44 research outputs found

    2D Proactive Uplink Resource Allocation Algorithm for Event Based MTC Applications

    Full text link
    We propose a two dimension (2D) proactive uplink resource allocation (2D-PURA) algorithm that aims to reduce the delay/latency in event-based machine-type communications (MTC) applications. Specifically, when an event of interest occurs at a device, it tends to spread to the neighboring devices. Consequently, when a device has data to send to the base station (BS), its neighbors later are highly likely to transmit. Thus, we propose to cluster devices in the neighborhood around the event, also referred to as the disturbance region, into rings based on the distance from the original event. To reduce the uplink latency, we then proactively allocate resources for these rings. To evaluate the proposed algorithm, we analytically derive the mean uplink delay, the proportion of resource conservation due to successful allocations, and the proportion of uplink resource wastage due to unsuccessful allocations for 2D-PURA algorithm. Numerical results demonstrate that the proposed method can save over 16.5 and 27 percent of mean uplink delay, compared with the 1D algorithm and the standard method, respectively.Comment: 6 pages, 6 figures, Published in 2018 IEEE Wireless Communications and Networking Conference (WCNC

    Energy Efficient and Low-Latency Communications for Future Wireless Networks

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.The ever-growing number of smart and mobile devices as well as their emerging applications call for novel solutions to address new challenges in energy efficiency and latency requirements. This thesis aims to develop novel protocols, resource allocation algorithms, and network architectures to enable low-latency services for mobile devices and applications (e.g., mission-critical applications in intelligent transportation systems, healthcare, gaming, and virtual/augmented reality applications). Specifically, we first introduce proactive resource allocation approaches to reduce the communications delay in machine type communications. Exploiting the correlation between smart devices (e.g., sensors), we propose an algorithm to proactively allocate uplink resources for these devices, and thereby reducing the expected uplink delay. Second, to address the energy efficiency problem for hardware-constrained devices, we propose a multi-tier task-offloading network architecture. In this novel network architecture, computation tasks from these devices can be offloaded to a network of computation-aiding servers or fog/edge nodes to minimize the energy consumption subject to the delay constraints of services. Because computing resources on fog nodes are usually limited, while task offloading demands from user devices are high, we develop an unprecedented model, allowing fog nodes and a powerful cloud server to collaborate to meet all tasks' requirements. Our experimental results demonstrate that the proposed solution can attain the optimal energy efficiency while meeting strict latency requirements for all devices and computing tasks. Finally, to address the fairness in allocating communication and computation resources of heterogeneous fog nodes for mobile devices considering diverse requirements (i.e., delay, security, and application compatibility), we adopt the proportional fairness criterion to develop a joint task offloading and resource allocation solution. The experimental results (i.e., fairness indexes, energy benefit, and energy consumption) show that the proposed scheme can attain the maximum proportional fairness in terms of the energy benefit (from offloading to fog nodes)

    A predictive resource allocation algorithm in the LTE uplink for event based M2M applications

    Get PDF
    Some M2M applications such as event monitoring involve a group of devices in a vicinity that act in a co-ordinated manner. An LTE network can exploit the correlated traffic characteristics of such devices by proactively assigning resources to devices based upon the activity of neighboring devices in the same group. This can reduce latency compared to waiting for each device in the group to request resources reactively per the standard LTE protocol. In this paper, we specify a new low complexity predictive resource allocation algorithm, known as the one way algorithm, for use with delay sensitive event based M2M applications in the LTE uplink. This algorithm requires minimal incremental processing power and memory resources at the eNodeB, yet can reduce the mean uplink latency below the minimum possible value for a non-predictive resource allocation algorithm. We develop mathematical models for the probability of a prediction, the probability of a successful prediction, the probability of an unsuccessful prediction, resource usage/wastage probabilities and mean uplink latency. The validity of these models is demonstrated by comparison with the results from a simulation. The models can be used offline by network operators or online in real time by the eNodeB scheduler to optimize performance

    Reliable Radio Access for Massive Machine-to-Machine (M2M) Communication

    Get PDF

    Priority Enabled Grant-Free Access With Dynamic Slot Allocation for Heterogeneous mMTC Traffic in 5G NR Networks

    Get PDF
    Although grant-based mechanisms have been a predominant approach for wireless access for years, the additional latency required for initial handshake message exchange and the extra control overhead for packet transmissions have stimulated the emergence of grant-free (GF) transmission. GF access provides a promising mechanism for carrying low and moderate traffic with small data and fits especially well for massive machine type communications (mMTC) applications. Despite a surge of interest in GF access, how to handle heterogeneous mMTC traffic based on GF mechanisms has not been investigated in depth. In this paper, we propose a priority enabled GF access scheme which performs dynamic slot allocation in each 5G new radio subframe to devices with different priority levels on a subframe-by-subframe basis. While high priority traffic has access privilege for slot occupancy, the remaining slots in the same subframe will be allocated to low priority traffic. To evaluate the performance of the proposed scheme, we develop a two-dimensional Markov chain model which integrates these two types of traffic via a pseudo-aggregated process. Furthermore, the model is validated through simulations and the performance of the scheme is evaluated both analytically and by simulations and compared with two other GF access schemes.publishedVersio

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    This book is a printed edition of the Special Issue Internet of Things and Sensors Networks in 5G Wireless Communications that was published in Sensors

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    This book is a printed edition of the Special Issue Internet of Things and Sensors Networks in 5G Wireless Communications that was published in Sensors

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    The Internet of Things (IoT) has attracted much attention from society, industry and academia as a promising technology that can enhance day to day activities, and the creation of new business models, products and services, and serve as a broad source of research topics and ideas. A future digital society is envisioned, composed of numerous wireless connected sensors and devices. Driven by huge demand, the massive IoT (mIoT) or massive machine type communication (mMTC) has been identified as one of the three main communication scenarios for 5G. In addition to connectivity, computing and storage and data management are also long-standing issues for low-cost devices and sensors. The book is a collection of outstanding technical research and industrial papers covering new research results, with a wide range of features within the 5G-and-beyond framework. It provides a range of discussions of the major research challenges and achievements within this topic

    A Comprehensive Survey of the Tactile Internet: State of the art and Research Directions

    Get PDF
    The Internet has made several giant leaps over the years, from a fixed to a mobile Internet, then to the Internet of Things, and now to a Tactile Internet. The Tactile Internet goes far beyond data, audio and video delivery over fixed and mobile networks, and even beyond allowing communication and collaboration among things. It is expected to enable haptic communication and allow skill set delivery over networks. Some examples of potential applications are tele-surgery, vehicle fleets, augmented reality and industrial process automation. Several papers already cover many of the Tactile Internet-related concepts and technologies, such as haptic codecs, applications, and supporting technologies. However, none of them offers a comprehensive survey of the Tactile Internet, including its architectures and algorithms. Furthermore, none of them provides a systematic and critical review of the existing solutions. To address these lacunae, we provide a comprehensive survey of the architectures and algorithms proposed to date for the Tactile Internet. In addition, we critically review them using a well-defined set of requirements and discuss some of the lessons learned as well as the most promising research directions
    corecore