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Abstract

The method of integral transforms based on using a fractional gener-
alization of the Fourier transform and the classical Laplace transform is
applied for solving Cauchy-type problem for the time-space fractional dif-
fusion equation expressed in terms of the Caputo time-fractional derivative
and a generalized Riemann-Liouville space-fractional derivative.
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1. Introduction

It was Namias [15] who introduced officially in 1980 the Fractional
Fourier transform (FRFT) as a way to solve certain classes of ordinary
and partial differential equations appearing in quantum mechanics. Most
probably Namias was unaware of Wiener’s paper [25] published in 1929,
where the FRFT in the form of fractional powers of Fourier operator has
been already introduced. Namias’ results were later improved by McBride
and Kerr [11], who also developed an operational calculus for the FRFT.
The FRFT became much popularity after 1995 because of its numerous
applications in quantum mechanics, chemistry, optics, dynamical systems,
stochastic processes and signal processing.
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Because of the importance of the FRFT, a number of its generalizations
have been introduced [1]. In [26], Zayed extended the FRFT to larger
classes of functions and generalized functions, whereas in [3] and [20] discrete
versions of the FRFT were introduced. In [27] a systematic and unified
approach to fractional integral transforms was presented and a new class of
fractional integral transforms that includes the FRFT, the fractional Hankel
transforms and the fractional integration and differentiation operators as
special cases was studied.

A detailed survey on the mathematical background, properties and ap-
plications related to the FRFT is provided in [19]. The authors of the book
cited present practically independent different definitions of the FRFT and
show that every particular modeling process or mathematical problem re-
quires the most suitable definition of the FRFT among the existing to be
taken.

The modeling of diffusion in a specific type of porous medium is one of
the most significant applications of fractional derivatives [8], [21]. Two types
of partial differential equations of fractional order deserve special attention.
The first type is a generalization of the fractional partial differential equa-
tion suggested by Oldham and Spanier as a replacement of Fick’s law [18].
The fractional-order diffusion equation suggested by Metzler, Glöckle and
Nonnenmacher [12] is an example of the second type of fractional diffusion
equation. Another example of the second type is the fractional diffusion
equation deduced by Nigmatullin [16], [17] also known as the fractional
diffusion-wave equation.

A space-time fractional diffusion equation, obtained from the standard
diffusion equation by replacing the second order space-derivative by a frac-
tional Riesz derivative and the first order time-derivative by a Caputo frac-
tional derivative, has been treated by Saichev and Zaslavsky [22], Uchajkin
and Zolotarev [24], Gorenflo, Iskenderov and Luchko [6], Scalas, Gorenflo
and Mainardi [23], Metzler and Klafter [13]. The results obtained in [6] are
complemented in [9], where the space-time fractional diffusion equation ex-
pressed by the Riesz-Feller space-fractional derivative and the Caputo time-
fractional derivative is considered. The fundamental solution (the Green
function) of the corresponding Cauchy problem is found in the cited paper
by means of Fourier-Laplace transform. Based on Mellin-Barnes integral
representation, the fundamental solutions of the Cauchy problem are also
expressed in terms of proper Fox H-functions, [10].

In this paper we develop some properties of the FRFT introduced in [7].
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We apply it and the Laplace transform

L[f(t); s] =
∫ ∞

0
e−stf(t)dt (1)

for solving the space-time fractional diffusion equation as well as a general-
ization of it.

2. Preliminaries

For a function u of the class S of a rapidly decreasing test functions on
the real axis R, the Fourier transform is defined as

û(ω) = F [u(x);ω] =
∫ +∞

−∞
eiωxu(x)dx, ω ∈ R, (2)

whereas the inverse Fourier transform has the form

u(x) = F−1[û(ω);x] =
1
2π

∫ +∞

−∞
e−iωxû(ω)dω, x ∈ R. (3)

Denote by V (R) the set of functions v(x) ∈ S satisfying the conditions:

dnv

dxn

∣∣∣∣
x=0

= 0, n = 0, 1, 2, ...

