageing related factors are used to train an individually weighted linear model. We show that this is an effective means of producing an aged face image and compare this method to two other linear ageing methods for ageing face models. This is demonstrated both quantitatively and with perceptual evaluation using human raters.Postprin

    3D Face Tracking and Texture Fusion in the Wild

    Full text link
    We present a fully automatic approach to real-time 3D face reconstruction from monocular in-the-wild videos. With the use of a cascaded-regressor based face tracking and a 3D Morphable Face Model shape fitting, we obtain a semi-dense 3D face shape. We further use the texture information from multiple frames to build a holistic 3D face representation from the video frames. Our system is able to capture facial expressions and does not require any person-specific training. We demonstrate the robustness of our approach on the challenging 300 Videos in the Wild (300-VW) dataset. Our real-time fitting framework is available as an open source library at http://4dface.org

    Unsupervised Training for 3D Morphable Model Regression

    Full text link
    We present a method for training a regression network from image pixels to 3D morphable model coordinates using only unlabeled photographs. The training loss is based on features from a facial recognition network, computed on-the-fly by rendering the predicted faces with a differentiable renderer. To make training from features feasible and avoid network fooling effects, we introduce three objectives: a batch distribution loss that encourages the output distribution to match the distribution of the morphable model, a loopback loss that ensures the network can correctly reinterpret its own output, and a multi-view identity loss that compares the features of the predicted 3D face and the input photograph from multiple viewing angles. We train a regression network using these objectives, a set of unlabeled photographs, and the morphable model itself, and demonstrate state-of-the-art results.Comment: CVPR 2018 version with supplemental material (http://openaccess.thecvf.com/content_cvpr_2018/html/Genova_Unsupervised_Training_for_CVPR_2018_paper.html

    Neural 3D Morphable Models: Spiral Convolutional Networks for 3D Shape Representation Learning and Generation

    Full text link
    Generative models for 3D geometric data arise in many important applications in 3D computer vision and graphics. In this paper, we focus on 3D deformable shapes that share a common topological structure, such as human faces and bodies. Morphable Models and their variants, despite their linear formulation, have been widely used for shape representation, while most of the recently proposed nonlinear approaches resort to intermediate representations, such as 3D voxel grids or 2D views. In this work, we introduce a novel graph convolutional operator, acting directly on the 3D mesh, that explicitly models the inductive bias of the fixed underlying graph. This is achieved by enforcing consistent local orderings of the vertices of the graph, through the spiral operator, thus breaking the permutation invariance property that is adopted by all the prior work on Graph Neural Networks. Our operator comes by construction with desirable properties (anisotropic, topology-aware, lightweight, easy-to-optimise), and by using it as a building block for traditional deep generative architectures, we demonstrate state-of-the-art results on a variety of 3D shape datasets compared to the linear Morphable Model and other graph convolutional operators.Comment: to appear at ICCV 201
    corecore