509 research outputs found

    On the effect of image denoising on galaxy shape measurements

    Full text link
    Weak gravitational lensing is a very sensitive way of measuring cosmological parameters, including dark energy, and of testing current theories of gravitation. In practice, this requires exquisite measurement of the shapes of billions of galaxies over large areas of the sky, as may be obtained with the EUCLID and WFIRST satellites. For a given survey depth, applying image denoising to the data both improves the accuracy of the shape measurements and increases the number density of galaxies with a measurable shape. We perform simple tests of three different denoising techniques, using synthetic data. We propose a new and simple denoising method, based on wavelet decomposition of the data and a Wiener filtering of the resulting wavelet coefficients. When applied to the GREAT08 challenge dataset, this technique allows us to improve the quality factor of the measurement (Q; GREAT08 definition), by up to a factor of two. We demonstrate that the typical pixel size of the EUCLID optical channel will allow us to use image denoising.Comment: Accepted for publication in A&A. 8 pages, 5 figure

    Patch-based Denoising Algorithms for Single and Multi-view Images

    Get PDF
    In general, all single and multi-view digital images are captured using sensors, where they are often contaminated with noise, which is an undesired random signal. Such noise can also be produced during transmission or by lossy image compression. Reducing the noise and enhancing those images is among the fundamental digital image processing tasks. Improving the performance of image denoising methods, would greatly contribute to single or multi-view image processing techniques, e.g. segmentation, computing disparity maps, etc. Patch-based denoising methods have recently emerged as the state-of-the-art denoising approaches for various additive noise levels. This thesis proposes two patch-based denoising methods for single and multi-view images, respectively. A modification to the block matching 3D algorithm is proposed for single image denoising. An adaptive collaborative thresholding filter is proposed which consists of a classification map and a set of various thresholding levels and operators. These are exploited when the collaborative hard-thresholding step is applied. Moreover, the collaborative Wiener filtering is improved by assigning greater weight when dealing with similar patches. For the denoising of multi-view images, this thesis proposes algorithms that takes a pair of noisy images captured from two different directions at the same time (stereoscopic images). The structural, maximum difference or the singular value decomposition-based similarity metrics is utilized for identifying locations of similar search windows in the input images. The non-local means algorithm is adapted for filtering these noisy multi-view images. The performance of both methods have been evaluated both quantitatively and qualitatively through a number of experiments using the peak signal-to-noise ratio and the mean structural similarity measure. Experimental results show that the proposed algorithm for single image denoising outperforms the original block matching 3D algorithm at various noise levels. Moreover, the proposed algorithm for multi-view image denoising can effectively reduce noise and assist to estimate more accurate disparity maps at various noise levels

    Adaptive Edge-guided Block-matching and 3D filtering (BM3D) Image Denoising Algorithm

    Get PDF
    Image denoising is a well studied field, yet reducing noise from images is still a valid challenge. Recently proposed Block-matching and 3D filtering (BM3D) is the current state of the art algorithm for denoising images corrupted by Additive White Gaussian noise (AWGN). Though BM3D outperforms all existing methods for AWGN denoising, still its performance decreases as the noise level increases in images, since it is harder to find proper match for reference blocks in the presence of highly corrupted pixel values. It also blurs sharp edges and textures. To overcome these problems we proposed an edge guided BM3D with selective pixel restoration. For higher noise levels it is possible to detect noisy pixels form its neighborhoods gray level statistics. We exploited this property to reduce noise as much as possible by applying a pre-filter. We also introduced an edge guided pixel restoration process in the hard-thresholding step of BM3D to restore the sharpness of edges and textures. Experimental results confirm that our proposed method is competitive and outperforms the state of the art BM3D in all considered subjective and objective quality measurements, particularly in preserving edges, textures and image contrast

    WARP: Wavelets with adaptive recursive partitioning for multi-dimensional data

    Full text link
    Effective identification of asymmetric and local features in images and other data observed on multi-dimensional grids plays a critical role in a wide range of applications including biomedical and natural image processing. Moreover, the ever increasing amount of image data, in terms of both the resolution per image and the number of images processed per application, requires algorithms and methods for such applications to be computationally efficient. We develop a new probabilistic framework for multi-dimensional data to overcome these challenges through incorporating data adaptivity into discrete wavelet transforms, thereby allowing them to adapt to the geometric structure of the data while maintaining the linear computational scalability. By exploiting a connection between the local directionality of wavelet transforms and recursive dyadic partitioning on the grid points of the observation, we obtain the desired adaptivity through adding to the traditional Bayesian wavelet regression framework an additional layer of Bayesian modeling on the space of recursive partitions over the grid points. We derive the corresponding inference recipe in the form of a recursive representation of the exact posterior, and develop a class of efficient recursive message passing algorithms for achieving exact Bayesian inference with a computational complexity linear in the resolution and sample size of the images. While our framework is applicable to a range of problems including multi-dimensional signal processing, compression, and structural learning, we illustrate its work and evaluate its performance in the context of 2D and 3D image reconstruction using real images from the ImageNet database. We also apply the framework to analyze a data set from retinal optical coherence tomography

