1,672 research outputs found

    Autocalibration with the Minimum Number of Cameras with Known Pixel Shape

    Get PDF
    In 3D reconstruction, the recovery of the calibration parameters of the cameras is paramount since it provides metric information about the observed scene, e.g., measures of angles and ratios of distances. Autocalibration enables the estimation of the camera parameters without using a calibration device, but by enforcing simple constraints on the camera parameters. In the absence of information about the internal camera parameters such as the focal length and the principal point, the knowledge of the camera pixel shape is usually the only available constraint. Given a projective reconstruction of a rigid scene, we address the problem of the autocalibration of a minimal set of cameras with known pixel shape and otherwise arbitrarily varying intrinsic and extrinsic parameters. We propose an algorithm that only requires 5 cameras (the theoretical minimum), thus halving the number of cameras required by previous algorithms based on the same constraint. To this purpose, we introduce as our basic geometric tool the six-line conic variety (SLCV), consisting in the set of planes intersecting six given lines of 3D space in points of a conic. We show that the set of solutions of the Euclidean upgrading problem for three cameras with known pixel shape can be parameterized in a computationally efficient way. This parameterization is then used to solve autocalibration from five or more cameras, reducing the three-dimensional search space to a two-dimensional one. We provide experiments with real images showing the good performance of the technique.Comment: 19 pages, 14 figures, 7 tables, J. Math. Imaging Vi

    Certifying the Existence of Epipolar Matrices

    Full text link
    Given a set of point correspondences in two images, the existence of a fundamental matrix is a necessary condition for the points to be the images of a 3-dimensional scene imaged with two pinhole cameras. If the camera calibration is known then one requires the existence of an essential matrix. We present an efficient algorithm, using exact linear algebra, for testing the existence of a fundamental matrix. The input is any number of point correspondences. For essential matrices, we characterize the solvability of the Demazure polynomials. In both scenarios, we determine which linear subspaces intersect a fixed set defined by non-linear polynomials. The conditions we derive are polynomials stated purely in terms of image coordinates. They represent a new class of two-view invariants, free of fundamental (resp.~essential)~matrices

    3D curves reconstruction from multiple images

    Get PDF
    In this paper, we propose a new approach for reconstructing 3D curves from a sequence of 2D images taken by uncalibrated cameras. A curve in 3D space is represented by a sequence of 3D points sampled along the curve, and the 3D points are reconstructed by minimizing the distances from their projections to the measured 2D curves on different images (i.e., 2D curve reprojection error). The minimization problem is solved by an iterative algorithm which is guaranteed to converge to a (local) minimum of the 2D reprojection error. Without requiring calibrated cameras or additional point features, our method can reconstruct multiple 3D curves simultaneously from multiple images and it readily handles images with missing and/or partially occluded curves. © 2010 IEEE.published_or_final_versionThe 2010 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Sydney, Australia, 1-3 December 2010. In Proceedings of DICTA, 2010, p. 462-46

    Metric 3D-reconstruction from Unordered and Uncalibrated Image Collections

    Get PDF
    In this thesis the problem of Structure from Motion (SfM) for uncalibrated and unordered image collections is considered. The proposed framework is an adaptation of the framework for calibrated SfM proposed by Olsson-Enqvist (2011) to the uncalibrated case. Olsson-Enqvist's framework consists of three main steps; pairwise relative rotation estimation, rotation averaging, and geometry estimation with known rotations. For this to work with uncalibrated images we also perform auto-calibration during the first step. There is a well-known degeneracy for pairwise auto-calibration which occurs when the two principal axes meet in a point. This is unfortunately common for real images. To mitigate this the rotation estimation is instead performed by estimating image triplets. For image triplets the degenerate congurations are less likely to occur in practice. This is followed by estimation of the pairs which did not get a successful relative rotation from the previous step. The framework is successfully applied to an uncalibrated and unordered collection of images of the cathedral in Lund. It is also applied to the well-known Oxford dinosaur sequence which consists of turntable motion. Image pairs from the turntable motion are in a degenerate conguration for auto-calibration since they both view the same point on the rotation axis

    Trifocal Relative Pose from Lines at Points and its Efficient Solution

    Full text link
    We present a new minimal problem for relative pose estimation mixing point features with lines incident at points observed in three views and its efficient homotopy continuation solver. We demonstrate the generality of the approach by analyzing and solving an additional problem with mixed point and line correspondences in three views. The minimal problems include correspondences of (i) three points and one line and (ii) three points and two lines through two of the points which is reported and analyzed here for the first time. These are difficult to solve, as they have 216 and - as shown here - 312 solutions, but cover important practical situations when line and point features appear together, e.g., in urban scenes or when observing curves. We demonstrate that even such difficult problems can be solved robustly using a suitable homotopy continuation technique and we provide an implementation optimized for minimal problems that can be integrated into engineering applications. Our simulated and real experiments demonstrate our solvers in the camera geometry computation task in structure from motion. We show that new solvers allow for reconstructing challenging scenes where the standard two-view initialization of structure from motion fails.Comment: This material is based upon work supported by the National Science Foundation under Grant No. DMS-1439786 while most authors were in residence at Brown University's Institute for Computational and Experimental Research in Mathematics -- ICERM, in Providence, R
    • …
    corecore