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Introduction: Object detection methods for team ball games players often

struggle due to their reliance on dataset scale statistics, resulting in missed

detections for players with smaller bounding boxes and reduced accuracy for

larger bounding boxes.

Methods: This study introduces a two-fold approach to address these challenges.

Firstly, a novel multi-scale attention mechanism is proposed, aiming to reduce

reliance on scale statistics by utilizing a specially created SIoU (Similar to

Intersection over Union) label that explicitly represents multi-scale features.

This label guides the training of multi-scale attention network modules at two

granularity levels. Secondly, an integrated scale equalization algorithmwithin SIoU

labels enhances the detection ability of multi-scale targets in imbalanced samples.

Results and discussion: Comparative experiments conducted on basketball,

volleyball, and ice hockey datasets validate the proposed method. The relative

optimal approach demonstrated improvements in the detection accuracy of

players with smaller and larger scale bounding boxes by 11%, 7%, 15%, 8%, 9%,

and 4%, respectively.

KEYWORDS

multi-scale target detection, scale attention, SIoU, scale equalization, implicit feature

fusion

1 Introduction

In team sports, such as basketball, volleyball, and ice hockey, the precise detection of

players serves as the fundamental basis for intelligent auxiliary analysis of player movement

data, assessment of multi-player coordinated behaviors, and comprehensive team technical

and tactical analysis (Lu et al., 2011, 2013; Nishikawa et al., 2017; Stein et al., 2018; Kong et al.,

2020). However, in the aforementioned competition scenarios, the statistical distribution of

players’ bounding boxes becomes wider and unbalanced due to the diversity of shooting

distances and angles, along with the continuous movement and random switching of the

camera. Specially, this substantial imbalance impairs the detection and localization abilities

of existing model algorithms, particularly concerning extremely small and extremely large

scale bounding boxes targets. Therefore, enhancing the detection ability of multiple players

in non-equilibrium scale statistical scenes has become a significant challenge in the research

and improvement of numerous algorithms in the field of computer vision.

As for the improvement of traditional algorithms, the primary emphasis lies on

explicit multi-scale feature acquisition and fusion. In Lu et al. (2011), the combination

of Histogram of Oriented Gradients (HOG) with color information is proposed.

Stein et al. (2018) suggests the fusion of color histograms with target center points.
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Additionally, Santhosh and Kaarthick (2019) introduces the

combination of the Deformable Parts Model (DPM) with Scale

Invariant Feature Transform (SIFT) keypoints. These methods

can significantly enhance the ability to extract explicit features

of players through artificially designed operators. However, they

exhibit more localized effectiveness and encounter difficulties in

adaptively detecting targets of all scale bounding boxes.

The improvement based on deep learning models primarily

leverages the universal object detection framework and its

extensions (Akan and Varli, 2022; Sah and Direkoglu, 2023) to

achieve the acquisition and fusion of implicit multi-scale features.

As demonstrated in Nishikawa et al. (2017), the multi-branch

output structure of the enhanced YOLOv3 model is directly

employed to acquire and merge adjacent scale basketball player

features. Building upon the addition of various scale feature

detection branches, Kong et al. (2019) further integrates a spatial

pyramid pooling (SPP)module, enhanced by hole convolution, into

the training of the medium scale detection branch with the largest

sample volume. This integration aims to enhance the complexity

and precision of feature extraction and mitigate potential model

overfitting or underfitting arising from sample imbalance. In Buric

et al. (2019), features from non-adjacent scales were fused by

integrating improved Feature Pyramid Networks (FPNs) into the

backbone network, and the Fast R-CNN model was combined to

enhance the detection effectiveness of multi-scale football players.

Simultaneously, incorporating an attention mechanism into the

backbone network for multi-scale feature extraction and fusion is

also a prevalent approach. In line with this, both Komorowski et al.

(2020) and Hurault et al. (2020) utilize attention mechanisms to

enhance the detection capability of football players. In He (2022),

attention mechanism was combined with a encoder-decoder model

to obtain and fuse multi-scale features through encoding and

decoding, achieving the detection of multiple types of multi-scale

players. However, the naturally formed player detection dataset

still exhibits an imbalance in the distribution of scales, resulting

in a significant number of omissions in the detection of players

with small sacle bounding boxes and inaccurate positioning of

players with large scale bounding boxes in the aforementioned

improved algorithms.

In response to the above issues, and inspired by techniques

from partial feature fusion (Zhang et al., 2022) and data processing

(Ding et al., 2023), this article proposes a multi-scale attention

mechanism that weakly relies on the scale statistical distribution

features of the dataset and a scale equalization algorithm. These

methods combine the strong implicit feature extraction ability of

deep learning models with the local enhancement characteristics

of traditional operators describing explicit features, thereby further

improving the accuracy of multi-scale player detection. The main

innovations and contributions of this article include: (1) The

proposal introduces the Similar to Intersection over Union (SIoU)

label to represent explicit feature information of multi-scale targets.

Based on this label, relevant network modules are constructed

to generate coarse-grained scale attention feature planes that aid

in multi-scale target detection. (2) An algorithm combining non

Supervised learning and interval estimation using the statistical

distribution information of the coarse-grained scale attention

feature plane is proposed, so as to form a fine-grained scale

attention with higher concentration. (3) We presents a scale

equalization algorithm that is attached to the SIoU label and

integrated into the training of the scale attention generation

module. The algorithm aims to address the issue of network

overfitting during training, which arises from the presence of

a significant volume of samples with identical scale targets.

Additionally, it mitigates the training error caused by the imbalance

in the scale distribution of players’ bounding boxes in ball

team competitions.