    Joint Bilateral Filter for Signal Recovery from Phase Preserved Curvelet Coefficients for Image Denoising

    Full text link
    Thresholding of Curvelet Coefficients, for image denoising, drains out subtle signal component in noise subspace. This produces ringing artifacts near edges and granular effect in the denoised image. We found the noise sensitivity of Curvelet phases (in contrast to their magnitude) reduces with higher noise level. Thus, we preserved the phase of the coefficients below threshold at coarser scale and estimated their magnitude by Joint Bilateral Filtering (JBF) technique from the thresholded and noisy coefficients. In the finest scale, we apply Bilateral Filter (BF) to keep edge information. Further, the Guided Image Filter (GIF) is applied on the reconstructed image to localize the edges and to preserve the small image details and textures. The lower noise sensitivity of Curvelet phase at higher noise strength accelerate the performance of proposed method over several state-of-theart techniques and provides comparable outcome at lower noise levels.Comment: 10 pages, 8 figures. 3 tables, journa

    Graph Spectral Image Processing

    Full text link
    Recent advent of graph signal processing (GSP) has spurred intensive studies of signals that live naturally on irregular data kernels described by graphs (e.g., social networks, wireless sensor networks). Though a digital image contains pixels that reside on a regularly sampled 2D grid, if one can design an appropriate underlying graph connecting pixels with weights that reflect the image structure, then one can interpret the image (or image patch) as a signal on a graph, and apply GSP tools for processing and analysis of the signal in graph spectral domain. In this article, we overview recent graph spectral techniques in GSP specifically for image / video processing. The topics covered include image compression, image restoration, image filtering and image segmentation

    Image Deblurring and Super-resolution by Adaptive Sparse Domain Selection and Adaptive Regularization

    Full text link
    As a powerful statistical image modeling technique, sparse representation has been successfully used in various image restoration applications. The success of sparse representation owes to the development of l1-norm optimization techniques, and the fact that natural images are intrinsically sparse in some domain. The image restoration quality largely depends on whether the employed sparse domain can represent well the underlying image. Considering that the contents can vary significantly across different images or different patches in a single image, we propose to learn various sets of bases from a pre-collected dataset of example image patches, and then for a given patch to be processed, one set of bases are adaptively selected to characterize the local sparse domain. We further introduce two adaptive regularization terms into the sparse representation framework. First, a set of autoregressive (AR) models are learned from the dataset of example image patches. The best fitted AR models to a given patch are adaptively selected to regularize the image local structures. Second, the image non-local self-similarity is introduced as another regularization term. In addition, the sparsity regularization parameter is adaptively estimated for better image restoration performance. Extensive experiments on image deblurring and super-resolution validate that by using adaptive sparse domain selection and adaptive regularization, the proposed method achieves much better results than many state-of-the-art algorithms in terms of both PSNR and visual perception.Comment: 35 pages. This paper is under review in IEEE TI

    A Comprehensive Review of Image Restoration and Noise Reduction Techniques

    Get PDF
    Images play a crucial role in modern life and find applications in diverse fields, ranging from preserving memories to conducting scientific research. However, images often suffer from various forms of degradation such as blur, noise, and contrast loss. These degradations make images difficult to interpret, reduce their visual quality, and limit their practical applications. To overcome these challenges, image restoration and noise reduction techniques have been developed to recover degraded images and enhance their quality. These techniques have gained significant importance in recent years, especially with the increasing use of digital imaging in various fields such as medical imaging, surveillance, satellite imaging, and many others. This paper presents a comprehensive review of image restoration and noise reduction techniques, encompassing spatial and frequency domain methods, and deep learning-based techniques. The paper also discusses the evaluation metrics utilized to assess the effectiveness of these techniques and explores future research directions in this field. The primary objective of this paper is to offer a comprehensive understanding of the concepts and methods involved in image restoration and noise reduction
    corecore