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Abstract

In this thesis the problem of Structure from Motion (SfM) for uncalibrated
and unordered image collections is considered. The proposed framework is an
adaptation of the framework for calibrated SfM proposed by Olsson-Enqvist
(2011) to the uncalibrated case.

Olsson-Enqvist's framework consists of three main steps; pairwise relative ro-
tation estimation, rotation averaging, and geometry estimation with known
rotations. For this to work with uncalibrated images we also perform auto-
calibration during the �rst step.

There is a well-known degeneracy for pairwise auto-calibration which occurs
when the two principal axes meet in a point. This is unfortunately common for
real images. To mitigate this the rotation estimation is instead performed by
estimating image triplets. For image triplets the degenerate con�gurations are
less likely to occur in practice. This is followed by estimation of the pairs which
did not get a successful relative rotation from the previous step.

The framework is successfully applied to an uncalibrated and unordered collec-
tion of images of the cathedral in Lund. It is also applied to the well-known
Oxford dinosaur sequence which consists of turntable motion. Image pairs from
the turntable motion are in a degenerate con�guration for auto-calibration since
they both view the same point on the rotation axis.
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Chapter 1

Introduction

This thesis deals with the problem of Structure from Motion, which is deter-
mining 3D structure from 2D images. The structure refers to a model of the
3D scene which is seen in the images. In this thesis will consider the case when
the structure is modeled by point clouds, and we will refer to the individual 3D
points as structure points. Motion refers to the relative position and orientation
of the cameras which captured the images. The cameras will be modeled using
the pinhole camera model.

For building accurate 3D reconstructions we will require some additional knowl-
edge of the cameras beyond just their position and relative orientation. This
knowledge is called the camera's calibration. The most important parameter
is the camera's focal length. The focal length is the relative distance from the
image sensor to the lens. Without knowledge of the camera's calibration the
3D scene can only be determined up to a projective ambiguity. In practice this
means we are e.g. unable to determine the real angles between lines.

This thesis speci�cally considers the case of unordered image collections. By
unordered we mean that we have no knowledge of which images were taken
close to each other or even which view the same parts of the scene. Thus
ideally no preference in the framework should be given based on the order of
the images. The opposite is ordered image collections which often consists of
image sequences with a small movement of the camera between each consecutive
image.

In [20] Olsson and Enqvist propose a framework for structure from motion for
unordered image collections. The framework depends on the cameras having
known calibration from a previous o�ine calibration. This thesis will adapt
the Olsson-Enqvist framework to the uncalibrated case by performing auto-
calibration using the images.
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1.1 Notation

Vectors will be written with bold font (e.g. x, X, a) and are assumed to be
column vectors unless otherwise noted. Matrices will be denoted by uppercase
letters (e.g. P , A, H). Once homogeneous objects are de�ned (see Section 2.1)
we let equality signs between homogeneous objects denote equality up to scale
unless otherwise noted.

1.2 Related work

In recent years there have been many proposed frameworks for structure from
motion for unordered image collections. Some examples are Olsson and Enqvist
[20], Snavely et. al [22] and Crandall et al. [3]. The problem of camera cali-
bration is usually solved by assuming that it is known from a previous o�ine
calibration or by using the focal length �eld in the EXIF tags as an initial guess
and then improving it with bundle adjustment. This has the inherent problem
of not working for images which have no EXIF tags or o�ine calibration is
impossible.

There also exist frameworks for uncalibrated image sets which start by building a
projective reconstruction and then perform auto-calibration. One example is the
framework proposed by Pollefeys et. al in [21] where a projective reconstruction
is built incrementally and then upgraded to a metric reconstruction by �nding
the absolute quadric Q∗∞. A more recent example can be seen in Chen et. al [16]
where the projective reconstruction is created hierarchically by merging smaller
projective reconstructions. Similarly to [21] the projective reconstruction is
upgraded to metric by estimating the absolute quadric.

1.3 Notes about implementation

The implementation was written in MATLAB using Olsson and Enqvist's code
as a starting point. The implementation uses the MOSEK [1] library for solving
linear programs and the point correspondences are found using the Lowe's SIFT
implementation from [19].
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Chapter 2

Background

We start o� with some of the background needed to de�ne the problem we are
interested in. First comes a brief review of projective geometry. Then the pin-
hole camera model is introduced and the advantage of the projective geometry
becomes apparent. Finally we discuss the di�erence between projective and
metric reconstruction.

The interested (or confused) reader is referred to [11] which gives a more thor-
ough review of the subjects.

2.1 Projective geometry

One of the tools we will need is projective geometry. Projective geometry deals
with the geometry in a projective space. One such space is the projective plane
denoted P2. The projective plane is an extension of the real plane R2.

The projective plane P2 can be thought of as equivalence classes in R3\{0} where
two points x and y are equivalent if there exist some λ 6= 0 such that x = λy.
This means that the point (x, y, z)T denotes the same point as (2x, 2y, 2z)T and
(λx, λy, λz)T .

This representation is called homogeneous coordinates. From now on we will
let the equality sign denote equality up to scale when comparing homogeneous
objects, e.g we can write (1, 2, 3)T = (2, 4, 6)T which is true in P2.

To interpret points in P2 we let the point representatives with z = 1 correspond
to points in the real plane R2, i.e.

(x, y) ∈ R2 ↔ (x, y, 1) ∈ P2. (2.1)

Due to the scale invariance we have that (x, y, 1) = (λx, λy, λ) in P2. Thus for
any point (x, y, z) ∈ P2 we can �nd the corresponding point in R2 by dividing
by the third coordinate, i.e. (x, y, z) = (x/z, y/z, 1).

This becomes troublesome when the third coordinate is zero. Points where z = 0
does not correspond to any point in R2. In projective geometry these points are
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called ideal points or points at in�nity. To motivate this name consider

(x, y, ε)T = (x/ε, y/ε, 1)T . (2.2)

When ε goes to zero the point goes toward in�nity in the direction (x, y)T .

By adding coordinates it is simple to generalize the projective plane P2 to arbi-
trary dimensions, i.e. Pn.

One of the advantages of homogeneous coordinates is that they allows for a
larger class of transformations to be modeled using matrix multiplication, e.g.
a�ne transformations. A�ne transformations in Rn are on the form

Rn 3 x 7→ Ax + t ∈ Rn. (2.3)

The corresponding transformation in Pn can be written

Pn 3
(
λx
λ

)
7→
[
A t
0T 1

](
λx
λ

)
=

(
λ(Ax + t)

λ

)
∈ Pn. (2.4)

Another class of important transformations are similarity transformations. These
consist of a scaling, rotation and translation of the points and can be writ-
ten

H =

[
sR t
0T 1

]
where RTR = I, detR = 1, s ∈ R+. (2.5)

In general any invertible (n+ 1)× (n+ 1) matrix is called a projective transfor-
mation.

The homogeneous coordinates also allow for lines in P2 to be modeled using the
scalar product. The equation for a line in R2 can be written

ax+ by + c = 0. (2.6)

In P2 we can write this as

(a, b, c)

λxλy
λ

 = λ(ax+ by + c) = 0. (2.7)

Thus the point x = (x, y, z)T ∈ P2 belongs to the line l = (a, b, c)T i�

lTx = 0. (2.8)

For P3 we instead have a similar construction for planes. In general we have
that for Pn we can model (n − 1)-dimensional hyperplanes using the scalar
product.

2.2 The Pinhole camera model

The camera model we will use is the Pinhole camera model. A camera is a
mapping which takes the 3D points to the image points. In the pinhole camera
model we construct the line from the camera center to the 3D points. The
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z
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Figure 2.1: The pinhole camera model. The projection x is formed by taking
the intersection of the plane z = 1 with the line going through both the origin
and the 3D point X.

intersection of this line and the image plane is taken as the projection. This can
be seen in Figure 2.1.

Assume that the camera center lies at the origin and that the image plane is
given by z = 1. To �nd the projection x of a 3D point X ∈ R3 we construct the
line going through both the origin and the 3D point,

l(λ) = λX = λ(x, y, z)T . (2.9)

The intersection with the plane z = 1 is then given by λz = 1 ⇔ λ = 1
z . Thus

the projection on the image plane is given by

x =

(
x/z
y/z

)
. (2.10)

Now if we consider the image points to be part of P2 and the structure points
to be part of P3 we see that due to the scale invariance

x =

x/zy/z
1

 =

xy
z

 . (2.11)

Thus in the projective setting the camera can be modeled using a camera ma-
trix xy

z

 =

1 0 0 0
0 1 0 0
0 0 1 0


︸ ︷︷ ︸

P


x
y
z
w

 . (2.12)
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This was under the assumption that the camera center was at the origin and
the image plane was at z = 1. For general camera centers and image planes
we simply translate and rotate the points such that this holds, i.e. P = [R t].
Cameras that are on this form are called calibrated cameras.

To generalize even further we don't need to restrict ourselves to simply rotating
the points but can have an arbitrary transformation, i.e P = [A t]. Cameras on
this form can always be factorized as P = K[R t] where K is upper triangular
with positive diagonal elements using QR-factorization.

The matrix K is called the calibration matrix. The calibration matrix contains
the camera's intrinsic parameters; focal length f , aspect ratio α, skew s and
principal point (u0, v0).

K =

αf s u0

0 f v0

0 0 1

 . (2.13)

The camera's extrinsic parameters consist of the translation and rotation.

2.3 Metric reconstruction

Given a set of images of a static scene a projective reconstruction is a set of
cameras and 3D points, {P,X}, such that

xij = PiXj , (2.14)

where xij is the image point corresponding to the jth 3D point seen in the ith
camera.

Let {P,X} be a projective reconstruction and H an arbitrary projective trans-
form. Then {PH, H−1X} is another projective reconstruction since

(PiH)(H−1Xj) = PiXj = xij . (2.15)

Thus for any scene there are in�nitely many possible projective reconstructions
which di�er by a projective transformation. Since a projective transformation
does not (in general) preserve angles, the structure points X can look quite
di�erent than the "real world" scene. See Figure 2.2.

We are interested in a reconstruction where the structure points are as close to
the "real world" scene as possible. Since there is no clear choice of coordinate
system in the "real world" we want it to di�er with at most a similarity transform
(rotation, scaling, translation) from the "real" scene. Such a reconstruction is
called a metric reconstruction.
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Chapter 3

Problem formulation

Given images of a static scene and putative pairwise point correspondences we
want to estimate each camera's focal length and �nd a metric reconstruction
describing the scene under the assumption that the cameras have zero skew,
unit aspect ratio and known principal point. See Figure 3.1.