2 The principle of SIoU label

The Intersection over Union (IoU) (Yu et al., 2016) is a metric

commonly employed in object detection tasks to assess algorithm

performance. It is defined as the ratio between the intersection and

union of the predicted field of view bounding box and the target’s

actual bounding box. This article formulates equation (2) using

equation (1) to compute the SIoU (Similar to Intersection over

Union) label. The SIoU label represents the ratio of intersection and

union between the predicted field of view bounding box and the

actual bounding box of the target in the output feature plane of the

observed field of view. It calculates this value while continuously

shifting the center position (x, y) of the predicted field of view

bounding box. Starget(k) denotes the true bounding box of the

k-th target, and Skernel(x,y,z) represents the predicted bounding

box of the z-th observation field when the output feature plane

is centered at point (x, y). The SIoU values that can be generated

through systematic variation of the size of the predicted field

of view bounding box and the target’s actual bounding box are

illustrated in Figures 1, 2. This numerical characteristic of change

exhibits similarity to the credibility of the human visual system

when observing multi-scale targets across different fields of view,

thus providing an explicit expression of multi-scale characteristics.

IoU =
Soverlap

Sunion
(1)

SIoU(x,y,z,k) =
Soverlap(x,y,z,k)

Sunion(x,y,z,k)
=

Starget(k) ∩ Skernel(x,y,z)
Starget(k) ∪ Skernel(x,y,z)

(2)

Figure 2 displays a representative statistical distribution of

SIoU values, obtained through a typical single point quantization

calculation, applied to targets of various scales using four

corresponding equivalent prediction field of view boundary boxes.

The typical single point quantization value refers to the SIoU value

calculated when the predicted field of view bounding box aligns

precisely with the center position of the target’s actual bounding

box. This serves as an illustrative example of certain feature points

in Figure 1.

In Figure 2, the distinct line types represent different predicted

branches η to which the target belongs. The calculation of these

branches is determined by equation (3), where ηmax denotes

the upper limit of the number of predicted branches in the

model. In equation (3), ℓt arg et(k)denotes the edge length of the

k-th target, which is computed following equation (4). Likewise,

ℓz
kernel

(xcenter, ycenter) signifies the edge length of the z-th basic

predicted field of view bounding box, calculated based on equation

Frontiers inNeurorobotics 02 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1289203
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Zhang and Luo 10.3389/fnbot.2023.1289203

FIGURE 1

The visualization of SIoU features across distinct scales for various targets.

FIGURE 2

Numerical distribution of SIoU values for typical scale targets.

(5). The set Lglobal, comprising the edge lengths of all globally

equivalent predicted field of view bounding boxes in the figure, is

derived following equation (6).

η = min(max(log

ℓt arg et(k)

max({ℓz
kernel

(xcenter,ycenter)})
2 +2, 1), ηmax) (3)

ℓt arg et(k) =
√

Starget(k) (4)

ℓzkernel(xcenter, ycenter) =
√

Skernel(xcenter, ycenter, z) (5)

Lglobal = {ℓzkernel(xcenter, ycenter)× 2η−1} (6)

The variation pattern observed in different color curves in

Figure 2 indicates that the SIoU value exhibits correlation between

the same target and different predicted fields of view bounding

box. Moreover, it demonstrates distinguishability for targets of the

same category but different scales. Among the four consecutive

SIoU values obtained, those corresponding to small-scale bounding

box targets exhibit relatively small values and display a decreasing

trend. In contrast, the SIoU values for medium-scale bounding

box targets are relatively larger, with an initial increase followed

by a subsequent decrease. For large-scale bounding box targets, the

SIoU values are relatively small and demonstrate an upward trend.

These trends primarily emphasize the relative relationships among

SIoU values, rather than the absolute values themselves.

Figure 3 presents the statistical distribution of all

corresponding SIoU values computed for equivalent target

bounding box sizes ranging from 3 × 3 to 54 × 54. These

calculations are performed when the observation view output

feature planes of the three prediction branches are set to 56 ×
56, 28 × 28, and 14 × 14, respectively. The SIoU values are

categorized into two groups based on the size of the predicted view

bounding box and the actual target bounding box. As depicted

in the Figure 3, the SIoU numerical ranges for the majority of

target exhibit considerable overlap and intersections with one

another. This observation suggests that employing any volume of

samples and training the model to extract the four required SIoU

numerical features for targets of diverse scales indirectly enhances

the extraction capability of relevant SIoU values for targets of other

scales. Moreover, it indicates a weak dependence of the SIoU value

on the scale statistical distribution of the dataset.

When employing the SIoU value-based label to assist the

depth Convolutional Neural Network in constructing a multi-

scale attention plane, and under the condition where all branches

share the same SIoU value, the network model can accommodate

different scale targets through its multi-scale branch structure.

Additionally, the predicted field of view bounding boxes at various
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FIGURE 3

Statistical distribution of SIoU numerical ranges for all scale targets.

scales can be efficiently replaced by globally equivalent predicted

field of view bounding boxes in different branches, utilizing basic

convolutional kernels with size of 3 × 3, 5 × 5, 7 × 7, and 9

× 9, respectively. As depicted in Figure 4, the input basketball

game image comprises a total of 6 targets, consisting of 2 large-size

targets, 2 medium-size targets, and 2 small-size targets. Following

the aforementioned guidelines, the scale attention for targets A

and B is assigned to the small-size branch 3, the scale attention

for targets C and D is assigned to the medium-size branch 2, and

the scale attention for targets E and F is allocated to the large-size

branch 1.

3 Proposed method

Based on the SIoU label, we initially construct a network

module to extract multi-dimensional distribution features. It

utilizes coarse granularity scale attention formed by the explicit

features of multiple scales to enhance multi-target detection

with scale imbalance. Subsequently, leveraging the distinctive

characteristic of a single target type in team sports, the K-medoids

algorithm is enhanced by incorporating player bounding box

information and statistical features, resulting in a fine-grained

scale attention optimization algorithm. Finally, the proposed scale

equalization algorithm is integrated with the SIoU label to jointly

facilitate the training of the network model incorporating multi-

scale attention.

