15,005 research outputs found

    Automata games for multiple-model checking

    Get PDF
    3-valued models have been advocated as a means of system abstraction such that verifications and refutations of temporal-logic properties transfer from abstract models to the systems they represent. Some application domains, however, require multiple models of a concrete or virtual system. We build the mathematical foundations for 3-valued property verification and refutation applied to sets of common concretizations of finitely many models. We show that validity checking for the modal mu-calculus has the same cost (EXPTIME-complete) on such sets as on all 2-valued models, provide an efficient algorithm for checking whether common concretizations exist for a fixed number of models, and propose using parity games on variants of tree automata to efficiently approximate validity checks of multiple models. We prove that the universal topological model in [M. Huth, R. Jagadeesan, and D. A. Schmidt. A domain equation for refinement of partial systems. Mathematical Structures in Computer Science, 14(4):469-505, 5 August 2004] is not bounded complete. This confirms that the approximations aforementioned are reasonably precise only for tree-automata-like models, unless all models are assumed to be deterministic. © 2006 Elsevier B.V. All rights reserved

    MeGARA: Menu-based Game Abstraction and Abstraction Refinement of Markov Automata

    Full text link
    Markov automata combine continuous time, probabilistic transitions, and nondeterminism in a single model. They represent an important and powerful way to model a wide range of complex real-life systems. However, such models tend to be large and difficult to handle, making abstraction and abstraction refinement necessary. In this paper we present an abstraction and abstraction refinement technique for Markov automata, based on the game-based and menu-based abstraction of probabilistic automata. First experiments show that a significant reduction in size is possible using abstraction.Comment: In Proceedings QAPL 2014, arXiv:1406.156

    Transient Reward Approximation for Continuous-Time Markov Chains

    Full text link
    We are interested in the analysis of very large continuous-time Markov chains (CTMCs) with many distinct rates. Such models arise naturally in the context of reliability analysis, e.g., of computer network performability analysis, of power grids, of computer virus vulnerability, and in the study of crowd dynamics. We use abstraction techniques together with novel algorithms for the computation of bounds on the expected final and accumulated rewards in continuous-time Markov decision processes (CTMDPs). These ingredients are combined in a partly symbolic and partly explicit (symblicit) analysis approach. In particular, we circumvent the use of multi-terminal decision diagrams, because the latter do not work well if facing a large number of different rates. We demonstrate the practical applicability and efficiency of the approach on two case studies.Comment: Accepted for publication in IEEE Transactions on Reliabilit

    Proving Abstractions of Dynamical Systems through Numerical Simulations

    Full text link
    A key question that arises in rigorous analysis of cyberphysical systems under attack involves establishing whether or not the attacked system deviates significantly from the ideal allowed behavior. This is the problem of deciding whether or not the ideal system is an abstraction of the attacked system. A quantitative variation of this question can capture how much the attacked system deviates from the ideal. Thus, algorithms for deciding abstraction relations can help measure the effect of attacks on cyberphysical systems and to develop attack detection strategies. In this paper, we present a decision procedure for proving that one nonlinear dynamical system is a quantitative abstraction of another. Directly computing the reach sets of these nonlinear systems are undecidable in general and reach set over-approximations do not give a direct way for proving abstraction. Our procedure uses (possibly inaccurate) numerical simulations and a model annotation to compute tight approximations of the observable behaviors of the system and then uses these approximations to decide on abstraction. We show that the procedure is sound and that it is guaranteed to terminate under reasonable robustness assumptions

    Analyzing Timed Systems Using Tree Automata

    Full text link
    Timed systems, such as timed automata, are usually analyzed using their operational semantics on timed words. The classical region abstraction for timed automata reduces them to (untimed) finite state automata with the same time-abstract properties, such as state reachability. We propose a new technique to analyze such timed systems using finite tree automata instead of finite word automata. The main idea is to consider timed behaviors as graphs with matching edges capturing timing constraints. When a family of graphs has bounded tree-width, they can be interpreted in trees and MSO-definable properties of such graphs can be checked using tree automata. The technique is quite general and applies to many timed systems. In this paper, as an example, we develop the technique on timed pushdown systems, which have recently received considerable attention. Further, we also demonstrate how we can use it on timed automata and timed multi-stack pushdown systems (with boundedness restrictions)

    IMITATOR II: A Tool for Solving the Good Parameters Problem in Timed Automata

    Full text link
    We present here Imitator II, a new version of Imitator, a tool implementing the "inverse method" for parametric timed automata: given a reference valuation of the parameters, it synthesizes a constraint such that, for any valuation satisfying this constraint, the system behaves the same as under the reference valuation in terms of traces, i.e., alternating sequences of locations and actions. Imitator II also implements the "behavioral cartography algorithm", allowing us to solve the following good parameters problem: find a set of valuations within a given bounded parametric domain for which the system behaves well. We present new features and optimizations of the tool, and give results of applications to various examples of asynchronous circuits and communication protocols.Comment: In Proceedings INFINITY 2010, arXiv:1010.611
    corecore