1,332 research outputs found

    A Poster about the Recent History of Fractional Calculus

    Get PDF
    MSC 2010: 26A33, 05C72, 33E12, 34A08, 34K37, 35R11, 60G22In the last decades fractional calculus became an area of intense re-search and development. The accompanying poster illustrates the major contributions during the period 1966-2010

    A Poster about the Old History of Fractional Calculus

    Get PDF
    MSC 2010: 26A33, 05C72, 33E12, 34A08, 34K37, 35R11, 60G22The fractional calculus (FC) is an area of intensive research and development. In a previous paper and poster we tried to exhibit its recent state, surveying the period of 1966-2010. The poster accompanying the present note illustrates the major contributions during the period 1695-1970, the "old history" of FC

    Nonreactive solute transport in soil columns: classical and fractional-calculus modeling

    Get PDF
    Vertical nonreactive solute transport data collected in three laboratory soil columns (made out of sediment samples from the Pampean aquifer located southeast of the Buenos Aires province) are contrasted with the explicit solutions of two model 1D linear PDEs: the classical advection–dispersion equation (ADE), and a fractional advection–dispersion equation (FADE) which has proven to be a useful modeling tool for highly inhomogeneous media exhibiting nontrivial scaling laws. Whereas two of the samples turn out to be quite homogeneous (thus requiring a fractional-derivative order γ → 2), the third one is best described by a FADE with fractional-derivative order γ = 1.68. This example illustrates the FADE’s ability to reveal self-similar geometric structures inside the sample.Fil: Benavente, Micaela Andrea. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Deza, Roberto Raul. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Cs.exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Grondona, Sebastian. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Geología de Costas y del Cuaternario. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Geología de Costas y del Cuaternario; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mascioli, S.. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Geología de Costas y del Cuaternario. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Geología de Costas y del Cuaternario; ArgentinaFil: Martinez, Daniel Emilio. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Geología de Costas y del Cuaternario. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Geología de Costas y del Cuaternario; Argentin

    Integral Transforms Method to Solve a Time-Space Fractional Diffusion Equation

    Get PDF
    Mathematical Subject Classification 2010: 35R11, 42A38, 26A33, 33E12.The method of integral transforms based on using a fractional generalization of the Fourier transform and the classical Laplace transform is applied for solving Cauchy-type problem for the time-space fractional diffusion equation expressed in terms of the Caputo time-fractional derivative and a generalized Riemann-Liouville space-fractional derivative

    Fractional Fokker-Planck-Kolmogorov type Equations and their Associated Stochastic Differential Equations

    Get PDF
    MSC 2010: 26A33, 35R11, 35R60, 35Q84, 60H10 Dedicated to 80-th anniversary of Professor Rudolf GorenfloThere is a well-known relationship between the Itô stochastic differential equations (SDEs) and the associated partial differential equations called Fokker-Planck equations, also called Kolmogorov equations. The Brownian motion plays the role of the basic driving process for SDEs. This paper provides fractional generalizations of the triple relationship between the driving process, corresponding SDEs and deterministic fractional order Fokker-Planck-Kolmogorov type equations
    corecore