768 research outputs found

    Oracle Complexity Classes and Local Measurements on Physical Hamiltonians

    Get PDF
    The canonical problem for the class Quantum Merlin-Arthur (QMA) is that of estimating ground state energies of local Hamiltonians. Perhaps surprisingly, [Ambainis, CCC 2014] showed that the related, but arguably more natural, problem of simulating local measurements on ground states of local Hamiltonians (APX-SIM) is likely harder than QMA. Indeed, [Ambainis, CCC 2014] showed that APX-SIM is P^QMA[log]-complete, for P^QMA[log] the class of languages decidable by a P machine making a logarithmic number of adaptive queries to a QMA oracle. In this work, we show that APX-SIM is P^QMA[log]-complete even when restricted to more physical Hamiltonians, obtaining as intermediate steps a variety of related complexity-theoretic results. We first give a sequence of results which together yield P^QMA[log]-hardness for APX-SIM on well-motivated Hamiltonians: (1) We show that for NP, StoqMA, and QMA oracles, a logarithmic number of adaptive queries is equivalent to polynomially many parallel queries. These equalities simplify the proofs of our subsequent results. (2) Next, we show that the hardness of APX-SIM is preserved under Hamiltonian simulations (a la [Cubitt, Montanaro, Piddock, 2017]). As a byproduct, we obtain a full complexity classification of APX-SIM, showing it is complete for P, P^||NP, P^||StoqMA, or P^||QMA depending on the Hamiltonians employed. (3) Leveraging the above, we show that APX-SIM is P^QMA[log]-complete for any family of Hamiltonians which can efficiently simulate spatially sparse Hamiltonians, including physically motivated models such as the 2D Heisenberg model. Our second focus considers 1D systems: We show that APX-SIM remains P^QMA[log]-complete even for local Hamiltonians on a 1D line of 8-dimensional qudits. This uses a number of ideas from above, along with replacing the "query Hamiltonian" of [Ambainis, CCC 2014] with a new "sifter" construction.Comment: 38 pages, 3 figure

    A new construction for a QMA complete 3-local Hamiltonian

    Get PDF
    We present a new way of encoding a quantum computation into a 3-local Hamiltonian. Our construction is novel in that it does not include any terms that induce legal-illegal clock transitions. Therefore, the weights of the terms in the Hamiltonian do not scale with the size of the problem as in previous constructions. This improves the construction by Kempe and Regev, who were the first to prove that 3-local Hamiltonian is complete for the complexity class QMA, the quantum analogue of NP. Quantum k-SAT, a restricted version of the local Hamiltonian problem using only projector terms, was introduced by Bravyi as an analogue of the classical k-SAT problem. Bravyi proved that quantum 4-SAT is complete for the class QMA with one-sided error (QMA_1) and that quantum 2-SAT is in P. We give an encoding of a quantum circuit into a quantum 4-SAT Hamiltonian using only 3-local terms. As an intermediate step to this 3-local construction, we show that quantum 3-SAT for particles with dimensions 3x2x2 (a qutrit and two qubits) is QMA_1 complete. The complexity of quantum 3-SAT with qubits remains an open question.Comment: 11 pages, 4 figure

    QMA-complete problems for stoquastic Hamiltonians and Markov matrices

    Get PDF
    We show that finding the lowest eigenvalue of a 3-local symmetric stochastic matrix is QMA-complete. We also show that finding the highest energy of a stoquastic Hamiltonian is QMA-complete and that adiabatic quantum computation using certain excited states of a stoquastic Hamiltonian is universal. We also show that adiabatic evolution in the ground state of a stochastic frustration free Hamiltonian is universal. Our results give a new QMA-complete problem arising in the classical setting of Markov chains, and new adiabatically universal Hamiltonians that arise in many physical systems.Comment: 11 pages. Contains several new results not present in version 1

    An Approximation Algorithm for the MAX-2-Local Hamiltonian Problem

    Get PDF
    We present a classical approximation algorithm for the MAX-2-Local Hamiltonian problem. This is a maximization version of the QMA-complete 2-Local Hamiltonian problem in quantum computing, with the additional assumption that each local term is positive semidefinite. The MAX-2-Local Hamiltonian problem generalizes NP-hard constraint satisfaction problems, and our results may be viewed as generalizations of approximation approaches for the MAX-2-CSP problem. We work in the product state space and extend the framework of Goemans and Williamson for approximating MAX-2-CSPs. The key difference is that in the product state setting, a solution consists of a set of normalized 3-dimensional vectors rather than boolean numbers, and we leverage approximation results for rank-constrained Grothendieck inequalities. For MAX-2-Local Hamiltonian we achieve an approximation ratio of 0.328. This is the first example of an approximation algorithm beating the random quantum assignment ratio of 0.25 by a constant factor

    Realizable Hamiltonians for Universal Adiabatic Quantum Computers

    Get PDF
    It has been established that local lattice spin Hamiltonians can be used for universal adiabatic quantum computation. However, the 2-local model Hamiltonians used in these proofs are general and hence do not limit the types of interactions required between spins. To address this concern, the present paper provides two simple model Hamiltonians that are of practical interest to experimentalists working towards the realization of a universal adiabatic quantum computer. The model Hamiltonians presented are the simplest known QMA-complete 2-local Hamiltonians. The 2-local Ising model with 1-local transverse field which has been realized using an array of technologies, is perhaps the simplest quantum spin model but is unlikely to be universal for adiabatic quantum computation. We demonstrate that this model can be rendered universal and QMA-complete by adding a tunable 2-local transverse XX coupling. We also show the universality and QMA-completeness of spin models with only 1-local Z and X fields and 2-local ZX interactions.Comment: Paper revised and extended to improve clarity; to appear in Physical Review
    • …
    corecore