168 research outputs found

    Overview of convolutional neural networks architectures for brain tumor segmentation

    Get PDF
    Due to the paramount importance of the medical field in the lives of people, researchers and experts exploited advancements in computer techniques to solve many diagnostic and analytical medical problems. Brain tumor diagnosis is one of the most important computational problems that has been studied and focused on. The brain tumor is determined by segmentation of brain images using many techniques based on magnetic resonance imaging (MRI). Brain tumor segmentation methods have been developed since a long time and are still evolving, but the current trend is to use deep convolutional neural networks (CNNs) due to its many breakthroughs and unprecedented results that have been achieved in various applications and their capacity to learn a hierarchy of progressively complicated characteristics from input without requiring manual feature extraction. Considering these unprecedented results, we present this paper as a brief review for main CNNs architecture types used in brain tumor segmentation. Specifically, we focus on researcher works that used the well-known brain tumor segmentation (BraTS) dataset

    TuNet: End-to-end Hierarchical Brain Tumor Segmentation using Cascaded Networks

    Full text link
    Glioma is one of the most common types of brain tumors; it arises in the glial cells in the human brain and in the spinal cord. In addition to having a high mortality rate, glioma treatment is also very expensive. Hence, automatic and accurate segmentation and measurement from the early stages are critical in order to prolong the survival rates of the patients and to reduce the costs of the treatment. In the present work, we propose a novel end-to-end cascaded network for semantic segmentation that utilizes the hierarchical structure of the tumor sub-regions with ResNet-like blocks and Squeeze-and-Excitation modules after each convolution and concatenation block. By utilizing cross-validation, an average ensemble technique, and a simple post-processing technique, we obtained dice scores of 88.06, 80.84, and 80.29, and Hausdorff Distances (95th percentile) of 6.10, 5.17, and 2.21 for the whole tumor, tumor core, and enhancing tumor, respectively, on the online test set.Comment: Accepted at MICCAI BrainLes 201

    Attention Mechanisms in Medical Image Segmentation: A Survey

    Full text link
    Medical image segmentation plays an important role in computer-aided diagnosis. Attention mechanisms that distinguish important parts from irrelevant parts have been widely used in medical image segmentation tasks. This paper systematically reviews the basic principles of attention mechanisms and their applications in medical image segmentation. First, we review the basic concepts of attention mechanism and formulation. Second, we surveyed over 300 articles related to medical image segmentation, and divided them into two groups based on their attention mechanisms, non-Transformer attention and Transformer attention. In each group, we deeply analyze the attention mechanisms from three aspects based on the current literature work, i.e., the principle of the mechanism (what to use), implementation methods (how to use), and application tasks (where to use). We also thoroughly analyzed the advantages and limitations of their applications to different tasks. Finally, we summarize the current state of research and shortcomings in the field, and discuss the potential challenges in the future, including task specificity, robustness, standard evaluation, etc. We hope that this review can showcase the overall research context of traditional and Transformer attention methods, provide a clear reference for subsequent research, and inspire more advanced attention research, not only in medical image segmentation, but also in other image analysis scenarios.Comment: Submitted to Medical Image Analysis, survey paper, 34 pages, over 300 reference

    Acute ischemic stroke lesion segmentation in non-contrast CT images using 3D convolutional neural networks

    Full text link
    In this paper, an automatic algorithm aimed at volumetric segmentation of acute ischemic stroke lesion in non-contrast computed tomography brain 3D images is proposed. Our deep-learning approach is based on the popular 3D U-Net convolutional neural network architecture, which was modified by adding the squeeze-and-excitation blocks and residual connections. Robust pre-processing methods were implemented to improve the segmentation accuracy. Moreover, a specific patches sampling strategy was used to address the large size of medical images, to smooth out the effect of the class imbalance problem and to stabilize neural network training. All experiments were performed using five-fold cross-validation on the dataset containing non-contrast computed tomography volumetric brain scans of 81 patients diagnosed with acute ischemic stroke. Two radiology experts manually segmented images independently and then verified the labeling results for inconsistencies. The quantitative results of the proposed algorithm and obtained segmentation were measured by the Dice similarity coefficient, sensitivity, specificity and precision metrics. Our proposed model achieves an average Dice of 0.628±0.0330.628\pm0.033, sensitivity of 0.699±0.0390.699\pm0.039, specificity of 0.9965±0.00160.9965\pm0.0016 and precision of 0.619±0.0360.619\pm0.036, showing promising segmentation results.Comment: 18 pages, 4 figures, 2 table

    3D CATBraTS: Channel Attention Transformer for Brain Tumour Semantic Segmentation

    Get PDF
    Brain tumour diagnosis is a challenging task yet crucial for planning treatments to stop or slow the growth of a tumour. In the last decade, there has been a dramatic increase in the use of convolutional neural networks (CNN) for their high performance in the automatic segmentation of tumours in medical images. More recently, Vision Transformer (ViT) has become a central focus of medical imaging for its robustness and efficiency when compared to CNNs. In this paper, we propose a novel 3D transformer named 3D CATBraTS for brain tumour semantic segmentation on magnetic resonance images (MRIs) based on the state-of-the-art Swin transformer with a modified CNN-encoder architecture using residual blocks and a channel attention module. The proposed approach is evaluated on the BraTS 2021 dataset and achieved quantitative measures of the mean Dice similarity coefficient (DSC) that surpasses the current state-of-the-art approaches in the validation phase

    Diagnosis and Prognosis of Head and Neck Cancer Patients using Artificial Intelligence

    Full text link
    Cancer is one of the most life-threatening diseases worldwide, and head and neck (H&N) cancer is a prevalent type with hundreds of thousands of new cases recorded each year. Clinicians use medical imaging modalities such as computed tomography and positron emission tomography to detect the presence of a tumor, and they combine that information with clinical data for patient prognosis. The process is mostly challenging and time-consuming. Machine learning and deep learning can automate these tasks to help clinicians with highly promising results. This work studies two approaches for H&N tumor segmentation: (i) exploration and comparison of vision transformer (ViT)-based and convolutional neural network-based models; and (ii) proposal of a novel 2D perspective to working with 3D data. Furthermore, this work proposes two new architectures for the prognosis task. An ensemble of several models predicts patient outcomes (which won the HECKTOR 2021 challenge prognosis task), and a ViT-based framework concurrently performs patient outcome prediction and tumor segmentation, which outperforms the ensemble model.Comment: This is Masters thesis work submitted to MBZUA
    • …
    corecore