3.1 Network module for SIoU feature
extraction

This article introduces a network module named MdSNet

(Multidimensional SIoU Net) designed to extract multi-

dimensional SIoU features generated by multi-scale targets

through the application of multi-scale convolution kernels. As

depicted in Figure 5A, MdSNet comprises three main components:

a planar scale attention processor, a stereoscopic scale attention

processor, and a scale attention fine-tuning structure. Their

corresponding training loss functions are denoted as loss1,

loss2, and loss3, respectively. Simultaneously, we illustrate the

relationship between the MdSNet module and traditional object

detection and localization models in Figure 5B. Ultimately, the

module outputs a fine-grained scale attention feature plane.

The planar scale attention processor incorporates multi-scale

convolutional kernels and sigmoid functions. The four sizes of

convolutional kernels generate four planar scale attention feature

maps for all corresponding targets in their respective scale

branches. The resulting feature maps are then concatenated to

form a multi-channel structure. The stereoscopic scale attention

processor is composed of a 3D convolutional kernel and

sigmoid functions. It takes multi-channel planar scale attention

concatenation maps as input, producing coarse-grained scale

attention planes, and predicting the number of potential targets

within the planes. The scale attention fine-tuning structure

comprises a statistical feature extraction process and a codec,

ultimately yielding a fine-grained scale attention plane.

3.2 Process for coarse-grained attention
generation

The planar scale attention processor and the stereoscopic scale

attention processor collectively constitute the pivotal components

of the SIoU multi-dimensional distribution feature extraction

network module. The training process commences sequentially,

considering both the sample volume of the dataset and the structure

of the network model. Firstly, the planar scale attention processor

is trained, and the data labels during training are generated based

on equation (2). Figure 6A is a conventional feature map, while

Figure 6B is a single channel feature map obtained using a fixed

size convolution kernel. Figures 6C, D illustrate the predicted

data and label data, respectively. At this stage, the loss function

loss1 is constructed based on the L2 norm, which is the mean

square error function, and the optimizer used is the Stochastic

Gradient Descent (SGD) algorithm. The main objective of this

training process is to discriminate the various SIoU numerical

information generated by different scale bounding box targets

under the influence of the same size convolutional kernel. The

emphasis lies in obtaining the absolute distribution of SIoU features

in the plane space, as expressed by each output channel feature

map. Secondly, the stereoscopic scale attention processor is trained

to improve the capability of extracting multi-dimensional SIoU

features, with a particular emphasis on capturing the relative
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FIGURE 4

Guidelines for selecting target belonging branches.

relationships between the SIoU values of each channel within the

input multi-channel planar scale attention feature map. Data labels

required for training are generated using a normal distribution,

where the statistical distribution of each target is set as a normal

distribution with parameter (µ, σ ), serving to approximate the

coarse-grained scale feature range. The specific values of this

parameter can be determined through experimental evaluations.

This is shown in Figure 6E. At this stage, the loss function loss2

is constructed based on the L2 norm.

3.3 Process for fine-grained attention
generation

Scale attention fine-tuning structure employs real data to

compensate for the subjectivity of the SIoU label in this study,

and it aims to optimize the coarse-grained scale attention

features produced by the MdSNet network module. This structure

executes Algorithm 1, initially employing the enhanced K-medoids

algorithm in conjunction with the number of targets predicted

by the previous processor in the feature map to compute the

center position of each target on the coarse-grained scale attention

feature plane. Subsequently, the orientations of all targets are sorted

using the Manhattan distance. Finally, through training with a

codec and statistical interval estimation method, the confidence

interval derived from real data guides the module to generate

the best-matched confidence interval, achieving fine-tuning of

scale attention.

The essence of the K-medoids algorithm improvement

resides in the distance calculation method between the

associated feature points, as illustrated in equation (7). ϕ and

τ are obtained based on equations (8) and (9), respectively,

where (x0, x1)(y0, y1) represents the coordinate information

of the two points, and fsize denotes the size of the current

feature plane. Considering that competitive game images are

resized to a standard size of 448×448 before being fed into

the network model, the bounding boxes of players exhibit
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FIGURE 5

Schematic diagram of the MdSNet and its relationship with target detection model. (A) Schematic diagram of the MdSNet. (B) The relationship

between MdSNet and a typical target detection model.

evident aspect ratio characteristics. Consequently, for distance

calculation, an ellipse with a major-to-minor axes ratio of τ is

constructed, and the ratio τ is adjusted based on the statistical

distribution characteristics of the player’s bounding box width

and height.

Lxy = (
x20
ϕ
+

x21
τ · ϕ

−
y20
ϕ
−

y21
τ · ϕ

)

2

(7)

ϕ = (x0 + tan(
1

fsize
) · x1)

2

(8)

τ =
x21

ϕ − x20
(9)

The specific process is depicted in Figure 7. When

implementing a codec, the confidence interval within the

corresponding bounding box range serves as both the decoder and

encoder. The confidence region range is determined using equation

(10), where A represents the sample mean and B represents the

interval width. B can be computed using equation (11), where

S represents the square root of the sample variance, and n is

the number of sample points. For coarse-grained scale attention

planes, once the bounding box information for each target is

established, it can be assumed that its scale features follow a

normal distribution. Although the true mean and variance of the

corresponding statistical distribution are unknown, confidence

data within a certain bounding box can be used as a sampling

sample to calculate its sample mean A and sample variance S.

