73 research outputs found

    Analysis and Retargeting of Ball Sports Video

    Full text link

    A Graph-Based Method for Soccer Action Spotting Using Unsupervised Player Classification

    Full text link
    Action spotting in soccer videos is the task of identifying the specific time when a certain key action of the game occurs. Lately, it has received a large amount of attention and powerful methods have been introduced. Action spotting involves understanding the dynamics of the game, the complexity of events, and the variation of video sequences. Most approaches have focused on the latter, given that their models exploit the global visual features of the sequences. In this work, we focus on the former by (a) identifying and representing the players, referees, and goalkeepers as nodes in a graph, and by (b) modeling their temporal interactions as sequences of graphs. For the player identification, or player classification task, we obtain an accuracy of 97.72% in our annotated benchmark. For the action spotting task, our method obtains an overall performance of 57.83% average-mAP by combining it with other audiovisual modalities. This performance surpasses similar graph-based methods and has competitive results with heavy computing methods. Code and data are available at https://github.com/IPCV/soccer_action_spotting.Comment: Accepted at the 5th International ACM Workshop on Multimedia Content Analysis in Sports (MMSports 2022

    A video-based framework for automatic 3d localization of multiple basketball players : a combinatorial optimization approach

    Get PDF
    Sports complexity must be investigated at competitions; therefore, non-invasive methods are essential. In this context, computer vision, image processing, and machine learning techniques can be useful in designing a non-invasive system for data acquisition that identifies players’ positions in official basketball matches. Here, we propose and evaluate a novel video-based framework to perform automatic 3D localization of multiple basketball players. The introduced framework comprises two parts. The first stage is player detection, which aims to identify players’ heads at the camera image level. This stage is based on background segmentation and on classification performed by an artificial neural network. The second stage is related to 3D reconstruction of the player positions from the images provided by the different cameras used in the acquisition. This task is tackled by formulating a constrained combinatorial optimization problem that minimizes the re-projection error while maximizing the number of detections in the formulated 3D localization problem8286CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPNão temNão temNão temWe would like to thank the CAPES, FAEPEX, FAPESP, and CNPq for funding their research. This paper has content from master degree’s dissertation previously published (Monezi, 2016) and available onlin

    MonoTrack: Shuttle trajectory reconstruction from monocular badminton video

    Full text link
    Trajectory estimation is a fundamental component of racket sport analytics, as the trajectory contains information not only about the winning and losing of each point, but also how it was won or lost. In sports such as badminton, players benefit from knowing the full 3D trajectory, as the height of shuttlecock or ball provides valuable tactical information. Unfortunately, 3D reconstruction is a notoriously hard problem, and standard trajectory estimators can only track 2D pixel coordinates. In this work, we present the first complete end-to-end system for the extraction and segmentation of 3D shuttle trajectories from monocular badminton videos. Our system integrates badminton domain knowledge such as court dimension, shot placement, physical laws of motion, along with vision-based features such as player poses and shuttle tracking. We find that significant engineering efforts and model improvements are needed to make the overall system robust, and as a by-product of our work, improve state-of-the-art results on court recognition, 2D trajectory estimation, and hit recognition.Comment: To appear in CVSports@CVPR 202

    Player detection method based on scale attention and scale equalization algorithm

    Get PDF
    IntroductionObject detection methods for team ball games players often struggle due to their reliance on dataset scale statistics, resulting in missed detections for players with smaller bounding boxes and reduced accuracy for larger bounding boxes.MethodsThis study introduces a two-fold approach to address these challenges. Firstly, a novel multi-scale attention mechanism is proposed, aiming to reduce reliance on scale statistics by utilizing a specially created SIoU (Similar to Intersection over Union) label that explicitly represents multi-scale features. This label guides the training of multi-scale attention network modules at two granularity levels. Secondly, an integrated scale equalization algorithm within SIoU labels enhances the detection ability of multi-scale targets in imbalanced samples.Results and discussionComparative experiments conducted on basketball, volleyball, and ice hockey datasets validate the proposed method. The relative optimal approach demonstrated improvements in the detection accuracy of players with smaller and larger scale bounding boxes by 11%, 7%, 15%, 8%, 9%, and 4%, respectively

    Towards Efficient Ice Surface Localization From Hockey Broadcast Video

    Get PDF
    Using computer vision-based technology in ice hockey has recently been embraced as it allows for the automatic collection of analytics. This data would be too expensive and time-consuming to otherwise collect manually. The insights gained from these analytics allow for a more in-depth understanding of the game, which can influence coaching and management decisions. A fundamental component of automatically deriving analytics from hockey broadcast video is ice rink localization. In broadcast video of hockey games, the camera pans, tilts, and zooms to follow the play. To compensate for this motion and get the absolute locations of the players and puck on the ice, an ice rink localization pipeline must find the perspective transform that maps each frame to an overhead view of the rink. The lack of publicly available datasets makes it difficult to perform research into ice rink localization. A novel annotation tool and dataset are presented, which includes 7,721 frames from National Hockey League game broadcasts. Since ice rink localization is a component of a full hockey analytics pipeline, it is important that these methods be as efficient as possible to reduce the run time. Small neural networks that reduce inference time while maintaining high accuracy can be used as an intermediate step to perform ice rink localization by segmenting the lines from the playing surface. Ice rink localization methods tend to infer the camera calibration of each frame in a broadcast sequence individually. This results in perturbations in the output of the pipeline, as there is no consideration of the camera calibrations of the frames before and after in the sequence. One way to reduce the noise in the output is to add a post-processing step after the ice has been localized to smooth the camera parameters and closely simulate the camera’s motion. Several methods for extracting the pan, tilt, and zoom from the perspective transform matrix are explored. The camera parameters obtained from the inferred perspective transform can be smoothed to give a visually coherent video output. Deep neural networks have allowed for the development of architectures that can perform several tasks at once. A basis for networks that can regress the ice rink localization parameters and simultaneously smooth them is presented. This research provides several approaches for improving ice rink localization methods. Specifically, the analytics pipelines can become faster and provide better results visually. This can allow for improved insight into hockey games, which can increase the performance of the hockey team with reduced cost
    corecore