83 research outputs found

    Precise propagation of fault-failure correlations in program flow graphs

    Get PDF
    Statistical fault localization techniques find suspicious faulty program entities in programs by comparing passed and failed executions. Existing studies show that such techniques can be promising in locating program faults. However, coincidental correctness and execution crashes may make program entities indistinguishable in the execution spectra under study, or cause inaccurate counting, thus severely affecting the precision of existing fault localization techniques. In this paper, we propose a BlockRank technique, which calculates, contrasts, and propagates the mean edge profiles between passed and failed executions to alleviate the impact of coincidental correctness. To address the issue of execution crashes, Block-Rank identifies suspicious basic blocks by modeling how each basic block contributes to failures by apportioning their fault relevance to surrounding basic blocks in terms of the rate of successful transition observed from passed and failed executions. BlockRank is empirically shown to be more effective than nine representative techniques on four real-life medium-sized programs. © 2011 IEEE.published_or_final_versionProceedings of the 35th IEEE Annual International Computer Software and Applications Conference (COMPSAC 2011), Munich, Germany, 18-22 July 2011, p. 58-6

    A document based traceability model for test management

    Get PDF
    Software testing has became more complicated in the emergence of distributed network, real-time environment, third party software enablers and the need to test system at multiple integration levels. These scenarios have created more concern over the quality of software testing. The quality of software has been deteriorating due to inefficient and ineffective testing activities. One of the main flaws is due to ineffective use of test management to manage software documentations. In documentations, it is difficult to detect and trace bugs in some related documents of which traceability is the major concern. Currently, various studies have been conducted on test management, however very few have focused on document traceability in particular to support the error propagation with respect to documentation. The objective of this thesis is to develop a new traceability model that integrates software engineering documents to support test management. The artefacts refer to requirements, design, source code, test description and test result. The proposed model managed to tackle software traceability in both forward and backward propagations by implementing multi-bidirectional pointer. This platform enabled the test manager to navigate and capture a set of related artefacts to support test management process. A new prototype was developed to facilitate observation of software traceability on all related artefacts across the entire documentation lifecycle. The proposed model was then applied to a case study of a finished software development project with a complete set of software documents called the On-Board Automobile (OBA). The proposed model was evaluated qualitatively and quantitatively using the feature analysis, precision and recall, and expert validation. The evaluation results proved that the proposed model and its prototype were justified and significant to support test management

    A dynamic fault localization technique with noise reduction for java programs

    Get PDF
    Existing fault localization techniques combine various program features and similarity coefficients with the aim of precisely assessing the similarities among the dynamic spectra of these program features to predict the locations of faults. Many such techniques estimate the probability of a particular program feature causing the observed failures. They ignore the noise introduced by the other features on the same set of executions that may lead to the observed failures. In this paper, we propose both the use of chains of key basic blocks as program features and an innovative similarity coefficient that has noise reduction effect. We have implemented our proposal in a technique known as MKBC. We have empirically evaluated MKBC using three real-life medium-sized programs with real faults. The results show that MKBC outperforms Tarantula, Jaccard, SBI, and Ochiai significantly. © 2011 IEEE.published_or_final_versionThe 11th International Conference on Quality Software (QSIC 2011), Madrid, Spain, 13-14 July 2011. In International Conference on Quality Software Proceedings, 2011, p. 11-2

    Model-based integration testing technique using formal finite state behavioral models for component-based software

    Get PDF
    Many issues and challenges could be identified when considering integration testing of Component-Based Software Systems (CBSS). Consequently, several research have appeared in the literature, aimed at facilitating the integration testing of CBSS. Unfortunately, they suffer from a number of drawbacks and limitations such as difficulty of understanding and describing the behavior of integrated components, lack of effective formalism for test information, difficulty of analyzing and validating the integrated components, and exposing the components implementation by providing semi-formal models. Hence, these problems have made it in effective to test today’s modern complex CBSS. To address these problems, a model-based approach such as Model-Based Testing (MBT) tends to be a suitable mechanism and could be a potential solution to be applied in the context of integration testing of CBSS. Accordingly, this thesis presents a model-based integration testing technique for CBSS. Firstly, a method to extract the formal finite state behavioral models of integrated software components using Mealy machine models was developed. The extracted formal models were used to detect faulty interactions (integration bugs) or compositional problems between integrated components in the system. Based on the experimental results, the proposed method had significant impact in reducing the number of output queries required to extract the formal models of integrated software components and its performance was 50% better compared to the existing methods. Secondly, based on the extracted formal models, an effective model-based integration testing technique (MITT) for CBSS was developed. Finally, the effectiveness of the MITT was demonstrated by employing it in the air gourmet and elevator case studies, using three evaluation parameters. The experimental results showed that the MITT was effective and outperformed Shahbaz technique on the air gourmet and elevator case studies. In terms of learned components for air gourmet and elevator case studies respectively, the MITT results were better by 98.14% and 100%, output queries based on performance were 42.13% and 25.01%, and error detection capabilities were 70.62% and 75% for each of the case study