Consequently, the confidence interval for the statistical mean µ

at a confidence level 1-α can be computed. The decoder obtains

the necessary bounding box information from the real data labels

of the target. Given the fixed scale size of each branch adapted by

the MdSNet network module, the encoder acquires the boundary

box information from the boundary boxes obtained after multiple

length and width expansions or contractions of each scale branch.

By utilizing the feature information from the encoder with the

narrowest confidence interval range (i.e., the encoder feature with

the most concentrated scale feature data), along with the real

label information from the decoder, the loss function is solved in

accordance with equation (12), this corresponds to the loss3 in
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FIGURE 6

Coarse-grained attention feature generation process. (A) Feature map, (B) single channel feature map, (C) feature map after sigmoid function, (D) the

intermediate process of data annotations operation, and (E) data annotations.

the figure.

(A− B,A+ B) (10)

B =
S
√
n
tα/2 (n− 1) (11)

loss =
√

(Ar − Ap)
2 +

√

(Br − Bp)
2

(12)

3.4 Scale equalization algorithm

The scale equalization algorithm equalizes image scale

statistics that approximate a normal distribution. It achieves

this by indirectly using the scaling factor γ
i,j

h,w
, without directly

altering the sample bounding box size in the dataset. The

algorithm’s purpose is to reduce missed detections of relatively
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Input: 2, coarse-grained scale feature plane; N,

the predicted number of targets in the feature

map; Scale adjustment encoder quantity K and

corresponding branch target basic size wAnchor.

Output: Fine-grained scale feature plane.

1: Center of target on 2 :

Cp = [(cr_x1, cr_y1), · · · , (cr_xN, cr_yN)]1×N ← Improved

K-medoids and N.

2: Use Manhattan distance function fmhd(�) to sort

the orientation of the target:

[(cp_x1, cp_y1), · · · , (cp_xN, cp_yN)]1×N = fmhd(Cp),

Cp = [(cr_x1, cr_y1), · · · , (cr_xN, cr_yN)]1×N, Cp

predicted target.

[(ct_x1, ct_y1), · · · , (ct_xN, ct_yN)]1×N = fmhd(Ct),

Ct = [(ct_x1, ct_y1), · · · , (ct_xN, ct_yN)]1×N, Ct real target.

3: for λ ∈ [1,N] do

Regional sample mean A
λ

r , Regional sample

variance related variable B
λ

r

4: for κ ∈ [0,K] do

5: pκ = wAnchor ± κ ∗1, perform κ times

of scaling.

6: Predict regional sample mean A
λ

pκ
.

7: Predict regional sample variance related

variable B
λ

pκ
.

8: B
λ

p ← min(B
λ

p ,B
λ

pκ
). smallest region sample

variance related variable.

9: end for

10: loss← loss+ lossλ, lossλ ← loss =
√

(Ar − Ap)
2 +

√

(Br − Bp)
2
.

11: end for

Algorithm 1. Fine-grained scale attention optimization algorithm.

small-scale bounding box targets within the dataset. Drawing

inspiration from the image grayscale value equalization

algorithm (Acharya and Kumar, 2021), we transform the

probability density functions of the image height statistic

h and width statistic w, following equations (13) and (14)

respectively, to derive new statistics φ and ψ . Since h and w

are independent of each other, φ and ψ are also independent,

as indicated by their joint probability density as shown in

equation (15).

φ :H(h) =
∫ h

0
f (h)dh (13)

ψ :H(w) =
∫ w

0
f (w)dw (14)

f (w, h) = f (φ) · f (ψ) (15)

Since both φ and ψ follow a uniform distribution after

transformation, f (w, h) = 1 also adheres to a uniform distribution

probability density on 0 ≤ w ≤ 1 and 0 ≤ h ≤ 1.

As a result, the statistical information of the non-balanced scale

quantity in the dataset can be effectively balanced. The scaling

factor γ
i,j

h,w
, obtained through the equalization algorithm, and the

SIoU label designed in this paper can be multiplied and fused

following equation (16). The parameters mi
h
and ni

h
represents the

quantity values of the i-th level of height statistics for targets in

the source dataset before and after the execution of the algorithm,

respectively, while m
j
w and n

j
w represent the quantity values of

the j-th level of width statistic for targets in the source dataset

before and after algorithm execution. The fundamental principle

of this scale equalization lies in the utilization of scaling factors

to introduce perturbations during the training process, particularly

for targets with a large volume of specific scales, with the aim of

mitigating overfitting.

FIGURE 7

The specific generation process of fine-grained attention features.
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FIGURE 8

Sample images from the dataset. (A) Primary scale samples. (B) A limited number of small-scale and large-scale samples.

γ
i,j

h,w
=

ni
h

mi
h

·
n
j
w

m
j
w

(16)

4 Experiment

4.1 Dataset and statistical distribution
analysis

Current competitive game datasets predominantly encompass

medium-scale bounding box samples, as depicted in Figure 8A, for

player detection, often overlooking the relatively scarce instances of

both small-scale and large-scale bounding box samples, illustrated

in Figure 8B.

We undertake the reconstruction of a comprehensive

competitive competition dataset that encompasses targets of

diverse scale bounding boxes. Sample scale equalization, based on

Algorithm 2, is then implemented. The dataset comprises three

distinct game scenarios: basketball, volleyball, and ice hockey. Each

scenario encompasses ∼25min of valid video sequences, each

with a frame rate of 25. Extracting 5% of the image frames from

the video, player information is annotated, resulting in around

15K, 13K, and 16K labels for basketball, volleyball, and ice hockey,

respectively. The initial scale distribution of the dataset, depicted

in Figure 9A, exhibits unevenness and approximately follows

a normal distribution. Post-processing with Algorithm 2 yields

the scale distribution depicted in Figure 9B, markedly enhancing

overall distribution balance compared to the original dataset.

