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Abstract

3-valued models have been advocated as a means of system abstraction such that verifications and
refutations of temporal-logic properties transfer from abstract models to the systems they represent.
Some application domains, however, require multiple models of a concrete or virtual system. We
build the mathematical foundations for 3-valued property verification and refutation applied to
sets of common concretizations of finitely many models. We show that validity checking for the
modal mu-calculus has the same cost (EXPTIME-complete) on such sets as on all 2-valued models,
provide an efficient algorithm for checking whether common concretizations exist for a fixed number
of models, and propose using parity games on variants of tree automata to efficiently approximate
validity checks of multiple models. We prove that the universal topological model in [25] is not
bounded complete. This confirms that the approximations aforementioned are reasonably precise
only for tree-automata-like models, unless all models are assumed to be deterministic.

Keywords: model checking, consistency, parity games, focussed transition systems, tree
automata.

1 Introduction

Model checking [37,7] creates and decides judgments M |= φ, where M is a
model of a computational system, φ is a property, and |= a satisfaction relation
specifying which models enjoy what properties. In this context, abstraction is
widely perceived as a key technique in combating the notorious state explosion
problem, that the size of models is typically exponential in the number of
system observables or processes. Recent years have seen an increased use of
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3-valued system abstractions in model checking and program analysis (e.g.
[10,11,38,4,16,17]). Such abstract models are 3-valued as static and dynamic
information is specified in two modes: “may be true” and “must be true.”

The main benefit of this approach is that both property verification (M |=
φ holds) and refutation (M |= φ doesn’t hold) on abstract models transfer
soundly to the concrete systems they model, whereas this is only true for veri-
fications of universal-path properties in the 2-valued case [8]. The abstraction
of a concrete system in predicate abstraction tools, such as SLAM [2] and
BLAST [20], is traditionally a “safe simulation” and allows the verification of
such universal-path properties only. The 3-valued approach of abstraction is
not limited in this way and properties that combine existential and universal
path quantifiers are more and more needed in exploiting the observed merging
of testing, model checking, and simulation environments in formal methods.

Yet there are a range of situations in which reasoning about a single model
is undesirable, unacceptable or impossible. We state some examples.

• In requirements engineering, stake holders formulate expectations or sce-
narios for a system and each such viewpoint can be construed as a model.

• Federated databases provide the illusion of a single data repository but each
local database may be interpreted as a single model of data.

• In software verification, a computer program may be abstracted by different
tools or abstract domains, each of which produces a model of that program.

• Today’s software products need a high degree of configurability and each of
their customized deployments has its specific model.

• In UML modeling, one rarely has a single message sequence chart and the
collection of all relevant charts is the natural subject of analysis.

All of these examples share that one wants to reason about finitely many
models M1, . . . , Mk collectively, and that individual models Mi benefit from
being 3-valued since states and events foreign to Mi can be incorporated as
may information whereas states and events known in Mi are represented as
must information. For example, if a database Mi has no entry for a proposition
p, it is safe to assume that p may be true, but is not known to be true, in Mi.

If C(M) is the set of 2-valued concretizations of a 3-valued model M , e.g.
defined through refinement [31] or abstract interpretation [9,10], model checks
on M need to reason soundly about the entire set C(M) as any K ∈ C(M)
could be the actual system modeled by M . The collective reasoning about
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finitely many models therefore reasons about sets of the form

k⋂

i=1

C(Mi) , (1)

the principal object of study in this paper.

In 2-valued model checking M |= φ one reasons about the set of con-
cretizations C(M) of M , a singleton in the Stone space of equivalence classes
for bisimulation [22]. In 3-valued model checking, the set of concretizations
C(M) turns out to be a compact set in that very Stone space [22]. Thus,
the transition from 2-valued to 3-valued model checking may be interpreted
topologically as the transition from singleton compact sets to more general
compact sets generated from single 3-valued models M and refinement, where
C(M) is the set of those 2-valued models that refine M .

Consequently, the sets in (1) are also compact in said quotient space as
finite intersections of compact sets. Our paper can therefore be seen as ex-
tending 3-valued model checking to the compact sets in (1) by developing two
familiar research issues from 3-valued model checking [4,5] in this setting.

• Issue #1. To understand the computational complexity of satisfiability
and validity checking over sets in (1) for the modal mu-calculus.

• Issue #2. To seek efficient ways of approximating those decision problems.

In moving from single compact sets C(M) to finite intersections of such
sets, we are also faced with a novel decision problem, that of consistency. Sets
in (1) may be empty and so no common concretizations of all Mi may exist.
We therefore identify a third research issue in this setting.

• Issue #3. To efficiently decide the non-emptiness of sets in (1) for fixed k.

Contributions of our paper

Our paper solves Issues #1 and #3 completely, reviews and assesses exist-
ing proposals for Issue #2, and proposes a novel solution for Issue #2. We also
show that any reasonable solution for Issue #2 cannot rely on model checking
single synthesized 3-valued models, unless these models have structure similar
to that of tree automata or special determinacy assumptions on all models Mi

are being made.