Figure 3.1: The Structure from Motion problem. Given point correspondences
between images we want to �nd both the structure points and the relative
position and orientation of the cameras.

Let xij denote the jth structure point seen in the ith image. We want to �nd a
reconstruction such that

xij = PiXj = Ki[Ri ti]Xj ∀i, j, (3.1)

where Ki = diag(fi, fi, 1) and RTi Ri = I. Due to measurement noise in the
image points it is likely that no reconstruction exists that satisfy (3.1) exactly
for all image points. Instead we search for a solution which minimizes the
reprojection error, i.e.

min
{P,X}

∑
i,j

∣∣∣∣∣∣∣∣(xij − P 1
i Xj

P 3
i Xj

, yij −
P 2
i Xj

P 3
i Xj

)∣∣∣∣∣∣∣∣2 . (3.2)
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3.1 Calibration assumptions

We assume that the cameras have zero skew, unit aspect ratio and known prin-
cipal point. Since the principal point is known we can w.l.o.g. then assume that
the calibration matrices K have the form K = diag(f, f, 1) since the principal
point can be moved to the origin otherwise.

K =

f 0 u0

0 f v0

0 0 1

 =

1 0 u0

0 1 v0

0 0 1


︸ ︷︷ ︸

Kp

f 0 0
0 f 0
0 0 1


︸ ︷︷ ︸

Kf

(3.3)

Transforming the image points withK−1
p moves ths principal point to the origin.

To see this consider

x = KpKf [R t] ⇔ K−1
p x = Kf [R t]. (3.4)

If we now consider x̃ = K−1
p x to be the new image points they will correspond

to the camera with calibration matrix Kf .
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Chapter 4

Theory

Now follows a review of some of the theory that will be used in the rest of the
thesis. On a �rst reading the unfamiliar reader might want to skip some of the
details and derivations.

First we review some multiple view geometry and de�ne the fundamental matrix
and trifocal tensor. The fundamental matrix for a pair of uncalibrated cameras
was introduced simultaneously by Hartley [10, 9] and Faugeras [4, 5]. The trifo-
cal tensor (in matrix form) for a triplet of uncalibrated cameras was identi�ed
by Hartley in [7]. These objects are useful because they allow us to create an
initial projective reconstruction from image pairs and triplets. By putting con-
straints on the projections they also help us decide which point correspondences
are outliers.

Then follows a short introduction to conics and their generalizations to projec-
tive spaces and to higher dimensions. These are tools that will be needed when
deriving methods for auto-calibration.

Finally in the section geometry at in�nity we consider some of the conics and
quadrics which are useful in auto-calibration. The absolute conic Ω∞ was �rst
used in computer vision by Faugeras and Maybank [6] and the absolute quadric
was introduced by Triggs in [24].

For a more in-depth review of these subjects the reader is referred to [11].

4.1 Multiple view geometry

4.1.1 Fundamental matrix

In this section we will derive the fundamental matrix which captures the geom-
etry of two cameras viewing a scene. The fundamental matrix puts constraints
on the projections of 3D points seen in two views. These constraints are used
to decide which point correspondences are outliers and to estimate the funda-
mental matrix. From the fundamental matrix we can also extract a pair of
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cameras consistent with it. This allows us to form an initial projective recon-
struction.

Assume we have a scene captured by two cameras and that the cameras are on
the form P1 = [I 0] and P2 = [A t]. Let x1 and x2 be observations of the same
3D-point X in the two views.

First consider x1. This point will backproject to a line

l(s) =

(
x1

s

)
. (4.1)

This line in 3D-space will project down to a line in the second image. Since the
unknown 3D-point X must lie on the line l, the second observation x2 must lie
on the projection of the line. See Figure 4.1.

X

x1 x2

c1 c2

Figure 4.1: Epipolar geometry. The image point x1 backprojects to a line in
3D-space. Somewhere on this line lies the unknown 3D-points X. The line
downprojects onto a line in the second image which must contain the true pro-
jection x2.

We can �nd the projection of the line by considering the two extremes, s = 0
and s =∞,

P2l(0) = Ax1 and P2l(∞) = t. (4.2)

The line through these points is given by t × Ax1 = [t]×Ax1 where [t]× is the
3 × 3 matrix which captures the linear function x 7→ t × x. Since x2 must lie
on this line we get the condition

0 = xT2 [t]×Ax1 = xT2 Fx1, (4.3)

where F = [t]×A is the fundamental matrix.

Extracting cameras from F

Now we consider the problem of �nding cameras P1 and P2 such that they
correspond to a given fundamental matrix F . Similarly to the previous section
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we choose the �rst camera as P1 = [I 0]. The epipole is the projection of the
other camera's camera center. Let e2 be the epipole in the second image. For
the epipole e2 it holds that eT2 F = 0. Then the second camera can be chosen
as P2 = [[e2]×F e2]. To verify that this is correct we consider the projections

of a 3D point X =

(
x
s

)
.

x1 = P1X = x, x2 = P2X = [e2]×Fx + se2, (4.4)

and check that these points satisfy the epipolar constraint

xT2 Fx1 = (xTFT [e2]T× + seT2 )Fx = (Fx)T [e2]T×(Fx)︸ ︷︷ ︸
Fx·(e2×Fx)=0

+s (eT2 F )︸ ︷︷ ︸
=0

x = 0. (4.5)

Projective invariance

The fundamental matrix is invariant to projective transformations of the cam-
eras and 3D-points. This follows directly from the projective ambiguity for
reconstructions. Let H be an arbitrary projective transformation and {P, X} a
projective reconstruction. Since {PH, H−1X} has the same projections as the
�rst pair they must have the same fundamental matrix.

It is the projective invariance that allows us to w.l.o.g. assume that the �rst
camera is on the form P = [I 0]. To see this consider a pair of cameras

P1 = [A1 t1] and P2 = [A2 t2]. (4.6)

Transforming this pair with the transformation

H =

[
A−1

1 −A−1t1

0T 1

]
(4.7)

we get the pair

P̃1 = P1H = [I 0] and P̃2 = P2H = [A2A
−1
1︸ ︷︷ ︸

A

(t2 −A2A
−1
1 t1)︸ ︷︷ ︸

t

] = [A t]. (4.8)

Since the pair (P̃1, P̃2) only di�ers with a projective transformation from the
pair (P1, P2) it will have the same fundamental matrix.

Note that the fundamental matrix is however not invariant to transformations
of the image points. If we premultiply the cameras with matrices T1 and T2 the
corresponding fundamental matrix for the new pair of cameras is

F̂ = T−T2 FT−1
1 . (4.9)

Essential matrix

The essential matrix describes the two view geometry for two calibrated cameras
and is closesly related to the fundamental matrix. Let P1 = [I 0] and P2 = [R t],
then the essential matrix is given by E = [t]×R.
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If K1 and K2 are the calibration matrices for the camera pair (P1, P2) and F is
the corresponding fundamental matrix then

E = KT
2 FK1. (4.10)

Similarly to the fundamental matrix it is possible to extract cameras from the
essential matrix.

Planar motion

Now we consider the special case where the cameras have undergone planar
motion, i.e. the camera centers and principal axes lie in a plane. We consider
speci�cally translation in the xz-plane and rotation around the y-axis. As usual
we let P1 = [I 0]. The second camera P2 = [R t] will have a special structure
due to the planar motion with

R =

× 0 ×
0 1 0
× 0 ×

 and t =

×0
×

 , (4.11)

where × denote a possibly non-zero element. The essential matrix will then
have the structure

E = [t]×R =

0 × 0
× 0 ×
0 × 0

× 0 ×
0 1 0
× 0 ×

 =

0 × 0
× 0 ×
0 × 0

 . (4.12)

For the uncalibrated cameras K1[I 0] and K2[R t] the fundamental matrix will
have the same structure under the assumption that K1 and K2 are diagonal
matrices.

Properties of the fundamental matrix

We now list some properties of the fundamental matrix F .

• F is a 3× 3 matrix with rank 2. This implies that detF = 0.

• The epipoles lie in the left and right nullspaces, i.e. Fe1 = eT2 F = 0.

• If F is the fundamental matrix for the pair (P1, P2) then FT is the fun-
damental matrix for the pair (P2, P1).

• F has 7 degrees of freedom while E has 5.

4.1.2 Trifocal tensor

Now we consider a scene viewed from three cameras. The object for three views
that corresponds to what the fundamental matrix is for two view is called the
trifocal tensor. The most basic constraint for the trifocal tensor is for a line in
P3 seen in three views.
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Let L be a line in P3 and P1 = [I 0], P2 = [A a4], and P3 = [B b4] be three
cameras viewing the line. Denote the projections of the line L in the cameras:
l1, l2 and l3.

The three imaged lines backproject into three planes

π1 = PT1 l1 =

(
l1
0

)
, π2 = PT2 l2 =

(
AT l2
aT4 l2

)
, π3 = PT3 l3 =

(
BT l3
bT4 l3

)
,

(4.13)
which intersect in the line L. This is illustrated in Figure 4.2

L

l1

l2

l3

π1

π2

π3

Figure 4.2: The line L which lies in 3D-space is projected down into three
cameras. The projections l1, l2, and l3 backprojects onto three planes. The line
L must lie in the intersection of the three planes.

LetM be the 4×3 matrix with the three planes as columns, i.e. M = [π1 π2 π3].
Then

X ∈ L ⇔ MTX = 0. (4.14)

It follows that M must have a 2-dimensional left nullspace. (Note that if it was
1-dimensional it would correspond to a single point due to scale invariance.)
Since M is a 4× 3 matrix this means that M has rank 2. The three columns of
M must then be linearly dependent, i.e. π1 = απ2 + βπ3 for some α, β.

For the last coordinate of the planes (4.13) this means that

0 = αaT4 l2 + βbT4 l3 ⇔

{
α = λbT4 l3

β = −λaT4 l2
for some λ ∈ R (4.15)
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From the top three coordinates we get (with equality up to scale)

l1 = αAT l2 + βBT l3 = (bT4 l3)AT l2 − (aT4 l2)BT l3 = lT3 (b4A
T )l2 − lT2 (a4B

T )l3.
(4.16)

This equation can be simpli�ed by introducing the matrices Ti = aib
T
4 − a4b

T
i

for i = 1, 2, 3. Using these we get

l1 =
[
lT2 T1l3 lT2 T2l3 lT2 T3l3

]T
. (4.17)

The three matrices, T1, T2, and T3 form the trifocal tensor (in matrix form).
The trifocal tensor is sometimes denoted by T .