4.2 Experiment on multi-scale attention
generation

The process of formulating scale attention predominantly

encompasses acquiring two categories of information: the coarse-

grained features of multi-scale attention and the fine-grained

features of multi-scale attention. In the experiment, the ResNet

architecture was adopted as the backbone network, leading to the

construction of three scale attention branches: large, medium, and

Input: Height and Width of the bounding boxes of

all samples and their quantities.

Output: Scaling factor γ
i,j

h,w
.

1: H,W ← Grade height and width at certain

intervals respectively.

2: mh,mw ← H.size(),W.size(), Count the number of

lengths and widths.

3: H(hξ ) =
∑ς
χ=0 f (hχ )← :H(w) =

∫ w
0 f (w)dw.

4: φς = H(hς ) =
∑ς
χ=0 f (hχ ) =

∑ς
χ=0 m

χ

h
/mh , Length grade

that exists after transformation.

5: H(wχ ) =
∑ξ
ε=0 f (hε)← f (w, h) = f (φ) · f (ψ)

6: ψ
ξ
= H(wξ ) =

∑ξ
ε=0 f (wε) =

∑ξ
ε=0 m

ε
w/mw , Widths grade

that exists after transformation.

7: Restores φς and ψξ to the standard normalized

grade value.

8: for i ∈ [1,mh], i ∈ [1,mw] do

9: mi
h
← H[i],m

j
w ←W[j], The quantity of each

grade before transformation.

10: ni
h
← fhisEqu(φς ,mh,m

i
h
), n

j
w ← fhisEqu(ψξ ,mw ,m

j
w),

Number of length and width grade after scale

equalization, fhisEqu(�) histogram

equalization algorithm.

11: γ
i,j

h,w
= ni

h

mi
h

· n
j
w

m
j
w

, Scaling factor.

12: end for

Algorithm 2. Sample Scale Equalization Algorithm.

small. The ultimate dimensions of the predicted feature planes

were 56 × 56, 28 × 28, and 14 × 14, respectively. To acquire

coarse-grained information of multi-scale attention features, the

hyperparameters were set as follows: µ = 0.85 and σ = 0.15,

utilized during the generation of training labels. For the fine-

grained information of multi-scale attention features, following the

principles outlined in Algorithm 1, corresponding quantity fine-

tuning encoders were designed for the three scale branches. The

visualization outputs of the experience are depicted in Figure 10,

where Figure 10A is the original image. These results illustrate that
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coarse-grained scale attention, Figure 10B, effectively segregates the

scale features of the target for detection and enhances its positional

information. Additionally, fine-grained scale attention, Figure 10C,

further refines the precision and concentration of potential target

positions, building upon the foundation laid by coarse-grained

scale attention. Certainly, fine-grained scale attention not only

enhances detection accuracy but also results in a several-fold

increase in the overall runtime of the network model. This is

especially due to the improved K-medoids algorithm, which adds

considerable time overhead. Therefore, the scale attention model

is better suited for offline video processing, similar to the one

investigated in this article.

4.3 Comprehensive experiment

This section presents three comprehensive sets of experiments

concerning multi-scale player detection. The first set is ablation

experiments focusing on the three fundamental processes outlined

in our method, aiming to evaluate the efficacy of each process. The

second set involves experiments conducted with a dataset volume

of approximately 10%, serving as a preliminary validation of the

proposed method’s capacity to enhance target detection accuracy.

In the third set of experiments, algorithmic comparisons are

conducted across various dataset volumes, serving to underscore

the limited influence of sample size distribution on the multi-scale

attention model.

4.3.1 Ablation experiment
The experimental findings, presented in Figure 11, depict

ablation experiments conducted on the three core processes

encompassing coarse-grained scale attention, fine-grained scale

attention, and scale equalization, as formulated in the methodology

of this article.

The evaluation metrics employed in this experiment are

computed according to equation (17), where TP denotes the

count of correctly predicted positive player instances, FP

FIGURE 9

The scale distribution of the dataset. (A) The scale distribution of the original dataset. (B) The scale distribution after dataset scale equalization.
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FIGURE 10

Comparison between coarse-grained and fine-grained scales attention. (A) Original image (B) Coarse-grained scale attention (C) Fine-grained

scale attention.

FIGURE 11

Results from ablation experiments comparison. (A) Coarse-grained, (B) coarse-grained and fine-grained, (C) coarse-grained and scale equalization,

and (D) all.

signifies the count of erroneously predicted positive player

instances, and FN represents the count of erroneously predicted

negative player instances. In the course of the experiment,

the IoU thresholds for player detection were set at 0.5 and

0.7, respectively. The accuracy of target detection was assessed

across four scenarios: solely employing coarse-grained scale

attention, utilizing both coarse-grained and fine-grained scale

attention, incorporating coarse-grained scale attention and

the scale equalization algorithm, and integrating all three

core processes. Analyzing the results reveals that coarse-

grained scale attention serves as the fundamental framework for

achieving multi-scale object detection in ball games. Fine-grained

attention functions as a secondary refinement of coarse-grained

attention, showcasing more pronounced enhancements in

detection outcomes particularly under higher IoU requirements.

The scale equalization algorithm is particularly effective in

enhancing the detection capability for maximum and minimum

scale bounding box targets within smaller sample volume,
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FIGURE 12

Results of player detection comparison. (A) Data labels. (B) Ours. (C) FPN. (D) PANet. (E) BiFPN.

TABLE 1 Comparison of player detection normalization results for algorithms with a 10% data volume.