Outline of paper

We use a state-based version of Larsen & Thomsen’s modal transition sys-
tems [31] as 3-valued models and review the necessary background in Section 2.
Section 3 states the three decision problems studied in this paper and proves
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tight bounds for two of them. In Section 4 we develop an efficient algorithm
for deciding the non-emptiness of sets of the form (1) for fixed k. Section 5
discusses how Dams & Namjoshi’s techniques [12] based on tree automata
and parity games can yield more efficient approximations for validity checks
and proves that the use of ordinary 3-valued models necessarily yields worse
approximations in general. Section 6 states some related work, and Section 7
concludes.

2 Basic notions and background

Throughout, we fix a unary modality � and a finite set AP of propositions.

Definition 2.1 (i) A Kripke model K is a tuple (Σ, R, L) with state set Σ,
transition relation R ⊆ Σ × Σ, and labelling function L : Σ → P(AP).

(ii) A modal Kripke model M is a tuple (Σ, Ra, Rc, La, Lc), where (Σ, Ra, La)
and (Σ, Rc, Lc) are Kripke models, Ra ⊆ Rc, and La(s) ⊆ Lc(s) for all
s ∈ Σ. We refer to modal Kripke models as “models” when appropriate.

(iii) Whenever convenient, we view a Kripke model (Σ, R, L) as a modal
Kripke model (Σ, R, R, L, L) and vice versa.

(iv) We call (M, s) a pointed modal Kripke model M with initial state s.

The intuition behind modal Kripke models is that Ra and Rc \Ra specify
must and may transitions of the model, respectively [31]; whilst the La and
Lc labellings assert information that is known to be true, and may be true,
respectively [24]. The complements of Rc and Lc specify impossibilities, e.g.
(s, s′) �∈ Rc expresses the impossibility of a transition from state s to s′.

We use the modal mu-calculus [28] (μL) as property semantics. Many
branching-time temporal logics, e.g. CTL [3], are expressible in μL given by

φ ::= q | Z | ¬φ | φ ∧ φ | �φ | μZ.φ (2)

where q ∈ AP , and Z ranges over a countable set Var of recursion variables.
We write �φ for ¬�¬φ. In the least fixed point formula μZ.φ, μZ binds
all occurrences of Z in φ with static scoping and we require that all free
occurrences of Z in φ are under an even scope of negations. A formula φ is
closed if it contains no free recursion variables.

The denotational semantics [| · |]m· of μL over modal Kripke models maps
formulas φ and environments ρ, functions Z �→ (ρa(Z), ρc(Z)) of type Var →
{(L, U) | L ⊆ U ⊆ Σ}, into sets of states for a mode of analysis m ∈ {a, c} in
Figure 1.
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[| q |]mρ = Lm(q) [| Z |]mρ = ρm(Z)

[| ¬φ |]mρ = Σ \ [| φ |]¬m

ρ [| φ1 ∧ φ2 |]
m

ρ = [| φ1 |]
m

ρ ∩ [| φ2 |]
m

ρ

[| � φ |]mρ = prem([| φ |]mρ ) [| μZ.φ |]mρ = lfpλA.[| φ |]mρ[Z �→A] .

Fig. 1. Semantics of μL over modal Kripke models for mode m ∈ {a, c} where ¬a = c, ¬c = a,
and prem(A) = {s ∈ Σ | ∃s′ ∈ A : (s, s′) ∈ Rm} for m ∈ {a, c}. lfp denotes the least fixed point
operator, here applied to the function λA.[| φ |]mρ[Z �→A] : P(Σ) → P(Σ) over the complete lattice

(P(Σ),⊆).

Definition 2.2 We write s|=a

ρ φ for s ∈ [| φ |]aρ ; similarly s|=c

ρ φ means s ∈
[| φ |]cρ. If φ is closed, we elide the then redundant environment ρ.

Note that for m ∈ {a, c} we have s|=m

�φ iff for all (s, s′) ∈ R¬m, s′|=m

φ. So
� is a universal quantifier that is evaluated for |=m over successor states in
the dual mode ¬m of m.

Remark 2.3 If K is a Kripke model (Σ, R, R, L, L), then [| φ |]aρ = [| φ |]cρ holds
in K for all ρ and φ of μL [24] so this defines the standard Kripke semantics
k |=ρ φ to be k ∈ [| φ |]aρ for all states k of K.

Example 2.4 In the modal Kripke model of Figure 4 we have s1 |=
a

�p, since
all Rc transitions out of s1 lead to states s′ (only t1 here) with p ∈ La(s′), and
s1 |=

c μZ.(¬p ∧ ¬q) ∨ �Z, since there is an Rc-path s1R
ct1R

cu1 to a state u1

with u1 |=
c ¬p ∧ ¬q.

In specifying a modal Kripke model we implicitly describe a possibly in-
finite set of Kripke models C(M) through a refinement notion. This notion,
defined below, is essentially the one of Larsen & Thomsen in [31].

