5 research outputs found

    Robust human motion tracking using wireless and inertial sensors

    Get PDF
    Recently, miniature inertial measurement units (IMUs) have been deployed as wearable devices to monitor human motion in an ambulatory fashion. This thesis presents a robust human motion tracking algorithm using the IMU and radio-based wireless sensors, such as the Bluetooth Low Energy (BLE) and ultra-wideband (UWB). First, a novel indoor localization method using the BLE and IMU is proposed. The BLE trilateration residue is deployed to adaptively weight the estimates from these sensor modalities. Second, a robust sensor fusion algorithm is developed to accurately track the location and capture the lower body motion by integrating the estimates from the UWB system and IMUs, but also taking advantage of the estimated height and velocity obtained from an aiding lower body biomechanical model. The experimental results show that the proposed algorithms can maintain high accuracy for tracking the location of a sensor/subject in the presence of the BLE/UWB outliers and signal outages

    Indoor location identification technologies for real-time IoT-based applications: an inclusive survey

    Get PDF
    YesThe advent of the Internet of Things has witnessed tremendous success in the application of wireless sensor networks and ubiquitous computing for diverse smart-based applications. The developed systems operate under different technologies using different methods to achieve their targeted goals. In this treatise, we carried out an inclusive survey on key indoor technologies and techniques, with to view to explore their various benefits, limitations, and areas for improvement. The mathematical formulation for simple localization problems is also presented. In addition, an empirical evaluation of the performance of these indoor technologies is carried out using a common generic metric of scalability, accuracy, complexity, robustness, energy-efficiency, cost and reliability. An empirical evaluation of performance of different RF-based technologies establishes the viability of Wi-Fi, RFID, UWB, Wi-Fi, Bluetooth, ZigBee, and Light over other indoor technologies for reliable IoT-based applications. Furthermore, the survey advocates hybridization of technologies as an effective approach to achieve reliable IoT-based indoor systems. The findings of the survey could be useful in the selection of appropriate indoor technologies for the development of reliable real-time indoor applications. The study could also be used as a reliable source for literature referencing on the subject of indoor location identification.Supported in part by the Tertiary Education Trust Fund of the Federal Government of Nigeria, and in part by the European Union’s Horizon 2020 Research and Innovation Programme under Grant agreement H2020-MSCA-ITN-2016 SECRET-72242

    Human motion estimation and controller learning

    Get PDF
    Humans are capable of complex manipulation and locomotion tasks. They are able to achieve energy-efficient gait, reject disturbances, handle changing loads, and adapt to environmental constraints. Using inspiration from the human body, robotics researchers aim to develop systems with similar capabilities. Research suggests that humans minimize a task specific cost function when performing movements. In order to learn this cost function from demonstrations and incorporate it into a controller, it is first imperative to accurately estimate the expert motion. The captured motions can then be analyzed to extract the objective function the expert was minimizing. We propose a framework for human motion estimation from wearable sensors. Human body joints are modeled by matrix Lie groups, using special orthogonal groups SO(2) and SO(3) for joint pose and special Euclidean group SE(3) for base link pose representation. To estimate the human joint pose, velocity and acceleration, we provide the equations for employing the extended Kalman Filter on Lie Groups, thus explicitly accounting for the non-Euclidean geometry of the state space. Incorporating interaction constraints with respect to the environment or within the participant allows us to track global body position without an absolute reference and ensure viable pose estimate. The algorithms are extensively validated in both simulation and real-world experiments. Next, to learn underlying expert control strategies from the expert demonstrations we present a novel fast approximate multi-variate Gaussian Process regression. The method estimates the underlying cost function, without making assumptions on its structure. The computational efficiency of the approach allows for real time forward horizon prediction. Using a linear model predictive control framework we then reproduce the demonstrated movements on a robot. The learned cost function captures the variability in expert motion as well as the correlations between states, leading to a controller that both produces motions and reacts to disturbances in a human-like manner. The model predictive control formulation allows the controller to satisfy task and joint space constraints avoiding obstacles and self collisions, as well as torque constraints, ensuring operational feasibility. The approach is validated on the Franka Emika robot using real human motion exemplars

    3-D localization of human based on an inertial capture system

    No full text
    This paper introduces a method to track the spatial location and movement of a human using wearable inertia sensors without additional external global positioning devices. Starting from the lower limb kinematics of a human, the method uses multiple wearable inertia sensors to determine the orientation of the body segments and lower limb joint motions. At the same time, based on human kinematics and locomotion phase detection, the spatial position and the trajectory of a reference point on the body can be determined. An experimental study has shown that the position error can be controlled within 1-2% of the total distance in both indoor and outdoor environments. The system is capable of localization on irregular terrains (like uphill/downhill). From the localization results, the ground shape and the height information that can be recovered after localization experiments are conducted. A benchmark study on the accuracy of this method was carried out using the camera-based motion analysis system to study the validity of the system. The localization data that are obtained from the proposed method match well with those from the commercial system. Since the sensors can be worn on the human at any time and any place, this method has no restriction to indoor and outdoor applications
    corecore