Algorithm Data volume proportion Basketball Volleyball Ice hockey

S M L S M L S M L

YOLOv3+FPN 0.33 0.82 0.48 0.29 0.81 0.43 0.39 0.89 0.51

YOLOv3+PANet 0.38 0.87 0.51 0.31 0.79 0.46 0.41 0.90 0.58

YOLOv3+BiFPN 0.34 0.84 0.47 0.32 0.82 0.41 0.40 0.87 0.60

RetinaNet+AMF 10% 0.37 0.81 0.44 0.31 0.80 0.44 0.41 0.91 0.60

DeepPlayer 0.42 0.84 0.51 0.37 0.80 0.48 0.47 0.91 0.61

YOLOVX+ESPHead 0.44 0.85 0.50 0.32 0.82 0.46 0.51 0.90 0.55

YOLOv6 0.43 0.88 0.48 0.40 0.81 0.45 0.49 0.92 0.53

YOLOv3+MdSNet(Ours) 0.57 0.86 0.47 0.51 0.80 0.48 0.62 0.91 0.56

Bold numbers represent optimal and suboptimal data, respectively.

yielding notably improved effects compared to fine-grained

scale attention.

ACC=
TP

TP+FP+FN
(17)

4.3.2 Algorithm comparison experiment under
low data volume

To provide an initial validation of the capability of multi-

scale attention to enhance the accuracy of conventional object

detection algorithms, a subset amounting to approximately 10% of
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TABLE 2 Comparison of player detection normalization results for algorithms with a 30% data volume.

Algorithm Data volume proportion Basketball Volleyball Ice hockey

S M L S M L S M L

YOLOv3+FPN 0.36 0.89 0.52 0.30 0.87 0.46 0.44 0.91 0.60

YOLOv3+PANet 0.37 0.91 0.54 0.33 0.86 0.41 0.47 0.90 0.63

YOLOv3+BiFPN 0.40 0.88 0.49 0.36 0.89 0.49 0.43 0.93 0.61

RetinaNet+AMF 30% 0.46 0.90 0.54 0.37 0.88 0.52 0.50 0.94 0.63

DeepPlayer 0.57 0.91 0.68 0.48 0.86 0.61 0.59 0.92 0.64

YOLOVX+ESPHead 0.55 0.91 0.70 0.44 0.86 0.59 0.62 0.91 0.69

YOLOv6 0.57 0.89 0.62 0.56 0.88 0.60 0.61 0.94 0.65

YOLOv3+MdSNet(Ours) 0.71 0.87 0.74 0.68 0.84 0.72 0.70 0.92 0.75

Bold numbers represent optimal and suboptimal data, respectively.

TABLE 3 Comparison of player detection normalization results for algorithms with a 50% data volume.

Algorithm Data volume proportion Basketball Volleyball Ice hockey

S M L S M L S M L

YOLOv3+FPN 0.43 0.90 0.55 0.37 0.88 0.49 0.52 0.90 0.65

YOLOv3+PANet 0.41 0.92 0.54 0.35 0.92 0.47 0.55 0.93 0.60

YOLOv3+BiFPN 0.49 0.89 0.57 0.42 0.90 0.50 0.58 0.91 0.61

RetinaNet+AMF 50% 0.52 0.90 0.63 0.46 0.90 0.58 0.64 0.92 0.70

DeepPlayer 0.48 0.91 0.74 0.51 0.91 0.67 0.61 0.92 0.74

YOLOVX+ESPHead 0.61 0.91 0.75 0.54 0.91 0.69 0.68 0.92 0.81

YOLOv6 0.65 0.92 0.74 0.63 0.93 0.72 0.73 0.93 0.77

YOLOv3+MdSNet(Ours) 0.75 0.93 0.81 0.70 0.89 0.79 0.78 0.94 0.84

Bold numbers represent optimal and suboptimal data, respectively.

TABLE 4 Comparison of player detection normalization results for algorithms with a 100% data volume.

Algorithm Data volume proportion Basketball Volleyball Ice hockey

S M L S M L S M L

YOLOv3+FPN 0.48 0.93 0.58 0.41 0.90 0.53 0.65 0.93 0.62

YOLOv3+PANet 0.50 0.95 0.55 0.46 0.93 0.55 0.63 0.90 0.63

YOLOv3+BiFPN 0.49 0.90 0.60 0.42 0.91 0.51 0.65 0.96 0.67

RetinaNet+AMF 100% 0.55 0.93 0.67 0.49 0.93 0.62 0.68 0.97 0.73

DeepPlayer 0.51 0.92 0.84 0.44 0.94 0.76 0.72 0.96 0.77

YOLOVX+ESPHead 0.64 0.92 0.76 0.58 0.94 0.74 0.71 0.93 0.86

YOLOv6 0.69 0.93 0.82 0.67 0.92 0.79 0.76 0.95 0.81

YOLOv3+MdSNet(Ours) 0.80 0.94 0.89 0.82 0.92 0.87 0.85 0.95 0.90

Bold numbers represent optimal and suboptimal data, respectively.

the player detection dataset was extracted. Leveraging the YOLOv3

algorithm and pretraining the backbone network on the PETA

dataset, comparative experimental results were obtained for the

approach presented in this article, the approach augmented with

the FPN (Zhao et al., 2019) module, the approach augmented

with the PANet (Bochkovskiy et al., 2020) module, and the

approach augmented with the BiFPN (Zhang et al., 2021) module.

As illustrated in Figure 12, the images in the odd-numbered

rows depict the detection results of players enclosed within

medium-scale bounding boxes. Conversely, the images in the even-

numbered rows encompass the detection outcomes of players

enclosed by bounding boxes of maximum or minimum scale.

Analysis reveals that the algorithm proposed by us

demonstrates superior detection accuracy for a limited volume

subset of extremely small-scale bounding box targets. Moreover, for

a relatively small volume subset of extremely large-scale bounding

box targets, the IoU indices of targets detected by this algorithm

are notably improved. Across the dataset, all algorithms exhibit
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comparable detection capabilities for medium-scale bounding box

targets. The quantitative comparison results for these observations

are tabulated in Table 1.