Definition 2.5 (i) For i = 1, 2 let (Mi, si) = ((Σi, R
a
i , R

c
i , L

a
i , L

c
i), si) be

pointed modal Kripke models. Then (M1, s1) is refined by (M2, s2) iff
there is a relation Q ⊆ Σ1 × Σ2 such that (s1, s2) ∈ Q and, for all
(s, t) ∈ Q, we have
(a) for all q ∈ AP , s ∈ La

1(q) implies t ∈ La
2(q),

(b) for all q ∈ AP , t ∈ Lc
2(q) implies s ∈ Lc

1(q),
(c) if (s, s′) ∈ Ra

1, then there is (t, t′) ∈ Ra
2 with (s′, t′) ∈ Q,

(d) if (t, t′) ∈ Rc
2, then there is (s, s′) ∈ Rc

1 with (s′, t′) ∈ Q.

(ii) We write (M1, s)≺(M2, t) whenever there is such a Q with (s, t) ∈ Q, in
which case we say that (M2, t) refines (is abstracted by) (M1, s).

(iii) We write C(M, s) for the set of concretizations of (M, s), defined as
C(M, s) = {(N, t) | (M, s)≺(N, t), (N, t) is a Kripke model}.
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t1
u1

s1

q

p

p

t′1

K

Fig. 2. A Kripke model K such that (K, s1) ∈ C(M1, s1) for the modal Kripke model M1 in
Figure 4. A refinement relation that proves this is given by Q = {(s1, s1), (t1, t1), (t1, t

′
1), (u1, u1)}.

Condition (c) above stipulates that refinement has to preserve must tran-
sitions; whilst condition (d) expresses that refinement has to reflect may tran-
sitions; and labellings behave similarly as stated in (a-b).

Example 2.6 Figure 2 shows a concretization (K, s1) of the modal Kripke
model (M1, s1) in Figure 4 with relation Q = {(s1, s1), (t1, t1), (t1, t

′
1), (u1, u1)}

as a witnessing refinement.

As refinement is transitive, (M1, s)≺(M2, t) implies C(M2, t) ⊆ C(M1, s).
In [23], the converse implication has been shown as well. Therefore, if one can
capture sets in (1) as sets of concretizations of a single model M̂ ,

C(M̂) =

k⋂

i=1

C(Mi) , (3)

then M̂ is a common refinement of all Mi and any other common refinement of
all Mi refines M̂ . That is to say, in the partial-order quotient of the refinement
preorder M̂ is the supremum of all Mi. In Section 5 we will show that such
suprema don’t exist in the general, non-deterministic, case.

Refinement meshes well with, and is characterized by, our property seman-
tics.

Theorem 2.7 ([24]) (i) For all pointed modal Kripke models (M, s) and
(N, t) we have that (M, s)≺(N, t) iff (for all closed, fixed-point free for-
mulas φ of μL, s ∈ [| φ |]a implies t ∈ [| φ |]a).

(ii) If (M, s)≺(N, t), then s ∈ [| φ |]a implies t ∈ [| φ |]a , and t ∈ [| ψ |]c implies
s ∈ [| ψ |]c, for all closed φ, ψ of μL.

This theorem secures soundness of [| φ |]m relative to the thorough seman-
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tics of Bruns & Godefroid in [5]. This soundness is captured as a combined
under-approximation and over-approximation in the following corollary, a re-
formulation of a result in [5].

Corollary 2.8 ([5]) For any closed φ ∈ μL and any state s of any model M :

(i) Under-approximation: If s ∈ [| φ |]a , then φ holds for all (K, k) ∈ C(M, s).

(ii) Over-approximation: If φ holds for some (K, k) ∈ C(M, s), s ∈ [| φ |]c.

3 Multiple models and their decision problems

We are now in a position to define the decision problems studied in this paper.
Subsequently, let

V = {(Mi, si) | 1 ≤ i ≤ k} (4)

denote any finite set of pointed modal Kripke models (Mi, si), each having a
finite set of states Σi. We identify the relevant decision problems.

Definition 3.1 Let

C(V) =
⋂

(M,s)∈V

C(M, s) (5)

be the set of common concretizations of V. We define parameterized boolean
expressions C(V), S(V, φ), and V(V, φ) where φ is any closed formula of μL:

(i) Consistency: C(V) holds iff all models of V have a common concretiza-
tion, i.e. iff C(V) �= {}.

(ii) Satisfiability: S(V, φ) is true iff there is a common concretization of V
that satisfies φ, i.e. iff {(N, t) ∈ C(V) | t |= φ} �= {}.

(iii) Validity: V(V, φ) holds iff all common concretizations of V satisfy φ.

Since all pointed modal Kripke models ((Σ, Ra, Rc, La, Lc), s) have a con-
cretization, e.g. ((Σ, Ra, La), s), C(V) holds iff all models of V have a common
refinement. Note that V(V, φ) holds for all φ if V has no common refinement.
Thus one should establish C(V) prior to wanting to certify V(V, φ).

It is a routine matter to show that all three decision problems above are
reducible to satisfiability checks of μL over Kripke models. Inspired by [29]
we construct a closed formula [Mi, si] of μL for each pointed and finite-state
modal Kripke model (Mi, si) such that for all pointed modal Kripke models
(N, t) we have

(N, t)|=a [Mi, si] iff (Mi, si)≺(N, t) . (6)
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The existence of such formulas and the reduction for C(V) have been shown
for modal transition systems in Theorem 4.8(2) in [22] already. The theorem
below is merely a slight extension of that result.