Point-line-line correspondence

Now we choose a single point X on the line L. Let x1 be the projection in
the �rst image. Since it resides on the line in 3-space it must also lie on the
projection on the line, i.e. 0 = lT1 x1 =

∑
i l
i
1x
i
1 where we let xi1 denotes the ith

coordinate of x1 and similarly for the lines. Combining this with the line-line-
line relationship (4.17) we get

0 =
∑
i

(lT2 Til3)xi1 = lT2 (
∑
i

xi1Ti)l3, (4.18)

which is the point-line-line correspondence for the trifocal tensor.

Point-line-point correspondence

Now we consider the situation where the projection of X is also known in the
third view. The line l2 backprojects to the plane π2 which must contain X. It is
known that for points lying on a plane there exists a projective mapping which
takes the projections in one view to another, i.e. there exist H such that

x3 = Hx1. (4.19)

The corresponding relationship between lines in the �rst and third view is given
by

l1 = HT l3. (4.20)

From (4.17) we see that

HT =

lT2 T1

lT2 T2

lT2 T3

 ⇒ H =
[
TT1 l2 TT2 l2 TT3 l2

]
. (4.21)

Inserting this into (4.19) we get

x3 =
[
TT1 l2 TT2 l2 TT3 l2

]
x1 = (

∑
i

xi1T
T
i )l2. (4.22)

By transposing and taking the cross product with x3 on both sides we get

0T = xT3 [x3]× = lT2 (
∑
i

xi1Ti)[x3]×, (4.23)

which gives us the point-line-point correspondence for the trifocal tensor.
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Point-point-point correspondence

In practice the most useful correspondence between three views is the point-
point-point correspondence where we have a single structure point X seen in all
three views.

Let l2 be any line passing through the projection x2. Then l2 = x2×y for some
y 6= x2. Using (4.23) we get

yT [x2]×(
∑
i

xi1Ti)[x3]× = 0T . (4.24)

But since this must hold for any line l2 passing through x2 and thereby for any
y and we get that

[x2]×(
∑
i

xi1Ti)[x3]× = 03×3. (4.25)

Properties of the trifocal tensor

We now list some properties of the trifocal tensor T .

• Each Ti is a 3× 3 matrix with rank 2.

• Similarly to the fundamental matrix we can compute a camera triplet
consistent with a given T .

• The trifocal tensor is invariant to projective transformations of 3D-space.

• Only four of the nine equations in (4.25) are linearly independent.

• The trifocal tensor T has 18 degrees of freedom.

4.2 Conics and quadrics

4.2.1 Conics

Conics (or point conics) in R2 are curves de�ned by a second order polynomial
constraint on the coordinates (x, y) and can be written on the form

ax2 + by2 + cxy + dx+ ey + f = 0. (4.26)

This can be generalized to P2 by introducing a homogeneous coordinate z. Set-
ting (x, y)T 7→ (x/z, y/z)T we get

ax2 + by2 + cxy + dxz + eyz + fz2 = 0. (4.27)

This is a quadratic form and can be expressed using a symmetric matrix.

(
x y z

) a c/2 d/2
c/2 b e/2
d/2 e/2 f

xy
z

 = 0 (4.28)
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Every symmetric 3 × 3 matrix de�nes a conic in P2. Since the conic is a ho-
mogenous entity it is only de�ned up to scale. If the matrix is singular we say
that the conic is degenerate. The non-degenerate conics are circles, ellipses,
parabolas and hyperbolas. If a conic is degenerate it consists of either two lines
(rank 2) or a repeated line (rank 1).

4.2.2 Dual conics

For every point conic there is a dual (line) conic which puts constraints on which
lines lie tangent to the original point conic. One example of this can be seen in
Figure 4.3. If the conic C is non-degenerate the symmetric matrix representing
the dual conic C∗ is equal to the inverse of C.

(a) Conic (b) Dual conic

Figure 4.3: The conic x2 + 2.25y2 − 2.25z2 = 0 and its dual.

4.2.3 Polar lines

Let C be a non-degenerate conic and x be a point on the conic. Then l = Cx is
the tangent line to C at x. To see this we �rst note that the line is tangent if it
only has a single intersection with the conic C. Now assume that y is another
point on the conic which lies on the line l = Cx. That is

yTCy = 0 and yTCx = 0. (4.29)

Consider a linear combination of x and y. It is clear to see that it lies both on
the conic

(x + λy)TC(x + λy) = xTCx + 2λyTCx + λ2yTCy = 0, (4.30)

and the line
(x + λy)TCx = 0. (4.31)

But this holds for any λ and thus we have a line segment which lies on the conic
which is a contradiction since we assumed that it was non-degenerate.
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This was assuming that x was lying on the conic but we can also consider the
line l = Cx when x does not belong to C. In general the line l = Cx is called
the polar line of x with respect to C. The polar line has the property that it
intersects the conic at two points and the tangent lines at those points meet in
x. This is illustrated in Figure 4.4.

x

C

l = Cx

Figure 4.4: The polar line of x with respect to the conic C.

To see this let y be one of the intersections of l = Cx and C. Thus

yTCy = 0 and yT l = yTCx = 0. (4.32)

Consider yTCx = (Cy)Tx = 0. Thus we have that x lies on the line l = Cy
which we now know is the tangent to C at y.

4.2.4 Quadrics

The generalization of this conics to Pn for arbitrary n is called quadrics. Sim-
ilarly as for n = 2 we have that the points in Pn belong to the quadric if they
satisfy

xTQx = 0 (4.33)

where Q is a (n+ 1)× (n+ 1) symmetric matrix.

Similarly as for conics we can de�ne dual quadrics. Dual quadrics specify which
(n− 1)-dimensional hyperplanes lie tangent to the quadric.
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4.3 Geometry at in�nity

The ideal points in P2 is a one parameter family and can be thought of as a
line. This line is often called the line at in�nity and is denoted l∞. Similarly
for P3 the ideal points are a two parameter family and form the plane at in�nity
denoted π∞. Since the ideal points are the points where the last coordinate is
zero we have that l∞ = (0, 0, 1)T and π∞ = (0, 0, 0, 1)T .

4.3.1 The absolute conic Ω∞

On the plane π∞ lies a particularly important conic, the absolute conic Ω∞,
de�ned by the equations

X =

(
d
w

)
∈ Ω∞ ⇔

{
dTd = 0

w = 0
(4.34)

One of the properties of the absolute conic is that is allows us to compute angles
between vectors in a projective frame. Let p and q ∈ R3 be two direction vectors
in the true metric scene. Since the vectors represent directions they correspond
to points on π∞, i.e. (pT , 0)T and (qT , 0)T . From basic linear algebra we
know that the angle between two vectors in R3 is given by

cos θ =
pTq√

pTp
√

qTq
. (4.35)

In the metric frame the absolute conic has the form Ω∞ = I3×3 for points on
π∞. Thus (4.35) can be written as

cos θ =
pT Iq√

pT Ip
√

qT Iq
=

pTΩ∞q√
pTΩ∞p

√
qTΩ∞q

. (4.36)

This expression is invariant to projective transforms due to the way conics trans-
form.

x 7→ Hx ⇒ C 7→ H−TCH−1. (4.37)

Thus if we know Ω∞ and the support plane π∞ in the projective frame we can
compute the real angles between two vectors.

The absolute conic is invariant to similarity transforms. To see this consider a
general projective transformation

H =

[
A t
vT 1

]
. (4.38)

Since the plane at in�nity π∞ must be preserved (Ω∞ lies on it) we have that

the transformation must be a�ne, i.e. v = 0. Now consider X =

(
d
0

)
∈ Ω∞.

Then
0 = dTd = dT Id. (4.39)
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Thus for points on π∞ we have that the top three coordinates lie on the conic
I. For this to be preserved we have

I = A−T IA−1 ⇒ ATA = I ⇒ A orthogonal. (4.40)

Thus H must be a similarity transform.

4.3.2 Image of the absolute conic ω

The absolute conic is of interest due to its close relationship with the calibration
matrices K. Consider a camera P = K[R t] and the projection of a point
X ∈ Ω∞.

x = K[R t]

(
d
0

)
= KRd ⇔ K−1x = Rd ⇔ xT (KKT )−1x = dTd = 0.

(4.41)

The projections lie on the conic ω = (KKT )−1. In the case of partially cali-
brated cameras that we are considering, the image of the absolute conic reduces
to

ω = diag(1, 1, f2). (4.42)

Note that this conic only contains complex points.

4.3.3 The absolute quadric Q∗∞

One of the disadvantages of working with the absolute conic Ω∞ is that it can't
be represented using a single matrix.

Since Ω∞ is a point conic which lies on the plane at in�nity its dual will describe
the lines on the plane at in�nity which tangent it. The set of planes that
intersects the plane at in�nity in these lines is captured by a plane quadric
called the (dual) absolute quadric Q∗∞. This is illustrated in Figure 4.5

In the metric frame the absolute quadric can be represented by the 4 × 4 ma-
trix

Q∗∞ =

[
I3×3 0
0T 0

]
. (4.43)

In this settings it is clear that Q∗∞ is a semide�nite rank 3 matrix and that the
plane at in�nity π∞ = (0, 0, 0, 1)T lies in its null space.

Now letH be an arbitrary projective transformation. By considering how points
and planes transform we easily deduce how the absolute quadric must trans-
form.

X 7→ HX ⇒ π 7→ H−Tπ ⇒ Q∗∞ 7→ HQ∗∞H
T . (4.44)

Using this it is easy to see that the transformed π∞ still lies in the null
space

Q∗∞π∞ = 0 ⇒ (HQ∗∞H
T )(H−Tπ∞) = H(Q∗∞π∞) = 0. (4.45)
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Ω∞

π∞

π1 ∈ Q∗∞

π2 ∈ Q∗∞

Figure 4.5: The absolute conic Ω∞ which lies on the plane at in�nity π∞.
The absolute quadric Q∗∞ describes those planes which tangent Ω∞ when they
intersect π∞.

Just like the absolute conic the absolute quadric is invariant to similarity trans-
forms. This is easily seen from

HQ∗∞H
T =

[
A t
vT 1

] [
I3×3 0
0T 0

] [
AT v
tT 1

]
=

[
AAT Av
vTAT vTv

]
= Q∗∞. (4.46)

It follows that v = 0 and AAT = I. Thus H must be a similarity trans-
form.

The projection of the absolute quadric Q∗∞ is the dual to the image of the
absolute conic ω∗. By the projection of the absolute quadric Q∗∞ in a camera
P , we mean the intersection of the image plane and the planes which both lie
on the absolute quadric and contain the camera center of P . This is illustrated
in Figure 4.6.