    Vulnerability Assessment of IPv6 Websites to SQL Injection and Other Application Level Attacks

    Get PDF
    Given the proliferation of internet connected devices, IPv6 has been proposed to replace IPv4. Aside from providing a larger address space which can be assigned to internet enabled devices, it has been suggested that the IPv6 protocol offers increased security due to the fact that with the large number of addresses available, standard IP scanning attacks will no longer become feasible. However, given the interest in attacking organizations rather than individual devices, most initial points of entry onto an organization's network and their attendant devices are visible and reachable through web crawling techniques, and, therefore, attacks on the visible application layer may offer ways to compromise the overall network. In this evaluation, we provide a straightforward implementation of a web crawler in conjunction with a benign black box penetration testing system and analyze the ease at which SQL injection attacks can be carried out

    A Survey and Evaluation of Android-Based Malware Evasion Techniques and Detection Frameworks

    Get PDF
    Android platform security is an active area of research where malware detection techniques continuously evolve to identify novel malware and improve the timely and accurate detection of existing malware. Adversaries are constantly in charge of employing innovative techniques to avoid or prolong malware detection effectively. Past studies have shown that malware detection systems are susceptible to evasion attacks where adversaries can successfully bypass the existing security defenses and deliver the malware to the target system without being detected. The evolution of escape-resistant systems is an open research problem. This paper presents a detailed taxonomy and evaluation of Android-based malware evasion techniques deployed to circumvent malware detection. The study characterizes such evasion techniques into two broad categories, polymorphism and metamorphism, and analyses techniques used for stealth malware detection based on the malware’s unique characteristics. Furthermore, the article also presents a qualitative and systematic comparison of evasion detection frameworks and their detection methodologies for Android-based malware. Finally, the survey discusses open-ended questions and potential future directions for continued research in mobile malware detection

    Load Index Metrics for an Optimized Management of Web Services: A Systematic Evaluation

    Get PDF
    The lack of precision to predict service performance through load indices may lead to wrong decisions regarding the use of web services, compromising service performance and raising platform cost unnecessarily. This paper presents experimental studies to qualify the behaviour of load indices in the web service context. The experiments consider three services that generate controlled and significant server demands, four levels of workload for each service and six distinct execution scenarios. The evaluation considers three relevant perspectives: the capability for representing recent workloads, the capability for predicting near-future performance and finally stability. Eight different load indices were analysed, including the JMX Average Time index (proposed in this paper) specifically designed to address the limitations of the other indices. A systematic approach is applied to evaluate the different load indices, considering a multiple linear regression model based on the stepwise-AIC method. The results show that the load indices studied represent the workload to some extent; however, in contrast to expectations, most of them do not exhibit a coherent correlation with service performance and this can result in stability problems. The JMX Average Time index is an exception, showing a stable behaviour which is tightly-coupled to the service runtime for all executions. Load indices are used to predict the service runtime and therefore their inappropriate use can lead to decisions that will impact negatively on both service performance and execution cost

    Survey on Lightweight Primitives and Protocols for RFID in Wireless Sensor Networks

    Get PDF
    The use of radio frequency identification (RFID) technologies is becoming widespread in all kind of wireless network-based applications. As expected, applications based on sensor networks, ad-hoc or mobile ad hoc networks (MANETs) can be highly benefited from the adoption of RFID solutions. There is a strong need to employ lightweight cryptographic primitives for many security applications because of the tight cost and constrained resource requirement of sensor based networks. This paper mainly focuses on the security analysis of lightweight protocols and algorithms proposed for the security of RFID systems. A large number of research solutions have been proposed to implement lightweight cryptographic primitives and protocols in sensor and RFID integration based resource constraint networks. In this work, an overview of the currently discussed lightweight primitives and their attributes has been done. These primitives and protocols have been compared based on gate equivalents (GEs), power, technology, strengths, weaknesses and attacks. Further, an integration of primitives and protocols is compared with the possibilities of their applications in practical scenarios
    corecore