Theorem 3.2 (i) Each pointed and finite-state modal Kripke model (Mi, si)
has a formula [Mi, si] of μL satisfying (6) for all pointed modal Kripke
models (N, t).

(ii) The decision problems C(V), S(V, φ), and V(V, φ) are in EXPTIME
in the size of φ and reducible to satisfiability checks

∧k

i=1 [Mi, si], φ ∧∧k

i=1 [Mi, si], and validity checks φ ∨ ¬
∧k

i=1 [Mi, si] of μL over Kripke
models (respectively).

Proof.

(i) For each state ti in Mi we set, similar to (3) in [29]:

[Mi, ti] = (
∧

(ti,t′i)∈Ra

�[Mi, t
′

i]) ∧ �(
∨

(ti,t′i)∈Rc

[Mi, t
′

i]) (7)

∧
∧

{q | q ∈ La(ti)} ∧
∧

{¬q | q �∈ Lc(ti), q ∈ AP}

as a system of greatest fixed point equations. As Mi has only finitely
many states, each [Mi, ti] is expressible in μL. The proof that [Mi, si]
satisfies (6) for all pointed modal Kripke models (N, t) is basically the
one given in [31].

(ii) We can reduce C(V) to a satisfiability check in μL by proving that V has
a common concretization iff the closed formula

σV =

k∧

i=1

[Mi, si] (8)

of μL is satisfiable over Kripke models.
• If σV is satisfiable, k |= σV for some pointed Kripke model (K, k). Since

(K, k) can be cast into a pointed modal Kripke model, (6) and k |= σV

render (Mi, si)≺(K, k) for all i = 1, 2, . . . , k and so (K, k) ∈ C(V).
• Conversely, if V has a common concretization, say (K, k), we have

(Mi, si)≺(K, k) for all i = 1, 2, . . . , k. Using (6) this implies (K, k) |= σV

and so σV is satisfiable over Kripke models.
The reductions for S(V, φ) and V(V, φ) to satisfiability checks in μL are

variations of the reduction for C(V). The check S(V, φ) holds iff φ ∧ σV

is satisfiable over Kripke models. The check V(V, φ) holds iff ¬φ ∧ σV is
unsatisfiable over Kripke models. But satisfiability checking of μL is in
EXPTIME [14].

�
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The semantics of Figure 1, an approximation as specified in Corollary 2.8,
is in UP ∩ co-UP via a reduction to 2-valued checks similar to the one in [5].
Such a reduction is not possibly in general for S(V, φ) and V(V, φ) as these
decision problems are EXPTIME-complete.

Theorem 3.3 The decision problems S(V, φ) and V(V, φ) are EXPTIME-
complete in the size of φ.

Proof. For V = {(M, s)}, S(V, φ) and V(V, φ) ask whether some (respectively,
all) concretizations of (M, s) satisfy φ. So S(V, φ) is the generalized model
checking problem of Bruns & Godefroid in [5] and V(V, φ) its dual. Since the
generalized model checking problem is EXPTIME-complete for formulas of the
modal mu-calculus [5], S(V, φ) and V(V, φ) are EXPTIME-hard for general V
and φ of μL in the size of φ. By Theorem 3.2 the decision problems S(V, φ)
and V(V, φ) are in EXPTIME in the size of φ and so EXPTIME-complete. �

4 Efficient consistency checking

Practical considerations suggest to investigate whether the upper bound of
Theorem 3.2(ii) can be lowered for C(V), which we now do for fixed k in (1).

Definition 4.1 (i) We denote the product state space
∏k

i=1 Σi by ΣV , write
t for (t1, t2, . . . , tk) ∈ ΣV , and use Vs to stress that si is the initial state
in each (Mi, si) of V in (4).

(ii) A common refinement witness for V is a relation W ⊆ ΣV such that
t ∈ W implies
(a) for all i and q ∈ AP , if ti ∈ La(q) then tj ∈ Lc(q) for all j �= i,
(b) for all i, if (ti, t

′
i) ∈ Ra, then there is some t

′ ∈ W , whose ith coordi-
nate equals t′i, such that (tj , t

′
j) ∈ Rc for all j �= i.

Note that in clause (b) above the ith coordinate of t
′ is bound to the

given t′i. As the arbitrary union of common refinement witnesses is a common
refinement witness, there is a greatest common refinement witness for each Vs,
denoted by WVs

. This relation captures the existence of common refinements.

Theorem 4.2 For any Vs, the predicate C(Vs) is equivalent to “s ∈ WVs
.”

Proof.

