2 research outputs found

    A reference architecture for cloud-edge meta-operating systems enabling cross-domain, data-intensive, ML-assisted applications: architectural overview and key concepts

    Get PDF
    Future data-intensive intelligent applications are required to traverse across the cloudto-edge-to-IoT continuum, where cloud and edge resources elegantly coordinate, alongside sensor networks and data. However, current technical solutions can only partially handle the data outburst associated with the IoT proliferation experienced in recent years, mainly due to their hierarchical architectures. In this context, this paper presents a reference architecture of a meta-operating system (RAMOS), targeted to enable a dynamic, distributed and trusted continuum which will be capable of facilitating the next-generation smart applications at the edge. RAMOS is domain-agnostic, capable of supporting heterogeneous devices in various network environments. Furthermore, the proposed architecture possesses the ability to place the data at the origin in a secure and trusted manner. Based on a layered structure, the building blocks of RAMOS are thoroughly described, and the interconnection and coordination between them is fully presented. Furthermore, illustration of how the proposed reference architecture and its characteristics could fit in potential key industrial and societal applications, which in the future will require more power at the edge, is provided in five practical scenarios, focusing on the distributed intelligence and privacy preservation principles promoted by RAMOS, as well as the concept of environmental footprint minimization. Finally, the business potential of an open edge ecosystem and the societal impacts of climate net neutrality are also illustrated.For UPC authors: this research was funded by the Spanish Ministry of Science, Innovation and Universities and FEDER, grant number PID2021-124463OB-100.Peer ReviewedPostprint (published version

    Efficiency and Sustainability of the Distributed Renewable Hybrid Power Systems Based on the Energy Internet, Blockchain Technology and Smart Contracts-Volume II

    Get PDF
    The climate changes that are becoming visible today are a challenge for the global research community. In this context, renewable energy sources, fuel cell systems, and other energy generating sources must be optimally combined and connected to the grid system using advanced energy transaction methods. As this reprint presents the latest solutions in the implementation of fuel cell and renewable energy in mobile and stationary applications, such as hybrid and microgrid power systems based on the Energy Internet, Blockchain technology, and smart contracts, we hope that they will be of interest to readers working in the related fields mentioned above
    corecore