The projection in a camera P can be written

ω∗ = PQ∗∞P
T . (4.47)

To see this consider a line l which lies on ω∗, i.e. lTω∗l = 0. This line will back-
project onto the plane π = PT l which must lie on the absolute quadric.

0 = πTQ∗∞π = lTPQ∗∞P
T l = lTω∗l. (4.48)

Since this will hold for any l ∈ ω∗ we have that ω∗ = PQ∗∞P
T .
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Ω∞

π∞

ω c

π ∈ Q∗∞

Figure 4.6: The absolute conic Ω∞ projects down to the image of the absolute
conic ω. The projection of the absolute quadric Q∗∞ is the dual of the image
of the absolute conic ω∗, which is a line conic. The projection is formed by
intersecting those planes which belong to the quadric and contain the camera
center with the image plane.
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Chapter 5

Estimation methods

In the previous chapter we introduced a number of objects that can be used to
determine the geometry of a scene. These objects will be used as building blocks
for the full metric reconstruction. In this chapter we will present algorithms for
accurately estimating these objects from given point correspondences in the
presence of noise and outliers.

5.1 Homogeneous least squares

For many of the homogeneous entities (e.g. F, T ) used in reconstruction there
exist some linear constraint on their elements. Rearranging the elements into a
vector we can model them with a system of the form

Aw = 0. (5.1)

To avoid the trivial solution w = 0 we add the constraint ||w|| = 1. This can
be done w.l.o.g. due to the scale invariance of w.

If A is constructed using image data it is unlikely that there exist w such that
the equations are satis�ed exactly. Instead we desire a least squares solution,
i.e. we consider the following optimization problem

min
w
||Aw||2 s.t. ||w|| = 1. (5.2)

This problem can be solved by �nding the singular value decomposition (SVD)
of A. The SVD of A is given by

A = USV T where UUT = I, V V T = I, S = diag(σ1, ..., σn), (5.3)

where σ1 ≥ ... ≥ σn ≥ 0 are the singular values of A.

The objective function can then be written

||Aw||2 = ||USV Tw||2 = ||S V Tw︸ ︷︷ ︸
ŵ

||2 = ||Sŵ||2, (5.4)
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where the second equality follows from the fact that orthogonal matrices pre-
serve length. The constraint simply becomes ||w|| = ||V ŵ|| = ||ŵ|| = 1. Since
the singular values are sorted in descending order, (5.4) is minimized by let-
ting ŵ = (0, ..., 0, 1)T which then corresponds to w is being the last column of
V .

So to solve the homogeneous least squares problem we simply �nd the SVD of
the measurement matrix and take the rightmost column of V .

5.1.1 Equality constraints

Sometimes we have additional constraints on w, e.g. Cw = 0 for some matrix
C. Thus we consider the problem

min
w
||Aw||2 s.t. ||w|| = 1, Cw = 0. (5.5)

This problem can be solved by �nding a basis for the null space of C. We
assume that C has a nontrivial null space since otherwise the problem lacks a
solution. By computing the SVD of C, the basis can be formed as the columns
of V which correspond to the singular values which are zero.

Let C⊥ be the matrix with the basis vectors as columns. Then any w that can
be formed as w = C⊥ŵ for some ŵ will satisfy the constraint Cw = 0 since
CC⊥ = 0.

We then solve the problem

min
ŵ
||AC⊥ŵ||2 s.t. ||ŵ|| = 1 (5.6)

using the original algorithm. Note that ||w|| = ||C⊥ŵ|| = ||ŵ|| since the
columns of C⊥ are orthogonal unit vectors. The solution to the original con-
strained problem (5.5) is then given by w = C⊥ŵ.

5.1.2 Subspace constraints

A very similar problem is

min
ŵ
||Aw||2 s.t. ||w|| = 1, w = Eŵ, (5.7)

which is another way of saying that w should lie in the column space of E. We
assume that E does not have full rank otherwise the problem is equivalent to
the original problem (5.2).

Let r = rank(E) and compute the SVD of E = USV T . Construct Ur as the
�rst r columns of U . Then Ur spans the column space of E. Similarly to the
previous section the problem can be solved by �nding

min
ŵ
||AUrŵ||2 s.t. ||ŵ|| = 1, (5.8)

using the original algorithm and then setting w = Urŵ.
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5.1.3 Sampson approximation

Often the measurement matrix A is formed using image points and it is of
interest how well a given solution w is described by these points.

In the homogeneous least squares method we minimized the algebraic error
ε = Aw but a better metric would be the geometric error, i.e. the minimum
distance that the image points have to be moved for the equation Aw = 0 to
hold exactly.

Let x be a vector containing the image points and C(x) be the algebraic error
corresponding to the measurement matrix constructed using these points, i.e.
C(x) = Aw where A depends on x. We are interested in the problem of �nding
the δ of minimum length such that C(x + δ) = 0.

By Taylor expansion around x we get

C(x + δ) = C(x) + Jδ = 0, (5.9)

where J is the Jacobian. To �nd an approximation of the geometric error we
are interested in solving

min
δ
||δ||2 s.t. C(x) + Jδ = 0. (5.10)

We form the Lagrangian function L(δ,λ) = δT δ + 2λT (C(x) + Jδ).

Di�erentiating we get
Lδ = 2δT + 2λTJ = 0, (5.11)

Lλ = C(x) + Jδ = 0. (5.12)

By substituting the �rst equation into the second we get

C(x) = JJTλ ⇔ λ = (JJT )−1C(x). (5.13)

Finally we can solve for δ and get δ = JT (JJT )−1C(x) which gives us

||δ||2 = C(x)T (JJT )−1C(x), (5.14)

which is a �rst order approximation of the geometric error.

5.2 Fundamental matrix estimation

We will now demonstrate how to use the concepts introduced in the previous
section to estimate the fundamental matrix de�ned in Section 4.1.1.

The 8 point algorithm was �rst introduced by Longuet-Higgins in [18] who
used it for estimation relative position and orientation for calibrated cameras.
The algebraic minimization algorithm was presented by Hartley in [14]. For a
review of some of the methods for fundamental matrix estimation the reader is
referred to a paper by Zhang [26] or the excellent book by Hartley and Zisserman
[11].
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5.2.1 Normalized 8 point algorithm

The fundamental matrix F puts constraints on corresponding points in two
views. If x and x̄ are projections of the same 3D point it holds that

x̄TFx = 0. (5.15)

Given corresponding points x↔ x̄ this forms a linear equation in the elements
of F . Since we have 9 unknowns (elements of F ) but are only interested in a
solution up to scale we need at least 8 point correspondences.

By arranging the elements of F into a vector f we can express the equations
using a matrix

Af = 0, (5.16)

where the measurement matrixA is formed using the point correspondences.

Since the equations are unlikely to be satis�ed exactly due to noise we instead
consider the homogeneous least squares problem

min
f
||Af ||2 s.t. ||f || = 1, (5.17)

where the constraint makes sure that we throw away the trivial solution f = 0.
This optimization problem can be solved using the SVD based algorithm in
Section 5.1.

In [13] Hartley shows the importance of normalizing the image points before
estimating F . Hartley suggest simply scaling and translating the points such
that they are centered on the origin with a mean distance of

√
2.

5.2.2 Algebraic minimization algorithm

The main problem with the normalized 8 point algorithm is that it doesn't
enforce the rank de�ciency of F .

From previous chapters we know that for a pair of cameras it holds that

P1 = [I 0], P2 = [A t] ⇒ F = [t]×A. (5.18)

For �x t the equation F = [t]×A is linear in the elements of F and A. Let f and
a be vectors that contain the elements of the two matrices. Then the equation
can be written f = Eta where Et is the matrix formed from t.

So assume that we know t. Then to �nd F we could solve the problem

min
a
||Af ||2 s.t. ||f || = 1, f = Eta. (5.19)

Which is a constrained homogeneous least squares problem which we can be
solved using the method presented in Section 5.1.2. The resulting F will have
the required rank de�ciency since [t]× has rank 2.

In general t is unknown and we instead consider the optimization problem

min
t

{
min
a
||Af ||2 s.t. ||f || = 1, f = Eta

}
(5.20)
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where the outer minimization is performed using numerical di�erentiation and
is initialized using the normalized 8 point method.

The size of measurement matrix A is n × 9 where n is the number of point
correspondences. The computational complexity of the problem can be reduced
using the SVD of A since

A = USV T ⇒ ||Af || = ||USV T f || = ||SV T f ||, (5.21)

and only the top 9 rows of S are non-zero. Thus we can replace the measurement
matrix by the top 9 rows of SV T .

5.2.3 Comparison

To evaluate the performance of these algorithms a small experiment was per-
formed. The test environment consisted of two synthethic cameras viewing a
scene consisting of 25 3D points. The projections were disturbed by gaussian
noise with varying variance. The fundamental matrix was estimated from the
noisy points and the mean geometric error was calculated using the Sampson
approximation.

The three methods considered were

1. Normalized 8p algorithm.

2. Algebraic minimization algorithm.

3. Algebraic minimization algorithm followed by bundle adjustment. (See
Section 5.6.)

In Figure 5.1 we can see the resultings errors. The test was repeated 100 times
for each standard deviation and the error was then averaged.
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0

0.5

1

sigma

er
ro
r

8p
alg.min.
bundle

Figure 5.1

We see that the algebraic minimization method has better performance than the
8 point algorithm and that the bundle adjustment performed after the algebraic
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minimization only gives a very small reduction in error. The computational cost
of the bundle adjustment is a lot higher than for the algebraic minimization
method. In Figure 5.2 we can see the computation time needed for the two
methods for a varying number of points.
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Figure 5.2: Comparison of computation time for estimating the fundamental
matrix using algebraic minimization and bundle adjustment.

5.2.4 Minimal solver - 7 point algorithm

In robust estimation methods like RANSAC (see Section 5.5) it is of interest to
�nd estimates using as little data as possible. This gives a need for so called
minimal solvers which uses the minimum number of point correspondences pos-
sible, for the fundamental matrix this is 7 points.

If we construct the measurement matrix A using only 7 points (i.e. A is a 7× 9
matrix) it will have a 2 dimensional null space. Let f1 and f2 be orthogonal
unit vectors which span the null space. Then our sought F can be written
F = αF1 + (1− α)F2 for some unknown α.

One way to enforce the rank de�ciency of F is to consider the constraint

det(F ) = 0 ⇔ det(αF1 + (1− α)F2) = 0. (5.22)

For �x F1 and F2 this is a third degree polynomial equation in α. Solving
this equation we get either one or three real solutions. If there are multiple
solutions we can select one by testing which one best corresponds with the
image points.
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5.3 Trifocal tensor estimation

The estimation methods for the trifocal tensor that we consider will now be
derived in the same manner as for the fundamental matrix.