• We begin by showing that W = {t ∈ SVs
| C(Vt) �= {}} is a subset of WVs

.
Given t ∈ W , there is (K, k) = ((SK , RK , LK), k) ∈ C(Vt) by the definition
of W .
· Clause (b): For any i, if (ti, t

′
i) ∈ Ra, then there is (k, k′) ∈ RK with

(Mi, t
′
i)≺(K, k′) as (Mi, ti)≺(K, k). Since (Mj , tj)≺(K, k) for all j �= i
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No = {};
let (bad (t, No)) = // clause (a) of Definition 4.1(ii) fails:
((some i, j, q | t_i in L^a(q) && not t_j in L^c(q))
|| // clause (b) of Definition 4.1(ii) fails:
(some (t_i,x) in R^a | all t’ in Sigma_V minus No |

x = t’_i ==> some j | not (t_j,t_j’) in R^c
)) in
{ while (some t in Sigma_V minus No | (bad (t, No))) {

No = No union {t};
}

Yes = Sigma_V minus No; // remove all failures

Fig. 3. Computing WVs
for a given set of views Vs, where union and minus denote set-theoretic

union and complement, respectively. The algorithm computes a greatest fixed point and initially
“believes” that all tuples have a common concretization and then deletes tuples for which there is
evidence to the contrary.

and (k, k′) ∈ RK , there is (tj , t
′
j) ∈ Rc with (Mj , t

′
j)≺(K, k′) for each

j �= i. In particular, Vt
′ has (K, k′) as common concretization and so

t
′ ∈ W .

· A similar reasoning applies to clause (a) and so W ⊆ WVs
.

• Now we prove the desired equivalence.
(i) If C(Vs) holds, then s ∈ W by definition and W ⊆ WVs

by the item above.
(ii) Let s ∈ WVs

. We define the common concretization K = (WVs
, R, L) of

Vs as follows:

(t, t′) ∈ R iff for all i, (ti, t
′
i) ∈ Rc (9)

t ∈ L(q) iff for all i, ti ∈ Lc(q)

for q ∈ AP . We claim that (K, s) ∈ C(Vs) with refinement {(ti, t) | t ∈
WVs

} showing (Mi, ti)≺(K, t) for all i = 1, 2, . . . , k and all t ∈ WVs
. By

definition, any transition from t ∈ WVs
in K or propositional label at t in

K is “c-matched” for ti in each Mi. Conversely, any a-transition (ti, t
′
i) in

Mi with t ∈ WVs
ensures matching c-transitions (tj , t

′
j) for all j �= i such

that t
′ ∈ WVs

as t ∈ WVs
. So (t, t′) ∈ R as Ra ⊆ Rc in Mi. Since t

′ ∈ WVs

this works co-inductively. A similar argument applies to ti ∈ La(q) and
ti ∈ La(n). Therefore (Mi, si)≺(K, s) for all i = 1, . . . , k and so C(Vs)
holds.

�

Figure 3 shows an algorithm for computing WVs
. If V consists of two

pointed Kripke models the algorithm non-optimally computes their greatest
bisimulation. We note that the notion of refinement witness applies equally
to infinite collections of models Mi and that Theorem 4.2 remains to be valid
for such collections. Symbolic versions of the algorithm in Figure 3 may be
able to cope with such, suitably uniform, infinite collections as well.

Example 4.3 Figure 4 shows two modal Kripke models; {(s1, s2), (t1, t2)} is
a common refinement witness and the greatest one as all other elements of
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s2 t2

t1
u1

s1

q?

q

p q? p

M1 M2

Fig. 4. Two modal Kripke models, where dashed (solid) lines denote elements of Rc \ Ra (Ra,
respectively). Must-labels, elements of La(s), are written inside states s, as are may-labels which
are elements of Lc(s) \ La(s) and annotated with a “?”. For example, q ∈ Lc(s2) \ La(s2) and
p ∈ La(t1).

Σ1 × Σ2 have no common refinements. For example, for (u1, s2) ∈ Σ1 × Σ2

there is (s2, t2) ∈ Ra and no outgoing Rc transitions from u1 to a state having
a common refinement with t2.

Theorem 4.4 The algorithm of Figure 3 terminates after at most |ΣV | iter-
ations and assigns to Yes the set WVs

.

Proof. For termination, Sigma V minus No equals Sigma V initially and No

is a subset of Sigma V that increases by one at each iteration so there cannot
be more iterations than elements in Sigma V. It remains to show correctness:

• For WVs
⊆ Yes it suffices to show W ⊆ Yes for any non-empty com-

mon refinement witness W ⊆ SVs
, i.e., that W ⊆ Sigma V minus No is

an invariant of the while-statement. The inclusion W ⊆ Sigma V minus No

holds initially as then No is empty and W ⊆ Sigma V. Assume that W ⊆
Sigma V minus No holds right before an iteration of the while-statement.
Given t ∈ W , the expression (bad (t, No)) is false since t is in the com-
mon refinement witness W and the range of the quantifier all t’ is the set
S V minus No and subsumes W by assumption. Thus, no t ∈ W can be
added to No.

• For Yes ⊆ WVs
it suffices to show that a non-empty Yes is a common refine-

ment witness. After the assignment to the non-empty Yes, the expression
(bad (t, No)) is false for all t in Yes so this states that Yes is a common
refinement witness for Vs.

�
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5 Automata games

We would like to obtain efficient approximations for the EXPTIME-complete
judgments S(V, φ) and V(V, φ). Since 2-valued model checking for μL is re-
ducible to determining who has a winning strategy in a parity game [27,33],
we seek approximations for S(V, φ) and V(V, φ) that allow similar reductions.