The Fourier pre-image of the space V (R), i.e.

Φ(R) = {ϕ ∈ S; ϕ̂ ∈ V (R)}

is called the Lizorkin space. As it is stated in [7], the Lizorkin space is
invariant with respect to the fractional integration and differentiation oper-
ators.

In this paper we adopt the following FRFT as introduced in [7].
Definition 2.1. For a function u ∈ Φ(R), the FRFT ûα of the order

α (0 < α ≤ 1) is defined as

ûα(ω) = Fα[u(x);ω] =
∫ +∞

−∞
eα(ω, x)u(x)dx, ω ∈ R, (4)

where

eα(ω, x) :=

{
e−i|ω| 1α x, ω ≤ 0

ei|ω| 1α x, ω > 0
. (5)



60 Y. Nikolova, L. Boyadjiev

Evidently if α = 1, the kernel (5) reduces to the kernel of (2). The
relation between the FRFT (4) and the classical Fourier transform (2) is
given by the equality

ûα(ω) = Fα[u(x);ω] = F1[u(x); w] = û(w), (6)

where

w :=

{
−|ω| 1α , ω ≤ 0
|ω| 1α , ω > 0

. (7)

Thus, if
Fα[u(x);ω] = F1[u(x); w] = ϕ(w),

then
u(x) := F−1

α [ûα(ω);x] = F−1
1 [ϕ(w);x]. (8)

In this paper we study the fractional diffusion equation in terms of the
Caputo fractional derivative [4]:

Dα
∗ f(t) =





1
Γ(n− α)

∫ t

0

f (n)(τ)
(t− τ)α+1−n

dτ, n− 1 < α < n

dnf(t)
dtn

, α = n

, (9)

where n is positive integer. The method we follow makes the rule of the
Laplace transform of Caputo derivative very important, see e.g. [21]:

L[Dα
∗ f(x); s] = sαL[f(t); s]−

n−1∑

k=0

f (k)(0)sα−1−k, n− 1 < α ≤ n. (10)

For generalization of the time-space diffusion equation we use the fractional
derivative operator of the form

Dα
βu(x) := (1− β)Dα

+u(x)− βDα
−u(x), 0 < α ≤ 1, β ∈ R, (11)

where Dα
+ and Dα− are the Riemann-Liouville fractional derivatives on the

real axis given as

Dα
+u(x) =

1
Γ(1− α)

d

dx

∫ x

−∞
(x− τ)α−1u(τ)dτ

and
Dα
−u(x) = − 1

Γ(1− α)
d

dx

∫ ∞

x
(τ − x)α−1u(τ)dτ.
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A key role in our considerations is given to a relation established in [7]
according to which for 0 < α ≤ 1, any value of β and a function u(x) ∈ Φ(R),

Fα[Dα
βu(x);ω] = (−icαω)Fα[u(x);ω], ω ∈ R, (12)

where cα = sin(απ/2) + isignω(1− 2β) cos(απ/2).

The one-parameter generalization of the exponential function was intro-
duced by Mittag-Leffler [14] as

Eα(z) =
∞∑

k=0

zk

Γ(αk + 1)
.

Its further generalization was done by Agarwal [2] who defined the two-
parameter function of the Mittag-Leffler type in the form

Eα,β(z) =
∞∑

k=0

zk

Γ(αk + β)
, α > 0, β > 0. (13)

Let us remind also that the effect of the application of the Laplace transform
(1) on the functions (13) is described by the formulas [21, 1.2.2, (1.80)]:

L[tαk+β−1E
(k)
α,β(±atα); s] =

k!sα−β

(sα ∓ a)k+1
, Re s > |a| 1α . (14)

3. Some properties of the FRFT

Due to the relations (7) and (8), it is not difficult to prove the validity
of the following statement.