The linear algorithm for trifocal tensor estimation was �rst used by Hartley in
[8]. The algebraic minimization method is also due Hartley [14]. The mini-
mal solver for the trifocal tensor from point correspondences was presented by
Zisserman and Torr in [27].

5.3.1 Normalized linear algorithm

For the trifocal tensor's point-point-point correspondence it holds that

[x2]×(
∑
i

xi1Ti)[x3]× = 03×3. (5.23)

Given a point correspondence between three images this gives us nine linear
equations for the elements of T . Unfortunately only four are linearly indepen-
dent. One choice of four linearly independent equations are∑

k

xk1(xi2x
l
3T

33
k − xl3T i3k − xi1T 3l

k + T ilk ) = 0, (5.24)

where i, l ∈ {1, 2} and T ilk denotes the element (i, l) of the matrix Tk. Since T
has 27 elements we will require at least 7 point correspondences.

From this we can then construct the measurement matrix A such that At = 0
where t is the vector containing the 27 elements of T . Since the system is
over-determined we consider the homogeneous least squares problem

min
t
||At||2 s.t. ||t|| = 1, (5.25)

which can be solved using the SVD based method presented in Section 5.1.

As with F estimation it is necessary to perform some normalization on the image
points.

5.3.2 Algebraic minimization algorithm

The drawback of this approach is that the solution in general will not be a valid
trifocal tensor since each Ti is not required to have rank 2.

If P1 = [I 0], P2 = [a1 a2 a3 a4] and P3 = [b1 b2 b3 b4] then the associated
trifocal tensor is given by

Ti = aib
T
4 − a4b

T
i , (5.26)

which is linear in ai and bi for i = 1, 2, 3.

So for �xed a4 and b4 the trifocal tensor can be parametrized with the 18
elements of the �rst three columns in the two cameras. This can be written
t = Et̂ where E is the 27× 18 matrix which captures equation (5.26).
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To �nd a trifocal tensor which satis�es the rank constraint we consider the
problem

min
a4,b4

{
min
t̂
||At||2 s.t. ||t|| = 1, t = Et̂

}
, (5.27)

where the inner minimization is a constrained homogeneous least squares prob-
lem and the outer minimization is performed using numerical di�erentiation and
is initialized using the linear approach.

5.3.3 Comparison

To evaluate the performance of these algorithms a small experiment was per-
formed. The test environment consisted of three synthethic cameras viewing
a scene consisting of 25 3D points. The projections were disturbed by gaus-
sian noise with varying variance. The trifocal tensor was estimated from the
noisy points and the mean geometric error was calculated using the Sampson
approximation.

The three methods considered were

1. Normalized linear algorithm

2. Algebraic minimization algorithm

3. Algebraic minimization algorithm followed by bundle adjustment. (See
Section 5.6)

In Figure 5.3 we can see the resulting errors. The test was repeated 100 times
for each standard deviation and the error was then averaged.
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The performance is similar to the fundamental matrix. The algebraic minimiza-
tion method has better performance than the linear algorithm and that bundle
adjustment performed after the algebraic minimization only gives a very small
reduction in error. In Figure 5.4 we see a comparison of the computation time
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for the two methods for a varying number of points. Once again we see that the
algebraic minimization method performs better than bundle adjustment when
the number of points grow.
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5.3.4 Minimal solver - 6 point algorithm

There exists an algorithm for solving for the trifocal tensor from only 6 point
correspondences. The algorithm uses Carlsson-Weinshall duality to construct
a projective reconstruction from the 6 points and then constructs the trifocal
tensor from the three cameras.

5.4 Auto-calibration

The previous sections described methods for building projective reconstructions
from image pairs and triplets. To be able to upgrade the projective reconstruc-
tions into metric reconstructions we will have to estimate the calibration of
the cameras. The process of �nding the calibration from the images is called
auto-calibration.

5.4.1 Hartley's method for pairwise auto-calibration

In [12] Hartley propose a method for �nding the focal lengths of a pair of
partially calibrated cameras where the only unknown intrinsic parameters are
the focal lengths. The calibration matrix K and the image of the absolute conic
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ω will then be

K =

f 0 0
0 f 0
0 0 1

 , ω = (KKT )−1 =

1 0 0
0 1 0
0 0 f2

 . (5.28)

We can w.l.o.g. assume that the epipoles lie on one of the axis in the images, i.e.

e =
(
e1, 0, e3

)T
. If this is not the case the cameras can be rotated around

their principal axes. Due to the special structure on K this rotation preserves
the focal lengths.

It can be shown that if e =
(
e1, 0, e3

)T
and ē =

(
ē1, 0, ē3

)T
are the two

epipoles, the fundamental matrix F can be decomposed as

F =

ē3 0 0
0 1 0
0 0 −ē1

a b a
c d c
a b a

e3 0 0
0 1 0
0 0 −e1

 , (5.29)

since Fe = 0 and ēTF = 0.

The polar line w.r.t. ω of the epipole in the left image is given by ωe =(
e1, 0, f2e3

)T
(see Section 4.2.3). The intersection x = (u, v, 1)T of the

polar line and the image of the absolute conic ω is given by{
(ωe)Tx = 0

xTωx = 0
⇔

{
e1u+ f2e3 = 0

u2 + v2 + f2 = 0
(5.30)

which gives us the intersection points x =
(
−f2e3, if(e2

1 + f2e2
3)1/2, e1

)T
and its complex conjugate. The geometry of the situation is illustrated in Figure
5.5.

Let ∆ = (e2
1 +f2e2

3)1/2 and consider the epipolar line corresponding to x.

Fx = F

−f2e3

if∆
e1

 =

 −ē3
−ac∆2−bdf2+if(ad−bc)∆

a2∆2+b2f2

ē1

 ,

 −ē3

µ+ iν
ē1

 . (5.31)

The epipolar line corresponding to the other intersection point is given by

Fx∗ = (Fx)∗ =
(
−ē3, µ− iν, ē1

)T
. (5.32)

These two lines pass through the epipole ē and lie tangent to ω in the second
image. Since ω is a circle of complex points centered on the origin and the epipole
ē lies on the x-axis in the image we have that the lines must be symmetric around
the x-axis. This is illustrated in Figure 5.6. This implies that (Fx)2 = −(Fx∗)2.
From (5.31) and (5.32) we get that

µ+ iν = −(µ− iν) ⇒ µ = 0. (5.33)

Using this we get

µ =
−ac∆2 − bdf2

a2∆2 + b2f2
= 0 ⇒ −ac∆2 − bdf2 = 0 ⇒ f2 =

−ace2
1

ace2
3 + bd

.

(5.34)
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By reversing the roles of the images we get that

f̄2 =
−abē2

1

abē2
3 + cd

. (5.35)

We note that if a = 0 then

µ =
−bdf2

b2f2
=
−d
b

= 0 ⇒ d = 0, (5.36)

which is true independently of f . In this case the focal length can not be
determined from the camera pair. This degenerate con�guration appears when
the baseline and the two principal axes are coplanar. Then the principal rays
will intersect in a point which will be projected onto the origin on both images.
Thus it holds that

(
0 0 1

)
F

0
0
1

 = 0 ⇒ F33 = 0 ⇒ a = 0. (5.37)

There is another degenerate case that occurs when b = 0. This case is less im-
portant in practice though since it occurs when one principal axis is orthogonal
to the plane spanned by the other principal axis and the baseline.

Degenerate con�gurations

We now consider the degenerate case when the princripal axis and baseline are
coplanar. Since the cameras are assumed to be rotated such that the epipoles lie
on one of the image axis this con�guration corresponds to planar motion.
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For planar motion it is known that the fundamental matrix F will have a special
structure. See Section 4.1.1.

F =

0 a 0
b 0 c
0 d 0

 =

a0
d

(0 1 0
)

+

0
1
0

(b 0 c
)
. (5.38)

The essential matrix E is formed by multiplying F by the calibration matrices
K and K̄.

E = diag(f̄ , f̄ , 1) F diag(f, f, 1) =

ff̄a0
fd

(0 1 0
)

+

0
1
0

(ff̄b 0 f̄ c
)
.

(5.39)
It's clear that the singular values of E is given by

σ1 =
√

(ff̄a)2 + (fd)2, σ2 =
√

(ff̄b)2 + (f̄ c)2, σ3 = 0.

Setting the �rst two singular values equal and squaring gives us

G(f, f̄) = d2f2 + (a2 − b2)f2f̄2 − c2f̄2 = 0. (5.40)

In [12] Hartley gives an equivalent derivation of (5.40) using the image of abso-
lute conic.

5.4.2 Linear method for Q∗∞ estimation

The absolute quadric Q∗∞ is a degenerate plane quadric which is the dual to the
absolute conic. Thus the projection of the absolute quadric is the dual to the
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projection of the absolute conic. To estimate the absolute quadric we consider
the form of its projection

PQ∗∞P
T = ω∗ =

f2 0 0
0 f2 0
0 0 1

 . (5.41)

This gives us four constraints which are linear in the elements of Q∗∞

ω∗12 = ω∗13 = ω∗23 = 0, (5.42)

ω∗11 = ω∗22.

Since Q∗∞ is a symmetric 4× 4 matrix we can parametrize it by the 10 elements
above the diagonal. Let q be the vector of those elements and construct a matrix
A from the projective cameras which captures the constraints (5.42) for each of
the three cameras.

An estimate of the absolute quadric Q∗∞ can then found by solving

min
q
||Aq||2 s.t. ||q|| = 1, (5.43)

using the SVD based algorithm presented in Section 5.1.

Similarly to the linear estimation of the trifocal tensor this approach has the
drawback that is doesn't consider the rank de�ciency of Q∗∞. A simple method
for correcting the rank de�ciency is to simple set the smallest singular value to
zero.

Iterative improvement

If we �x the plane at in�nity π∞ the constraintQ∗∞π∞ = 0 becomes linear in the
elements of q. To estimate the absolute quadric we consider the minimization
problem

min
π∞

{
min
q
||Aq||2 s.t. ||q|| = 1 and Q∗∞π∞ = 0

}
, (5.44)

where the inner minimization is performed using the algorithm for constrained
homogeneous least squares and the outer minimization is performed by nu-
merical di�erentiation. The initial guess for π∞ is provided by the linear
method.

In practice this method has turned out to have slightly better performance than
correcting the last singular value. See Section 5.4.2 for a comparison.

Metric upgrade

Let H be the projective transformation which transforms the projective recon-
struction to the metric, i.e.