Existing solutions and their shortcomings.

One may seek such approximations based on the idea of model merging
[40,21]. By imposing a determinacy condition similar to the one used in [30]
on models, the process of merging models is able to produce a minimal com-
mon refinement M̂ for consistent models so that (3) holds [40]. Alas, such
determinacy demands severely limit the expressiveness of models.

The idea of model merging can also be applied if no determinacy assump-
tions are being made. In [21], “summary” models V− and V+ were constructed
from the state space WVs

computed by the algorithm in Figure 3 such that

(V−, s)≺(Mi, si)≺(V+, s) (10)

for all i = 1, 2, . . . , k. So (V−, s) is a common abstraction and (V+, s) is a
common refinement of all (Mi, si) if C(Vs) holds. Unfortunately, the sets of
concretizations of (V−, s) and (V+, s) are poor approximations of non-empty
sets in (1) in general and there are principal reasons for the poorness of such
single-model approximations, a point we elaborate upon now.

Theorem 5.1 There are pointed finite-state modal Kripke models (M1, s1)
and (M2, s2) such that C(M1, s1) ∩ C(M2, s2) is not of the form C(M̂, ŝ) for
any pointed modal Kripke model (M̂, ŝ).

Proof. We employ proof by contradiction, the results of [17], and the model
theoretic insights from [25].

In [17] it is shown that various notions of 3-valued models and their refine-
ments have translations into modal transition systems and their refinement
notion such that these translations preserve and reflect refinement. There-
fore, it suffices to prove this theorem for modal transition systems as 3-valued
models. Consider

(Assumption) Any two pointed finite-state modal transition systems (M1, s1)
and (M2, s2) have a pointed modal transition system (M1 ∨ M2, s1 ∨ s2) such
that (11) holds:

C(M1 ∨ M2, s1 ∨ s2) = C(M1, s1) ∩ C(M2, s2) . (11)
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Proof by contradiction: If the theorem is not true, then (Assumption)
holds. In [25], an SFP-domain (D,≤) is constructed such that all pointed
finite-state modal transition systems (M, s) have an embedding 〈|M, s |〉 ∈ D
satisfying, for all pointed finite-state modal transition systems (N, t),

(M, s) refines (N, t) iff 〈|N, t |〉 ≤ 〈|M, s |〉, (12)

(M, s) ≺ (D, 〈|M, s |〉), and (13)

(D, 〈|M, s |〉) ≺ (M, s) . (14)

In particular, (D,≤) is a partial order in which all directed sets have a supre-
mum. From [23], we learn that for all pointed modal transition systems (N, t)
and (M, s) we have

(N, t)≺(M, s) iff C(M, s) ⊆ C(N, t) , (15)

the if-part being non-trivial.

From (12) and (15) we infer that 〈|M1 ∨ M2, s1 ∨ s2 |〉 is the supremum of
〈|M1, s1 |〉 and 〈|M2, s2 |〉 in (D,≤) whenever (11) holds. By the assumption that
the theorem is false, a pointed model (M1 ∨M2, s1 ∨ s2) satisfying (11) exists
for all finite-state models for which the right-hand side of (11) is non-empty.
In particular, any two compact elements k and l of D that are bounded in D
(i.e. for which there is some d ∈ D with k ≤ d and l ≤ d) have a supremum
in D as all compact elements are embeddings of certain finite-state pointed
modal transition systems by [25]. Since D is algebraic, this means that the
supremum of any two elements bounded in D exists and so D is a bounded
complete domain.

But then any non-empty subset of D has an infimum [1]. We will derive
a contradiction from the existence of such infima as follows. Suppose that
(N1, t1) and (N2, t2) are pointed finite-state modal Kripke models as shown in
Figure 5. Appealing to the results in [17], we may pretend that these models
and all models discussed below are modal transition systems and that we can
therefore consider their embedding into D. By the same token, we may think
of any modal transition system as a modal Kripke model whenever this is
convenient. Thus, i defined as the infimum 〈|N1, t1 |〉 ∧ 〈|N2, t2 |〉 in D exists
and can be interpreted as a pointed modal transition system (D, i) as specified
in [25]. In particular, any two common abstractions (A1, a1) and (A2, a2)
of (N1, t1) and (N2, t2) are such that there embeddings are lower bounds of
the embeddings of each (Ni, ti): 〈|Aj, aj |〉 ≤ 〈|Nj′, tj′ |〉 for all j, j ′ ∈ {1, 2}.
Therefore, by (12), we conclude

〈|Aj, aj |〉 ≤ (D, i) (j = 1, 2) as i = 〈|N1, t1 |〉 ∧ 〈|N2, t2 |〉 (16)

(Aj, aj)≺ (D, i) (j = 1, 2) . (17)

Now consider the pointed finite-state modal Kripke models (A1, a1) and (A2, a2)
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Fig. 5. Two pointed modal Kripke models (N1, t1) and (N2, t2) with AP = {p, q, r, s} that do not
possess a maximal common abstraction, as shown in the proof of Theorem 5.1.
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Fig. 6. Two pointed modal Kripke models. Both are common abstractions of the pointed modal
Kripke models (N1, t1) and (N2, t2) depicted in Figure 5. Yet no common refinement of (A1, a1)
and (A2, a2) is a common abstraction of (N1, t1) and (N2, t2), as shown in the proof of Theorem 5.1.

in Figure 6. It is easily seen that both are abstractions of (N1, t1) and of
(N2, t2) and so (16) and (17) follow for that choice of (Aj , aj).