Theorem 3.1. If 0 < α ≤ 1, u(x) ∈ Φ(R) and Fα[u(x);ω] = ûα(ω),
then:

(a) Fα[u(x− a);ω] = eα(ω, a)ûα(ω) (Shifting)
(b) Fα[u(ax);ω] = 1

|a| ûα( |ω|a ), a 6= 0 (Scaling)

(c) Fα[u(−x);ω] = ûα(ω) (Conjugate)
(d) Fα[ûα(x);ω] = u(−ω) (Duality)
(e) If g(x) ∈ Φ(R) and Fα[g(x);ω] = ĝα(ω), then

+∞∫

−∞
ûα(ω)g(ω)eα(ω, t)dω =

+∞∫

−∞
u(x)ĝα(x + t)dx (Composition).
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Theorem 3.2. If 0 ≤ α < 1 and u(n)(x) ∈ Φ(R), then

Fα[u(n)(x);ω] = (−isignω|ω| 1α )n ûα(ω), ω ∈ R.

P r o o f. Let us take n = 1 and ω ≤ 0. Then according to (4) and (5),
the integration by parts leads to

Fα[u′(x);ω] =
∫ +∞

−∞
e−i|ω| 1α xu′(x)dx = u(x)e−i|ω| 1α x

∣∣∣∣
+∞

−∞
+i|ω| 1α

∫ +∞

−∞
e−i|ω| 1α xu(x)dx = (−isignω|ω| 1α )ûα(ω). (15)

The case ω > 0 is considered similarly. By induction, formula (15) yields
the desired result.

Theorem 3.3. (Convolution theorem) If a < α ≤ 1 and u(x), v(x) ∈
Φ(R), then

Fα[(u ∗ v)(x);ω] = ûα(ω)v̂α(ω),

where

(u ∗ v)(x) =
∫ +∞

−∞
u(x− ξ)v(ξ)dξ,

and Fα[u(x);ω] = ûα(ω), Fα[v(x);ω] = v̂α(ω).

P r o o f. Consider first the case ω ≤ 0. According to (4) and (5) we
have

Fα[(u ∗ v)(x);ω] =
∫ +∞

−∞
e−i|ω| 1α x

[∫ +∞

−∞
u(x− ξ)v(ξ)dξ

]
dx

=
∫ +∞

−∞
e−i|ω| 1α ξv(ξ)

[∫ +∞

−∞
e−i|ω| 1α (x−ξ)u(x− ξ)dx

]
dξ

=
∫ +∞

−∞
e−i|ω| 1α ξv(ξ)dξ

∫ +∞

−∞
e−i|ω| 1α ηu(η)dη = ûα(ω)v̂α(ω).

Likewise, if ω > 0,

Fα[(u ∗ v)(x);ω] =
∫ +∞

−∞
ei|ω| 1α x

[∫ +∞

−∞
u(x− ξ)v(ξ)dξ

]
dx

=
∫ +∞

−∞
ei|ω| 1α ξv(ξ)

[∫ +∞

∞
ei|ω| 1α (x−ξ)u(x− ξ)dx

]
dξ

=
∫ +∞

−∞
ei|ω| 1α ξv(ξ)dξ

∫ +∞

−∞
ei|ω| 1α ηu(η)dη = ûα(ω)v̂α(ω).

This accomplishes the proof.
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4. Fractional diffusion equation

In this section we apply the FRFT (4) for solving the Cauchy-type
problem for the fractional diffusion equation

Dα
∗ u(x, t) = µ

∂2u

∂x2
, x ∈ R, t > 0 (16)

subject to the initial condition

u(x, t)|t=0 = f(x), (17)

where Dα∗ is the Caputo time-fractional derivative (9) of order α, f(x) ∈
Φ(R) and µ is a diffusivity constant.

Theorem 4.1. If 0 < α ≤ 1, the Cauchy-type problem (16)–(17) is
solvable and its solution u(x, t) is given by the integral

u(x, t) =
∫ +∞

−∞
G(x− ξ, t)f(ξ)dξ, (18)

where

G(x, t) =
1
2π

∫ +∞

−∞
e−iwxEα(−µ|w| 2α tα)dw.