MP = PH and MX = H−1X. (5.45)
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Since a plane transforms as π 7→ HTπ, the absolute quadric (which is a plane
quadric) will transform as

πTQ∗∞π = πTH(MQ∗∞)HTπ ⇒ Q∗∞ = H(MQ∗∞)HT (5.46)

In the metric frame the absolute quadric has the formMQ∗∞ =

[
I3×3 0

0 0

]
.

To �nd the metric upgrade H we perform eigenvalue decomposition on the esti-
mated absolute quadric. Since Q∗∞ is symmetric we know that the eigenvectors
form an orthogonal basis and the decomposition becomes Q∗∞ = V DV T with
V V T = I. Let D be ordered so that the zero eigenvalue is at D44. Then

Q∗∞ = V DV T = V
√
D︸ ︷︷ ︸

H

[
I3×3 0

0 0

]√
DV T︸ ︷︷ ︸
HT

. (5.47)

Since we require H to be invertible we replace the zero diagonal element of
√
D

with ±1. The sign is chosen such that the majority of the 3D-points are infront
of the �rst camera.

Finally the projective cameras are transformed by H and the structure points
by H−1. RQ-factorization is performed on the cameras to extract the rotation
and calibration matrices. Due to noise the calibration matrices will not be
completely diagonal and to correct this we simply discard the non-zero elements
outside the diagonal.

Degenerate con�gurations

In the previous sections we estimated the absolute quadric Q∗∞ by considering
the form of its projection ω∗ = PQ∗∞P

T . This resulted in a set of linear equa-
tions on the elements of Q∗∞ which we then solved in a least squares sense.

In [17] Kahl et. al investigates under what conditions there can exist a false
absolute quadric Q∗f which also projects down onto a conic of the correct form.
For the partially calibrated cameras we are considering this means that

PQ∗∞P
T = diag(f2, f2, 1), and PQ∗fP

T = diag(f̂2, f̂2, 1). (5.48)

From Section 5.4.2 we know that we can extract a metric upgrade from Q∗∞.
Thus when there can exists false absolute quadrics there can also exist false met-
ric reconstructions which have calibration matrices on the correct form.

In some cases it is possible to identify false absolute quadrics Q∗f by consid-
ering chirality. Chirality is the concept that points should lie in front of the
cameras.

For cameras with unit aspect ratio, zero skew and known principal point Kahl
et. al shows that there are three di�erent cases when auto-calibration becomes
degenerate. These cases are:

(a) If there are only two camera centers. For a triplet this means that two of
the cameras are at the same position.
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(b) If each camera center lie on one of two conics (one ellipse and one hyperbola)
whose support planes are orthogonal and the principal axes tangent the
conics at each camera's position.

(c) If all cameras and principal axes are contained in a line.

The three cases are illustrated in Figure 5.7.

It becomes clear that the degenerate cases are much less likely to occur in
practice for a triplet of images than for a pair.

Comparison

To evaluate the performance of the auto-calibration methods for an image triplet
a small experiment was performed. The test environment consisted of three ran-
domly generated synthetic cameras viewing a scene consisting of 750 3D points.
The three cameras have a focal lengths of 500, 550 and 600. The projections were
disturbed by Gaussian noise. Using the generated image points the trifocal ten-
sor was estimated. Cameras were extracted and structure points triangulated.
Finally the reconstruction was improved using bundle adjustment.

Using this projective reconstruction the focal lengths of the three cameras
were then estimate using di�erent methods. The three methods considered
were

1. Linear method.

2. Quasi-linear method (Iterative improvement).

3. Quasi-linear method followed by metric upgrade and bundle adjustment.

The test was repeated 1000 times and in Figure 5.8 we can see the resulting
relative errors.

We can see that the quasi-linear method has slightly better performance than
the linear method. Performing the metric upgrade and performing bundle ad-
justment has the best performance.
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(a) Only two camera centers.

(b) Cameras lie on one of two conics with support planes which are orthogonal. The
principal axes tangent the conics.

(c) Camera centers and principal axes are contained within a line.

Figure 5.7: The degenerate con�gurations for auto-calibration with unit aspect
ratio, zero skew and principal point at the origin. The images are from Kahl
[17] and are used with permission.
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Figure 5.8: Relative errors for the di�erent methods of Q∗∞ estimation.
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5.5 RANSAC

Random Sample and Consensus (RANSAC) is a technique for robust model
�tting where there are outliers present in the data. The basic idea is to randomly
sample the minimum number of points required to construct the model and then
validate it against the whole dataset. This is then iterated enough times so that
there is a high probability that an outlier free sample has been chosen. The
parameters which �t the most data points during validation is then taken as the
model. Optionally the model can then be re�tted using the inliers.

5.6 Bundle adjustment

Once an initial reconstruction of a scene is attained it can be improved using
bundle adjustment. Bundle adjustment is simply using nonlinear optimization
methods for minimizing the reprojection error over all the parameters (cameras
and structure points).

The problem we solve is

min
{P,X}

∑
i,j

∣∣∣∣∣∣∣∣(xij − P 1
i Xj

P 3
i Xj

, yij −
P 2
i Xj

P 3
i Xj

)∣∣∣∣∣∣∣∣2 . (5.49)

This problem can be solved e�ciently using the Levenberg-Marquardt method.
For more information on this and bundle adjustment in general the reader is
referred to Triggs et. al [25].

Since each pair of cameras correspond to a fundamental matrix we can use
this as a parametrization of F . First two cameras are chosen from an initial
F estimate and the corresponding 3D points are triangulated. Then bundle
adjustment on the cameras and 3D points is performed. Constructing F from
the updated cameras gives us a better estimation of F . This can of course be
done similarly for the trifocal tensor.
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Chapter 6

Metric 3D-reconstruction

from general image

collections

In the previous chapters we have de�ned objects, and presented methods for es-
timation, which will serve as building blocks for the �nal metric reconstruction
pipeline. These objects have mostly been focused on the projective geome-
try of two or three cameras viewing a scene. In this chapter we will present
the proposed framework for metric 3D-reconstruction for general image collec-
tions.

First we will present the steps used to create metric reconstructions from image
pairs and triplets using the estimation methods presented in the previous chap-
ter. Then the pipeline for unordered structure from motion is presented. The
pipeline is adaptation of the pipeline for calibrated SfM presented by Olsson
and Enqvist in [20]. The steps of the proposed pipeline can be seen in Figure
6.1.

Image triplet
estimation

(6.1.2)

Image pair
estimation

(6.1.1)

Focal length
averaging
(6.2.2)

Rotation
averaging
(6.2.3)

Structure and
translation
estimation

(6.2.4)

Bundle
adjustment

(5.6)

Figure 6.1: The proposed pipeline.
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6.1 Metric reconstruction of image pairs and triplets

As an intermediate step towards a full metric reconstruction of a scene, we
compute partial reconstructions from image pairs and triplets.

The input to each problem is the set of putative point correspondences between
the images. The goal is then to �nd the focal lengths and the relative rotations
between the cameras. Since the problem of auto-calibration is very sensitive
and a bad projective reconstruction could lead to very inaccurate focal length
estimates we perform a series of sanity checks during the reconstruction.

6.1.1 Image pairs

1. Outlier detection

The �rst step is to determine which of the point correspondences are inliers.
To do this we perform RANSAC (Section 5.5) with the 7 point algorithm
for fundamental matrix estimation (Section 5.2.4). For each point correspon-
dence the Sampson approximation of the geometric error is computed (Sec-
tion 5.1.3).

Sanity check: If there is not enough points left after removing outliers the pair
is discarded. In the implementation this threshold is set at 50 points.

2. Re-estimation

Using the inliers from the previous step we compute the fundamental matrix
using the algebraic minimization algorithm (Section 5.2.2). The fundamental
matrix estimate is improved by bundle adjustment (Section 5.6).

3. Auto-calibration

Hartley's method is then used to extract focal length estimates from the fun-
damental matrix (Section 5.4.1). If the camera con�guration is degenerate we
save the degeneracy condition on the focal lengths and return.

Sanity check: If the focal length is negative or complex the pair is discarded.

4. Metric reconstruction

Assuming that the cameras are in a non-degenerate con�guration and a focal
length estimate was obtained from the previous step we compute the essential
matrix with

E = KT
2 FK1

From the essential matrix we can extract calibrated cameras and structure points
are then triangulated.

5. Bundle adjustment

Bundle adjustment is then performed to improve the solution (Section 5.6).
The optimization is performed over all parameters: focal lengths, rotations,
translations and structure points.

Sanity check: If there is not enough points with reprojection error less than 5
pixels the pair is discarded.

Sanity check: If the focal lengths are out of bounds the pair is discarded. The
bounds are de�ned relative to the size of the image diagonal. The bounds used in
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the implementation are (0.5, 5). Thus for an image with resolution 2000×1000
(diagonal of ≈ 2236) the focal length is accepted if it lies within the interval
(1118, 11180).

6.1.2 Image triplets

1. Outlier detection

First outliers are found by performing RANSAC (Section 5.5) with the 6 point
algorithm for trifocal tensor estimation (Section 5.3.4). The geometric error for
each point correspondences is estimated by computing the Sampson approxima-
tion (Section 5.1.3).

Sanity check: If there is not enough points left after removing outliers the triplet
is discarded. In the implementation this threshold is set at 100 points.

2. Re-estimation

Using the inliers from the previous step we compute the trifocal tensor using the
algebraic minimization algorithm (Section 5.3.2). By extracting cameras from
the trifocal tensor and triangulating the 3D points we get an initial projective
reconstruction of the scene.

3. Improving the reconstruction

So far the we have only used points which are seen in all three images. The set
of structure points is increased by triangulating points which are seen in only
two of the images. Points which have a reprojection error larger than 5 pixels
are removed. Bundle adjustment is performed to improve the reconstruction
(Section 5.6).

Sanity check: If there are not enough points left after removing the points with
large reprojection error the triplet is discarded.

4. Auto-calibration

The absolute quadric Q∗∞ is then estimated using the (quasi-)linear algorithm
(Section 5.4.2). From the eigenvalue decomposition of Q∗∞ we extract the
metric upgrade which is applied to the cameras and structure points (Sec-
tion 5.4.2).

Sanity check: If theQ∗∞ estimate is not semi-de�nite we discard the triplet.

5. Bundle adjustment

Bundle adjustment is then performed to improve the solution (Section 5.6).
The optimization is performed over all parameters: focal lengths, rotations,
translations and structure points.

Sanity check: If there is not enough points with reprojection error less than 5
pixels the triplet is discarded.

Sanity check: If there is not enough points which lie in front of all the camera
the triplet is discarded. (Chirality)

Sanity check: If focal lengths are out of bounds the triplet is discarded.