Since (a2, x2) ∈ Ra
A2

and (A2, a2)≺(D, i), there is some (i, i′) ∈ Ra
D such

that x2≺i′. But a1≺i as well and Ra
D ⊆ Rc

D and so there is some state ω of A1

with (a1, ω) ∈ Rc
A1

and ω≺i′. Finally, i≺t1 and i≺t2 together with (i, i′) ∈ Ra
D

imply the existence of some (t1, η) ∈ Ra
N1

and (t2, γ) ∈ Ra
N2

such that i′≺η

and i′≺γ. In particular,

ω≺η, ω≺γ, x2≺η, and x2≺γ (18)

as refinement is transitive and i′ acts as the transitive link for all four refine-
ment instances in (18). We therefore arrive at the desired contradiction if we
can show that no such states η and γ exist. Since each ti has two Ra

Ai
-successor

states, we need to consider four cases:

(i) Let (η, γ) = (u1, u2). Since ω abstracts both states u1 and u2 by (18), we
infer from the labels at u1 that ω ∈ Lc

A1
(r). From u2 we similarly obtain

ω ∈ Lc
A1

(s). But Lc
A1

(r) ∩ Lc
A1

(s) is empty, a contradiction.

(ii) Let (η, γ) = (u1, w2). Since ω abstracts both states u1 and w2 by (18),
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we infer from the labels at u1 that ω ∈ Lc
A1

(r). From w2 we similarly
obtain ω ∈ Lc

A1
(p). But Lc

A1
(r) ∩ Lc

A1
(p) is empty, a contradiction.

(iii) Let (η, γ) = (w1, u2). Since ω abstracts both states w1 and u2 by (18),
we infer from the labels at w1 that ω ∈ Lc

A1
(p). From u2 we similarly

obtain ω ∈ Lc
A1

(s). But Lc
A1

(p) ∩ Lc
A1

(s) is empty, a contradiction.

(iv) Let (η, γ) = (w1, w2). Since x2 abstracts w1 by (18), we infer from the
labels at w1 that x2 ∈ Lc

A2
(p). But x2 �∈ Lc

A2
(p) by definition, a contra-

diction.

In summary, not all (N1, t1) and (N2, t2) have an infimum with respect
to the preorder ≺. Therefore, (Assumption) is false and so the theorem is
true. �

Corollary 5.2 The domain D of [25] is not bounded complete.

Proof. The proof for this is implicit in the proof of Theorem 5.1 since bounded
complete domains have suprema for all subsets that are bounded in that do-
main. �

Let us make several points about Theorem 5.1 and its proof.

(i) The inability to obtain good reductions of S(V, φ) and V(V, φ) to model
checks on a single modal Kripke model is linked to the fact that the
domain-theoretic model D of [25] is not bounded complete. Consequently,
this approach can only deliver limited results and motivates the consid-
eration of tree-automata-like models and their refinement games in the
remainder of this section.

(ii) The fact that D is not bounded complete seems to be related to the
incompleteness, as discussed by Dams & Namjoshi in [12], of verifying
modal mu-calculus model checks M |= φ through model checks A |=a φ

on finite-state abstractions A. For if X is the set of elements d such that
(D, d) |=a φ, completeness in the sense of [12] would require that the
non-empty X has a minimal element (which is an infimum of X that is
also an element of X) in D.

(iii) The proof of Theorem 5.1 relied on the temporary assumption that infima
in D existed for all pairs of elements. These pairs were not required to
be consistent or to violate determinacy conditions that would secure (3).
Indeed, the example models (N1, t1) and (N2, t2) chosen in Figure 5 are
inconsistent as they do not have a common concretization. This is not
problematic as we were “order dualizing” the problem from common re-
finements of consistent pairs of models to common abstractions of any
pair of models.
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Our proposed solution.

In presenting our proposal using tree-automata-like models we focus on
validity checks only and over-simplify the subsequent technical discussion for
sake of clarity. Overall, we rely heavily on the work by Dams & Namjoshi
in [12]. The key idea of our proposed solution to Issue #2 is

• that modal Kripke models M and formulas φ of μL alike have efficient
representations as a kind of tree automata, the focussed transition systems
(FM , respectively Fφ) of [12],

• that focussed transition systems F recognize a language of trees L(F ),

• that σV ∈ μL can thus be expressed as such a focussed transition system
FV , and

• that the EXPTIME-hard language inclusion problem L(FV) ⊆ L(Fφ) of
focussed transition systems can be approximated in UP ∩ co-UP with a
certain parity game Fφ � FV of [12].