P r o o f. Denote Fα[u(x, t);ω] = ûα(ω, t). According to Theorem 3.2,
the application of the FRFT (4) to the equation (16) and the initial condi-
tion (17) transforms the Cauchy-type problem (16)–(17) to the equation

Dα
∗ ûα(ω, t) = −µ|ω| 2α ûα(ω, t) (19)

subject to the initial condition

ûα(ω, t)|t=0 = f̂α(ω). (20)

The formulas (10) and (20) make clear that applying the Laplace transform
(1) to (19), we obtain

L[ûα(ω, t); s] =
sα−1

sα + µ|ω| 2α
f̂α(ω). (21)

Taking into account that by the formula (14),

sα−1

sα + µ|ω| 2α
= L[Eα(−µ|ω| 2α tα); s],
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we apply the convolution theorem for the Laplace transform and thus obtain

ûα(ω, t) = Eα(−µ|ω| 2α tα)f̂α(ω).

Because of (6) and (7), the latest equality gives:

û(w, t) = Eα(−µ|w| 2α tα)f̂(w).

Now the validity of the statement follows from the above equation and
Theorem 3.3 taken for the particular case α = 1.

By means of the formula [5, p.611, (5)],

F−1
1

[√
π

a
e−ω2/4a; x

]
= e−ax2

,

it might be seen that the solution in Theorem 4.1 occurs as a generalization
of the fundamental solution of the classical diffusion problem.

Corollary 4.1. If α = 1, the solution of the Cauchy-type problem
(16)–(17) is given by the integral

u(x, t) =
1√

4πµt

∫ +∞

−∞
e−(x−ξ)2/4µtf(ξ)dξ.

5. Generalized fractional diffusion equation

Consider now the Cauchy-type problem that refers to the generalized
fractional diffusion equation

Dγ
∗u(x, t) = µDα+1

β u(x, t) (22)

subject to the initial condition (17), where Dγ
∗ is the Caputo time-fractional

derivative (9) of order γ, whereas Dα+1
β is the space-fractional derivative (11)

we can refer to as generalized Riemann-Liouville space-fractional derivative.
Evidently the equation (22) reduces to (16) if α = 1.

Theorem 5.1. If f(x) ∈ Φ(R), 0 < γ ≤ 1, 0 < α ≤ 1 and for every value
of β ∈ R, the Cauchy-type problem (22)–(17) is solvable and its solution
u(x, t) is given by the integral (18), where

G(x, t) =
1
2π

∫ +∞

−∞
e−iwxEγ(−iµcα+1wtγ)dw.



INTEGRAL TRANSFORMS METHOD TO SOLVE . . . 65

P r o o f. According to (12) it is clear that the application of the FRFT
Fα+1 to the equation (22) and the initial condition (17) results to the equa-
tion

Dγ
∗ ûα+1(ω, t) = (−iµcα+1ω)ûα+1(ω, t) (23)

subject to the condition
ûα+1(ω, t)|t=0 = f̂α+1(ω). (24)

The Laplace transform (1) applied then to (23) and (24) implies

L[ûα+1(ω, t); s] =
sγ−1

sγ + iµcα+1ω
f̂α+1(ω). (25)

The formula (14) enables us to conclude from (25) that

û(w, t) = Eγ(−iµcα+1wtγ)f̂(w).

By Theorem 3.3 (for α = 1) we obtain from the latest equation that the
solution desired is indeed given by (18), where

G(x, t) =
1
2π

∫ ∞

−∞
e−iwxEγ(−iµcα+1wtγ)dw.

It is worth to notice that the solution of the Cauchy-type problem (22)–
(17) reduces for µ = 1 and β = 1

2 to the solution of the space-time diffusion
equation studied in [7].
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