Sanity check: If each pair within the triplet does not share at least 50 successful
points we discard the triplet.
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6.2 Unordered Structure from Motion

Now we have all the building blocks required to perform a full metric recon-
struction. The reconstruction will be using a slightly modi�ed version of the
unordered structure from motion pipeline for images with known calibration
presented by Olsson and Enqvist in [20].

The Olsson-Enqvist pipeline consists of three main steps. First the relative
rotations between each pair of cameras is computed. Then an assignment of
absolute rotations that is consistent with the relative rotations is found using a
RANSAC-like procedure. By absolute rotations we mean that the rotations are
assigned with respect to the same coordinate system. Finally the structure and
translation is estimated which can be done e�ciently due to the rotation being
known.

We will now brie�y review the di�erent steps of the pipeline and highlight the
changes needed to deal with uncalibrated image collections.

6.2.1 Determining relative rotations and focal lengths

In the �rst step we want to �nd the relative rotations between the cameras. The
main di�erence from the Olsson-Enqvist pipeline is that since we are dealing
with uncalibrated images we have to also estimate the calibration. To do this
we use the methods for metric reconstructions of image pairs and triplets which
was described in Section 6.1. For each triplet we get three relative rotations
and three focal length estimates and for each pair we get one relative rotation
and two focal length estimates or if the pair was degenerate we get a degeneracy
condition for the focal lengths (see Section 5.4.1).

A naive approach to selecting which triplets to perform the metric reconstruction
for is to simply selecting all triplets which have enough point correspondences.
While this approach is reasonable for pairs it becomes very computationally
expensive for triplets. This is due to the number of possible triplets of n images
grows as

(
n
3

)
≈ n3, e.g. if we have 200 images there exists

(
200
3

)
= 1313400

possible triplets. There is also a diminishing return for including more triplets
since it is possible to get multiple estimates of the same relative rotation.

Another extreme is choosing the best (most shared points) triplet for each image.
This results in a very clustered camera graph with low connectivity.

The heuristic approach proposed here is to select the best triplet for each pair
of cameras. That is for each pair of images (i, j) we select the best image
k /∈ {i, j} such that the triplet (i, j, k) is not already selected. By best image
we mean the image k which shares the most points with the pair (i, j). This
approach gives a more connected camera graph while choosing at most

(
n
2

)
triplets. For comparison

(
200
2

)
= 19900. See Figure 6.2 for a comparison of the

three approaches.

For pairs we simply select every pair which did not get a relative orientation
from the triplet estimation.
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(a) One triplet per camera. (b) One triplet per pair. (c) All triplets.

Figure 6.2: Example of the resulting pairwise estimates for the three approaches
for selecting triplets. The eight vertices correspond to cameras and the edges
correspond to the resulting pairwise relative rotations. We see that in (a) there
is a camera which can get disconnected by a single triplet estimation failing.

Now we have estimates of both the focal lengths and the relative rotations
between the cameras. Since each camera can be part of many triplets and
pairs we will have multiple focal length estimates for each camera. In the next
step will consolidate the focal length estimates to a single estimate for each
camera.

6.2.2 Robust focal length averaging

As part of the reconstruction pipeline we have to assign a focal length to each
camera. From the previous steps we get focal length estimates for pairs and
there can be multiple estimates for each pair of cameras. Due to the sensitive
nature of auto-calibration some of these pairs will be outliers and very far from
the true focal length. To further complicate things we have that some of the
pairs were in a degenerate con�guration and instead of a focal length estimate
we have a condition on the form G(fi, fj) = 0. The goal is now to consolidate
these estimates into a single focal length estimate for each camera.

To accomplish this we consider the two types of estimates we have, degenerate
and non-degenerate. For a non-degenerate pair (i, j) we have a focal estimate
for the two cameras. Let f̂i,j be a vector with the focal length estimate from the
pair. We then construct a cost function associated with this estimate

Cij(f) = ||̂fi,j −
(
fi
fj

)
||. (6.1)

For a degenerate pair (i, j) we instead have a condition on the focal lengths.
Let G(fi, fj) = 0 be the condition. We let the cost function associated with this
pair be

Dij(f) = min
a,b
||
(
a
b

)
−
(
fi
fj

)
|| s.t. G(a, b) = 0, (6.2)

i.e. we take the minimum distance to the implicit curve G as the cost. To avoid
having to solve the minimization problem we instead consider the �rst order
approximation of the distance. See Section 6.2.2.

48



To �nd an estimate of all the focal lengths we then want to �nd an assignment
f that minimizes the total cost, i.e. we want to solve the following optimization
problem

min
f

∑
i,j

Cij(f)2 +
∑
i,j

Dij(f)2, (6.3)

where the sums are only taken over the pairs which there are estimates for.

To account for the varying certainty of the pairs we add weights to the terms.

min
f

∑
i,j

wijCij(f)2 +
∑
i,j

wijDij(f)2 (6.4)

The weights are chosen to be the number of inliers found when the pair was
estimated.

Some of the estimates might be outliers and thus be very far from the true focal
length. To prevent these from a�ecting the �nal assignment we use a robust
cost function. The cost function we consider is a truncated quadratic.

ϕ(x) =

{
x2 if |x| < δ

δ2 if |x| > δ
. (6.5)

See Figure 6.3. This cost functions only considers points close to the current
estimate since estimates which are far away are given a constant cost. Note that
which points are inliers can change during the optimization.

−δ δ

δ2

Figure 6.3: The robust error function ϕ.

To let the cost functions be invariant to di�erent resolutions for di�erent images
we divide all the focal lengths by the size of the corresponding image diagonal.
The reasoning behind this normalization is that the costs should allow for rela-
tive errors should be approximately the same size regardless of image resolution.
This also allows us to use a single δ for all images. Typically δ = 0.5 in the
implementation.

Finally the optimization problem we consider is

min
f

∑
i,j

wij ϕ(Cij(f)) +
∑
i,j

wij ϕ(Dij(f)). (6.6)
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Which we solve using Levenberg-Marquardt. The initial guess is taken as the
median of the non-degenerate estimates for each camera.

Degenerate pairs

From image pairs in degenerate con�gurations we get a constraint on the focal
lengths which is on the form

G(f1, f2) = af2
1 + bf2

1 f
2
2 + cf2

2 = 0. (6.7)

Due to noise this constraint will probably not be satis�ed exactly by the real
focal lengths. Instead we consider the distance to the curve G(f1, f2) = 0 as the
cost for a candidate focal length assignment.

The distance to an implicit curve G(f) = 0 from a point f0 is given by

min
f
||f − f0||2 s.t. G(f) = 0. (6.8)

Since this optimization problem is somewhat troublesome we instead consider
the �rst order approximation of the constraint. The Taylor expansion of G
around f0 is given by

G(f) = G(f0) +∇G(f0)T (f − f0). (6.9)

Using this as the constraint in our optimization problem we get

min
f
||f − f0||2 s.t. G(f0) +∇G(f0)T (f − f0) = 0. (6.10)

The Lagrangian function is given by

L(f , λ) = (f − f0)T (f − f0) + 2λ(G(f0) +∇G(f0)T (f − f0)). (6.11)

Setting the partial derivatives to zero we get

Lf = 2(f − f0)T + 2λ∇G(f0)T = 0, (6.12)

Lλ = G(f0) +∇G(f0)T (f − f0) = 0. (6.13)

Inserting the �rst equation into the second we get

G(f0)− λ||∇G(f0)||2 = 0 ⇒ λ =
G(f0)

||∇G(f0)||2
. (6.14)

Substituting into the �rst equation we get

f − f0 = −G(f0)
∇G(f0)

||∇G(f0)||2
. (6.15)

Taking the norm

||f − f0|| =
|G(f0)|
||∇G(f0)||

. (6.16)

Which is the �rst order approximation of the distance to the implicit curve
G(f) = 0 from the point f0. For a more in-depth study of distance approxima-
tions to implicit curves the reader is referred to Taubin [23].
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To avoid problems where ||∇G(f0)|| is very close to zero we instead use the
approximation

||f − f0|| ≈
|G(f0)|

||∇G(f0)||+ ε
, (6.17)

where ε > 0 is a small number. In the implementation ε = 10−8 is used.

6.2.3 Rotation averaging

In a previous step we have estimated the relative rotations between the cameras.
Now the goal is to use this information and assign the absolute rotations of the
cameras.

The relative rotations from the previous step can be organized as a graph where
the cameras are on the vertices and the relative rotations are on the edges.
Since each pair can be part of multiple triplets we can have multiple relative
rotations and thus edges for each pair of vertices. For each edge we also de�ne
a weight, which in the Olsson-Enqvist pipeline is the number of inliers used for
the rotation estimation

we = ninl. (6.18)

The goal is now to assign an absolute rotation for each camera that is consistent
with as many of the relative rotations as possible. In the Olsson-Enqvist [20]
framework this is done by randomly selecting a spanning tree from the graph
and then assigning the rotations starting from the root. See Figure 6.4.

The edges chosen when constructing the spanning tree are chosen with a prob-
ability that is proportional to the edge weight, i.e. number of inliers used for
estimation. The success of the assignment is measured by counting the number
of relative rotations which are consistent with the assignment. This procedure
is then iterated and the best assignment is kept.

Since the quality of the rotation estimate depends on how well the auto-calibration
went we instead use the edge weights

we =
ninl

1 + ||̂fe − (fi, fj)T ||
, (6.19)

where f̂e is the focal length estimate from the relative rotation estimation and
(fi, fj) are the assigned focal lengths from the focal length averaging. This will
put a lower weight on rotation estimates where the focal length was far from
the average.

To decide which rotations are consistent with an assignment we need to be able
to decide how close two rotations are. The metric we use is given by

d(R1, R2) = || log(RT1 R2)||, (6.20)

which corresponds to the angular di�erence between the rotations. For a com-
parison of di�erent metrics for rotations the reader is refered to Huyhn [15].
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Figure 6.4: From the camera graph we randomly select spanning trees.

6.2.4 Translation and structure estimation

In the previous steps we have estimated the rotation matrices R and the calibra-
tion matrices K for all the cameras. The remaining unknowns are the positions
of the cameras t and the structure points X. Now assume that all image points
have been transformed by the inverse of their corresponding calibration matrix.
The cameras we are searching for will then be calibrated cameras on the form
P = [R t].