4.3.3 Comparative experiment of algorithms
across varied data volumes

Four additional comparative algorithms were introduced (Lin

et al., 2017; Zhang et al., 2020; Ge et al., 2021; Li et al., 2022).

Subsequent to training on comprehensive basketball, volleyball,

and ice hockey datasets, the accuracy of player detection was

computed at an IoU threshold of 0.5. Ultimately, for players of both

very small and very large scale bounding box within the dataset, the

proposed method showcased improvements of 11%, 7%, 15%, 8%,

9%, and 4%, respectively, in comparison to the optimal method.

The comprehensive experimental results are illustrated in Tables 1–

4, encompassing the detection quantification outcomes obtained

for approximately 10%, 30%, 50%, and the 100% volume datasets,

respectively. By further considering the statistical distribution

information in Figure 9, it becomes evident that with an equivalent

volume of data, the model augmented with both scale attention and

the scale equalization algorithm exhibits distinct advantages in the

detection of players at the maximum andminimum scale bounding

box. This distinction is particularly pronounced in the case of

basketball player detection. This observation can be attributed to

the relatively limited quantity of minimum and maximum scale

bounding box targets present within the basketball player detection

dataset, thereby leading to a more pronounced imbalance in scale

distribution. Concurrently, it is discernible that with the expansion

of dataset volume, the approach delineated by us consistently

refines the detection precision for maximum and minimum

scale bounding box targets. Nevertheless, the missed detection

probability for the other seven algorithms showcases minimal

reduction. This outcome is rooted in the possibility that the scale

distribution within the sampled dataset may mirror that of the

complete dataset. This observation underscores the pronounced

reliance of these algorithms on the scale statistical distribution

attributes intrinsic to the dataset. Regrettably, they may lack the

capability to rectify inaccuracies stemming from scale imbalance. In

contrast, the algorithm proposed by us evinces reduced sensitivity

to dataset scale balance. It demonstrates a weaker interdependence

on the dataset’s scale distribution characteristics when compared to

the other seven algorithms.

5 Conclusion

This article initiates the concept of SIoU and meticulously

scrutinizes its viability as a label for explicitly conveying multi-

scale attributes. Subsequently, a network module is devised to

extract the multi-dimensional distribution characteristics inherent

to SIoU features, leveraging it to bolster the precision of multi-scale

object detection within ball team sports. This module primarily

encompasses a two-tiered granularity scale attention generation

mechanism. The initial tier deploys an array of 2D convolutional

kernels to derive numerous planar scale attentions, which are

then merged with 3D convolutional kernels to construct spatial

scale attention of 3D spatial features, culminating in the creation

of a coarse-grained scale attention feature plane. The subsequent

tier involves an enhanced K-medoids algorithm, coupled with

interval estimation to establish a codec, thereby giving rise to

a fine-grained scale attention feature plane. By harnessing label

training models to ascertain the interrelated dynamics among SIoU

numerical features during the extraction of attention features across

multiple 2D plane scale levels and 3D spatial scale dimensions, the

prominence of their absolute numerical attributes is diminished.

Consequently, the process of scale attention generation becomes

less predicated on the intricate scale distribution attributes within

the dataset, thereby primarily mitigating the challenge of missed

detections pertaining to targets of maximal and minimal scale

bounding box. Furthermore, the integration of sample scale

equalization algorithms into the model training procedure disrupts

the overfitting tendency observed during training for specific scale

bounding box targets with abundant instances. This augmentation

further enhances the accuracy of multi-scale target detection,

particularly for very small and very large scale bounding box players

that appear less frequently. Building upon the findings of this

current study, future research will place heightened emphasis on

unraveling the interpretability and controllability of convolutional

neural networks as a means of advancing the capabilities for multi-

scale object detection.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

PZ: Writing – original draft. JL: Writing – review & editing.

Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers inNeurorobotics 14 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1289203
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Zhang and Luo 10.3389/fnbot.2023.1289203

References

Acharya, U. K., and Kumar, S. (2021). Directed searching optimized mean-exposure
based sub-image histogram equalization for grayscale image enhancement. Multimed.
Tools Appl. 80, 24005–24025. doi: 10.1007/s11042-021-10855-7

Akan, S., and Varli, S. (2022). Use of deep learning in soccer videos analysis: survey.
Multim. Syst. 29, 897–915. doi: 10.1007/s00530-022-01027-0

Bochkovskiy, A., Wang, C., and Liao, H. (2020). YOLOv4: optimal speed and
accuracy of object detection. arXiv [Preprint]. arXiv: 2004.10934.

Buric, M., Ivasic-Kos, M., and Pobar, M. (2019). “Player tracking in sports videos,”
inThe 2019 IEEE International Conference on Cloud Computing Technology and Science
(Sydney: IEEE), 334–340.

Ding, B., Zhang, R., and Xu, L. (2023). “U2D2Net: unsupervised unified image
dehazing and denoising network for single hazy image enhancement,” in IEEE
Transactions on Multimedia, 1–6. doi: 10.1109/TMM.2023.3263078

Ge, Z., Liu, S., Wang, F., Li, Z., and Sun, J. (2021). YOLOX: Exceeding YOLO Series
in 2021.

He, X. (2022). Application of deep learning in video target tracking of soccer players.
Soft Computing 26, 10971–10979. doi: 10.1155/2022/3540642

Hurault, S., Ballester, C., and Haro, G. (2020). “Self-supervised small soccer player
detection and tracking,” in The 3rd International Workshop on Multimedia Content
Analysis in Sports (MMSports ’20) (New York: MMSports), 9–18.

Komorowski, J., Kurzejamski, G., and Sarwas, G. (2020). “Footandball: integrated
player and ball de-tector,” in The 15th International Joint Conference on Computer
Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020)
(Valletta: VISIGRAPP), 47–56.