Let σV be
∧k

i=1 [Mi, si] as in (8). This μL formula has an efficient encoding
as a corresponding tree automata AV that accepts exactly those Kripke models
satisfying σV . Similarly, we have a tree automaton Aφ for φ. These tree
automata are then efficiently represented as focussed transition systems [12]
AV and Aφ, respectively, as detailed in loc. cit. (Thus, FV is defined to be AV

and Fφ is Aφ.) By Theorem 7 of loc. cit., Aφ |= Aφ for the model checking game
in loc. cit., where |= corresponds to our |=a and therefore under-approximates
validity checks. By Theorem 6 of loc. cit., we get AV |= Aφ provided that
AV refines Aφ (written AV � Aφ in [12]) for the abstraction game moves
in Figure 3 of loc. cit. Thus, one can under-approximate V(V, φ) with the
(parity) game check AV � Aφ of loc. cit.

Future work will have to investigate how much more precise this solution
is compared to the existing approaches discussed in this section. Theorem 5.1
provides strong evidence for the improved precision of our proposed solution.

6 Related work

Uchitel & Chechik [40] merge a variant of modal transition systems with over-
lapping but different sets of event signatures (the AP in our state-based set-
ting) to obtain a minimal common refinement and suggest user participation
to explore common behavior if no minimal common refinement exists. Their
models are more general in that events may differ in views, but less general
than ours in that we compute the space of all consistent tuples and make
efficient model checking possible. They stress engineering activities in model
elaboration, we use static analysis and identify the complexities of the relevant
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decision problems.

Dams & Namjoshi [13] propose modal μ-automata as abstractions of Kripke
models and use a simulation relation in UP∩ co-UP for such automata to ap-
proximate EXPTIME-hard language inclusion. Our setting favors focussed
transition systems over μ-automata as the latter correspond to distributive
formulas in μL [26], which have linear satisfiability check, but neither σV nor
σV ∧ φ are distributive so their conversion into this format may be expensive.

Larsen & Xinxin [32] consider finite systems of equations Pi ∼ Ci(X),
1 ≤ i ≤ k, in one variable X where Pi is a process term, Ci(·) a process
context, and ∼ bisimulation. They show that the solution set of such an
equation system E is completely described by a disjunctive modal transition
system ME in that X solves E if, and only if, the disjunctive modal transition
system described by X refines ME . This determines an algorithm for finite-
state process terms that computes a solution of E in case that ME is consistent.

Larsen et al. use projective views of deterministic, parameterized modal
transition systems such that each view (Mi in our notation) abstracts the
parameterized model (M̂ in our notation) and the conjunction of all views
recovers the projected modal transition system M̂ [30], meaning that (3) holds
for a possibly infinite collection of models Mi (for example, i may range over
all natural numbers if the system is parameterized by a natural number).

Fitting uses a partial order of experts to constrain the consistency of ex-
perts’ assertions about the truth and falsity of transitions and state observables
in multiple-valued Kripke models [15].

Chechik et al. endow Fitting’s models with a semantics for negation drawn
from a De Morgan lattice negotiated among experts. For these models they
devise a multiple-valued version of computation tree logic and its symbolic
model checking algorithm [6].

Nentwich et al. develop the tool xlinkit that analyzes distributed XML
documents for possible inconsistencies, based on rules written in first-order
logic [34].

Guerra [19] proposes a specification framework for software artifacts, where
specifications have defaults and allow for exceptions stemming from the reuse
or evolution of system demands. In [19] specifications are written in linear-
time temporal logic [36] and a non-monotonic semantics for this logic is defined
based on default institutions [18], where the semantics of defaults is given by
a generalized distance between interpretations.

For modal transition systems and the modal mu-calculus, the decision
problems of this paper have already been defined in [23] and the reduction
to satisfiability in the modal mu-calculus for common refinement checks has
been stated in [22]. In loc. cit. it is also shown that the sets C(M) are compact
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in the quotient space of bisimulation for the natural metric based on testing
formulas of μL without fixed points; in particular, all sets in (1) are compact
even for infinite-state models.

Apart from the novel material in Section 5 and a different exposition, the
results of this paper are a customization of results that appeared already in a
technical report [21]. In loc. cit. a more general notion of model was considered
in which some propositions of 2-valued models are nominals, true at exactly
one state. The modal mu-calculus used in loc. cit. was therefore the hybrid
mu-calculus of Sattler and Vardi [39].

7 Conclusions

We determined the complexities of consistency, satisfiability, and validity
checking on the sets of common concretizations of finitely many finite-state
models as PTIME for a fixed number of models, EXPTIME-complete, and
EXPTIME-complete (respectively). We discussed the limitations of existing
approximations of the two EXPTIME-complete decision problems and pointed
out that focussed transition systems and their refinement games should be
more precise approximations than those found in the extant literature. Fi-
nally, we proved that not all finite-state modal Kripke models that have a
common concretization possess a common refinement that is minimal with
respect to that property in the refinement ordering. Dually, this shows that
not all pairs of finite-state modal Kripke models (whether consistent or not,
whether deterministic or not) have a common abstraction that is maximal with
respect to that property. This corroborates the need for considering models
with structure similar to that of tree automata if more precise approximations
of the EXPTIME-complete judgments discussed in this paper are needed.
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