The reprojection error of an observed image point xi is given by

ri(X, t) =

∣∣∣∣∣∣∣∣(xi − R1X + t1
R3X + t3

, yi −
R2X + t2
R3X + t3

)∣∣∣∣∣∣∣∣
2

, (6.21)

where Rk is the kth row of the rotation matrix R. By stacking the unknowns
in a vector z we can write the residual on the form

ri(z) =

∣∣∣∣∣∣∣∣(aTi z + αi
cTi z + γi

,
bTi z + βi
cTi z + γi

)∣∣∣∣∣∣∣∣
2

. (6.22)

Now consider the problem of minimizing the largest residual, i.e.

min
{X,t}

max
i

ri. (6.23)

This problem can also be written as

min
{ε,X,t}

ε s.t. ∀i ri ≤ ε. (6.24)
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For points lying infront of the camera it holds that R3X + t3 > 0 and thus that
cTi z + γi > 0. Using this we can rewrite (6.24) as

min
{ε,X,t}

ε (6.25)

s.t. ||(aTi z + αi, bTi z + βi)||2 ≤ ε(cTi z + γi).

To make the problem more tractable Olsson and Enqvist instead consider the
problem where the supremum norm is used in the residuals, i.e.

ri(z) = max

(∣∣∣∣aTi z + αi
cTi z + γi

∣∣∣∣ , ∣∣∣∣bTi z + βi
cTi z + γi

∣∣∣∣) . (6.26)

Then the constraints in the problem (6.25) become linear for �x ε.

The problem with minimizing the largest residual is that it behaves poorly when
there are outliers present in the data. To deal with this Olsson and Enqvist
propose that we instead consider the optimization problem

min
{ε,s,X,t}

∑
i

si (6.27)

s.t. ||(aTi z + αi, bTi z + βi)||∞ ≤ ε(cTi z + γi) + si

si ≥ 0

For �x ε this problem is a linear program and can be solved e�ciently.

The resulting reconstruction is then improved using bundle adjustment.
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Chapter 7

Results

7.1 Synthetic images

To verify that the proposed pipeline for metric reconstruction works, we will
�rst consider synthethic images.

The synthetic scene consists of 750 3D points. See Figure 7.1. The scene is
viewed by 10 randomly generated cameras. The cameras have a focal length
of 2000. The image points are then disturbed by Gaussian noise with varying
standard deviation σ.

Figure 7.1: The synthetic 3D scene consisting of two cubes and a sphere. The
red circles correspond to the eight corner points used for validation.

To measure the success of the reconstructions we consider three di�erent met-
rics.

• RMS The Root Mean Square of the reprojection error for all the points.
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The RMS error is given by

RMS =

√
1

N

∑
i

||xi − x̄i||2, (7.1)

where xi is the observed image point and x̄i is the reprojection.

• ∆f The mean of the absolute focal length error.

∆f =
1

N

∑
i

|fi − 2000|. (7.2)

• ∆θ The mean angular error. We want to measure the e�ect of errors in
the calibration. To do this we save the true projections (without noise) of
the eight corners of one of the cubes in the scene. From these we can then
re-triangulate the eight corners of the cube using the resulting camera
estimates. For each of the eight corners we compute the three angles to
the adjoining corners which ideally should be 90◦. This gives us 8×3 = 24
angles. We let ∆θ to be the mean absolute error of the angles.

Reconstructions were performed for σ = 0, 1, 5, and 10. The resulting errors can
be seen in Table 7.1. In Figure 7.2 the resulting structure points can be seen for
varying σ and in Figure 7.3 shows the reprojections of the �rst camera.

σ 0 1 5 10

RMS 4.0359e-13 1.2881 5.2347 4.379
∆f 1.4779e-12 0.75704 3.9972 10.297
∆θ 6.7798e-13 0.0046645 0.024143 0.076394

Table 7.1: The resulting errors after reconstructing the synthetic scene with
varying noise levels. The RMS error and focal length is measured in pixels and
the angular error is measured in degrees.

55



(a) σ = 0

(b) σ = 1

(c) σ = 5 (d) σ = 10

Figure 7.2: The resulting structure points for each noise level. The red circles
correspond to the triangulated validation points.
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(a) σ = 0 (b) σ = 1

(c) σ = 5 (d) σ = 10

Figure 7.3: The reprojections in the �rst camera. The dots are the reprojections
and the circles the image points. Missing circles correspond to points being
classi�ed as outliers in this camera. The red points correspond to the validation
data.
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7.2 Real images

In this section we will now present reconstructions of real scenes built using the
proposed pipeline.

7.2.1 Lund Cathedral

The �rst reconstruction is built from 236 images of the cathedral in Lund. The
images comes from three di�erent sources:

• 79 images taken with a DSLR camera. The images were provided by Carl
Olsson. The images have a resolution of 1936 × 1296 and have a focal
length of approximately 2500.

• 75 images taken with a mobile phone camera. The images have a resolution
of 2048× 1232 and have a focal length of approximately 1800.

• 82 images from the online image sharing website www.�ickr.com. The
images have varying resolutions ranging from 427×640 to 5184×3456. The
images were found using the queries lund domkyrka and lund cathedral.

The images were calibrated independently and no information of the origins of
each image was used in the pipeline.

The resulting reconstruction contains 60595 structure points seen in 190 cam-
eras. See Figure 7.5, 7.6, and 7.7. Due to memory limitations only points which
were seen in 7 or more images were included. To build the reconstruction 10327
image triplets were estimated. Of the 10327 triplets there were 6973 which were
successfully estimated. In Table 7.2 the di�erent failure points of the triplet
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# % Result
6973 67.52 Successfully reconstructed.
25 0.24 Not enough inliers after trifocal RANSAC.
1 0.01 Not enough inliers after full trifocal estimation.

1566 15.16 Q∗∞ not semi-de�nite.
61 0.59 Not enough inliers after bundle adjustment.
505 4.89 Chirality failed.
979 9.48 Focal lengths out of bounds.
217 2.10 Not enough pairwise inliers.

10327 100 Total

Table 7.2

estimation can be seen. Of the failed image triplets the most common failure
was an inde�nite Q∗∞ estimate.

After image triplet estimation 4849 image pairs were selected. The pairs that
were selected were those that did not get a successful relative rotation in the pre-
vious step. Of those pairs only 2296 (47.35%) were successfully reconstructed.
The lower success rate than for triplets can be explained by there being a selec-
tion bias towards pairs with low number of matches or many outliers (since a
good pair is more likely to have succeeded during the previous step). 297 pairs
were classi�ed as degenerate.

Of the 236 images there were 190 which were able to be successfully estimated.
For the three di�erent image sources we had; DSLR images 77 or 79, Mobile
camera 60 of 75, and Flickr 53 of 82. In Figure 7.4 we can see the resulting focal
lengths, reprojection errors and number of points seen for each of the image
sources. The images from the DSLR camera gave the lowest reprojection error
and saw the most points in average.
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Figure 7.4: The resulting focal lengths, reprojection errors and number of points
seen for each image for the three di�erent image sources.
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Figure 7.5: Lund Cathedral

Figure 7.6: Lund Cathedral
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Figure 7.7: Lund Cathedral including camera positions.

62



7.2.2 Oxford dinosaur

Next we consider a reconstruction of the well-known Oxford dinosaur sequence.
The image sequence consists of a camera rotated around a toy dinosaur. Since
the cameras point toward the same point on the rotation axis, the motion be-
comes degenerate for pairs. The image sequence contains 36 images with a
resolution of 720× 576. Some of the images can be seen in Figure 7.8.

Figure 7.8: Sample images of the Oxford dinosaur sequence.

The resulting reconstruction consists of 1508 structure points seen in 36 im-
ages. See Figure 7.9 and Figure 7.10. During the reconstruction 34 pairs were
estimated, 31 were correctly classi�ed as degenerate.

Figure 7.9
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Figure 7.10: Reconstruction of the Oxford dinosaur.
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Chapter 8

Discussion

In this thesis we have considered the problem of structure from motion for un-
calibrated and unordered image collections. The focus has been on making auto-
calibration robust by combining the estimates from many small auto-calibration
problems. Originally the idea was to only perform the auto-calibration for im-
age pairs, but the troublesome nature of the degenerate cases for pairwise auto-
calibration led us to instead consider image triplets.

The auto-calibration problem is very sensitive to camera positions, and con-
�gurations which are close to degenerate often gives very inaccurate estimates.
Thus it is of interest to discover when the cameras are in a degenerate con�gu-
ration. For a pair of cameras we know (see Section 5.4.1) that the fundamental
matrix can be used to decide if the con�guration is degenerate. The method
proposed for checking if a pair is close to degenerate only considers how close
the fundamental matrix is to the degenerate form. This gives a quite crude es-
timate and perhaps a more thorough study could reveal a better method. Also
for image triplets we have not considered how to decide if a con�guration is
degenerate.

For a degenerate pair we instead of focal length estimates get a condition on
the focal lengths (see Section 5.4.1) which is on the form

G(f1, f2) = af2
1 + bf2

1 f
2
2 + cf2

2 = 0. (8.1)

In the focal length averaging we use the distance to the implicit curveG(f1, f2) =
0 as a cost function. We have not considered how noise in the coe�cients (a, b, c)
a�ect the cost function.

In Section 6.2.3 we have to decide which image triplets to perform auto-calibration
for. The proposed method is to for each pair select the triplet with the most
point correspondences. If the chosen triplet has already been used for another
pair the second best triplet is chosen instead and so on. This method has the
drawback that it depends on the order of the images. A possible improvement
would be to instead consider which triplets would increase the connectivity of
the camera graph the most.

In the proposed pipeline we estimate the rotations and the focal lengths at
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the same time. The focal lengths and rotations are then averaged separately.
Another approach might be to re-estimate the rotations using the resulting focal
lengths from the focal length averaging. This was not done due to the excessive
computational cost.

It can also be hard to distinguish when the calibration has failed since it is pos-
sible to end up in a projective reconstruction which has very small reprojection
errors but is very far from the true metric scene. Checking that all points lie in
front of the cameras can be used in some cases to decide if the reconstruction
was successful. This is captured by the chirality constraints. These constraints
can also be used when performing the auto-calibration. In [2] Chandraker et.
al propose a non-linear optimization scheme for estimating the absolute quadric
Q∗∞ which can enforce chirality.

In Section 5.4.2 a quasi-linear method for estimating the absolute quadric Q∗∞
is described. This method does not enforce the constraint that Q∗∞ should be
a semi-de�nite matrix (i.e. all eigenvalues should have the same sign). While
the method proposed by Chandraker et. al enforces this constraint it has the
drawback of being a lot more computationally expensive. For the Lund cathedral
reconstruction (see Section 7.2.1) 15.16% of the image triplets failed due to Q∗∞
not being de�nite.
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