Kong, L., Huang, D., Qin, J., and Wang, Y. (2019). A joint framework for athlete
tracking and action recognition in sports videos. IEEE Trans. Circuits Syst. Video Techn.
30, 532–548. doi: 10.1109/TCSVT.2019.2893318

Kong, L., Huang, D., and Wang, Y. (2020). Long-term action dependence based
hierarchical deep association for multi-athlete tracking in sports videos. IEEE Trans.
Image Proc. 29, 7957–7969. doi: 10.1109/TIP.2020.3009034

Li, C., Li, L., Jiang, H., Weng, K., Geng, Y., Li, L., et al. (2022). YOLOv6: a single-
stage object detection framework for industrial applications. arXiv [Preprint]. arXiv:
2209.02976. doi: 10.48550/arXiv.2209.02976

Lin, T., Goyal, P., Girshick, R., He, K., and Dollar, P. (2017). “Focal Loss for Dense
Object Detection,” in The 2017 IEEE International Conference on Computer Vision
(ICCV) (Venice: IEEE), 2999–3007. doi: 10.1109/ICCV.2017.324

Lu, W., Ting, J., Little, J., and Murphy, K. (2013). Learning to
track and identify players from broadcast sports videos. IEEE Trans.
Pattern Anal. Mach. Intell. 35, 1704–1716. doi: 10.1109/TPAMI.20
12.242

Lu, W., Ting, J., Murphy, K., and Little, J. (2011). “Identifying players in
broadcast sports videos using conditional random fields,” in The 2011 IEEE Conference
on Computer Vision and Pattern Recognition(CVPR) (Colorado: IEEE), 3249–3256.
doi: 10.1109/CVPR.2011.5995562

Nishikawa, Y., Sato, H., and Ozawa, J. (2017). “Performance evaluation of multiple
sports player tracking system based on graph optimization,” in The 2017 IEEE
International Conference on Big Data (Big Data) (Boston: IEEE), 2903–2910.

Sah, M., and Direkoglu, C. (2023). Review and evaluation of player
detection methods in field sports. Multimed. Tools Appl.82, 13141–13165.
doi: 10.1007/s11042-021-11071-z

Santhosh, P., and Kaarthick, B. (2019). An automated player detection
and tracking in basketball game. Comp.Mater. Continua 58, 625–639.
doi: 10.32604/cmc.2019.05161

Stein, M., Janetzko, H., Lamprecht, A., Breitkreutz, T., Zimmermann, P., Goldlücke,
B., et al. (2018). Bring it to the pitch: combining video and movement data
to enhance team sport analysis. IEEE Trans. Vis. Comput. Graph. 24, 13–22.
doi: 10.1109/TVCG.2017.2745181

Yu, J., Jiang, Y., Wang, Z., Cao, Z., and Huang, T. (2016). “UnitBox: an advanced
object detection network,” in The 24th ACM International Conference on Multimedia
(MM ’16) (New York: MM), 516–520.

Zhang, C., Tian, Z., Song, J., Zheng, Y., and Xu, B. (2021). “Construction
worker hardhat-wearing detection based on an improved BiFPN,” in The 25th
International Conference on Pattern Recognition (ICPR) (Milan: IEEE), 8600–8607.
doi: 10.1109/ICPR48806.2021.9412103

Zhang, R., Wu, L., and Yang, Y. (2020). Multi-camera multi-player tracking with
deep player identification in sports video deepplyer. Pattern Recognit. 102, 107260.
doi: 10.1016/j.patcog.2020.107260

Zhang, R., Yang, S., and Zhang, Q. (2022). Graph-based few-shot learning with
transformed feature propagation and optimal class allocation. Neurocomputing 470,
247–256. doi: 10.1016/j.neucom.2021.10.110

Zhao, B., Zhao, B., Tang, L., Wang, W., and Wu, C. (2019). Multi-scale object
detection by top-down and bottom-up feature pyramid network. J. Syst. Eng. Electron.
30, 1–12. doi: 10.21629/JSEE.2019.01.01

Frontiers inNeurorobotics 15 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1289203
https://doi.org/10.1007/s11042-021-10855-7
https://doi.org/10.1007/s00530-022-01027-0
https://doi.org/10.1109/TMM.2023.3263078
https://doi.org/10.1155/2022/3540642
https://doi.org/10.1109/TCSVT.2019.2893318
https://doi.org/10.1109/TIP.2020.3009034
https://doi.org/10.48550/arXiv.2209.02976
https://doi.org/10.1109/ICCV.2017.324
https://doi.org/10.1109/TPAMI.2012.242
https://doi.org/10.1109/CVPR.2011.5995562
https://doi.org/10.1007/s11042-021-11071-z
https://doi.org/10.32604/cmc.2019.05161
https://doi.org/10.1109/TVCG.2017.2745181
https://doi.org/10.1109/ICPR48806.2021.9412103
https://doi.org/10.1016/j.patcog.2020.107260
https://doi.org/10.1016/j.neucom.2021.10.110
https://doi.org/10.21629/JSEE.2019.01.01
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

	Player detection method based on scale attention and scale equalization algorithm
	1 Introduction
	2 The principle of SIoU label
	3 Proposed method
	3.1 Network module for SIoU feature extraction
	3.2 Process for coarse-grained attention generation
	3.3 Process for fine-grained attention generation
	3.4 Scale equalization algorithm

	4 Experiment
	4.1 Dataset and statistical distribution analysis
	4.2 Experiment on multi-scale attention generation
	4.3 Comprehensive experiment
	4.3.1 Ablation experiment
	4.3.2 Algorithm comparison experiment under low data volume
	4.3.3 Comparative experiment of algorithms across varied data volumes


	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


