46,675 research outputs found

    Apache Calcite: A Foundational Framework for Optimized Query Processing Over Heterogeneous Data Sources

    Get PDF
    Apache Calcite is a foundational software framework that provides query processing, optimization, and query language support to many popular open-source data processing systems such as Apache Hive, Apache Storm, Apache Flink, Druid, and MapD. Calcite's architecture consists of a modular and extensible query optimizer with hundreds of built-in optimization rules, a query processor capable of processing a variety of query languages, an adapter architecture designed for extensibility, and support for heterogeneous data models and stores (relational, semi-structured, streaming, and geospatial). This flexible, embeddable, and extensible architecture is what makes Calcite an attractive choice for adoption in big-data frameworks. It is an active project that continues to introduce support for the new types of data sources, query languages, and approaches to query processing and optimization.Comment: SIGMOD'1

    Big Data

    Get PDF
    Η εργασία στοχεύει στην ανάλυση της αγοράς των μεγάλων δεδομένων, Περιλαμβάνονται οι πάροχοι μαζί με κάποιες ενδιαφέρουσες περιπτώσεις χρήσης.Nowadays, term big data, draws a lot of attention, both for Business and person perspective. For decades, companies have been making business decisions through its Business Intelligence department, based on transactional data which were basically stored in relational databases. However, regulatory compliance, increased competition, and other pressures have created an insatiable need for companies to accumulate and analyze large, fast-growing quantities of data that was beyond the critical data

    i2MapReduce: Incremental MapReduce for Mining Evolving Big Data

    Full text link
    As new data and updates are constantly arriving, the results of data mining applications become stale and obsolete over time. Incremental processing is a promising approach to refreshing mining results. It utilizes previously saved states to avoid the expense of re-computation from scratch. In this paper, we propose i2MapReduce, a novel incremental processing extension to MapReduce, the most widely used framework for mining big data. Compared with the state-of-the-art work on Incoop, i2MapReduce (i) performs key-value pair level incremental processing rather than task level re-computation, (ii) supports not only one-step computation but also more sophisticated iterative computation, which is widely used in data mining applications, and (iii) incorporates a set of novel techniques to reduce I/O overhead for accessing preserved fine-grain computation states. We evaluate i2MapReduce using a one-step algorithm and three iterative algorithms with diverse computation characteristics. Experimental results on Amazon EC2 show significant performance improvements of i2MapReduce compared to both plain and iterative MapReduce performing re-computation

    Technology Selection for Big Data and Analytical Applications

    Get PDF
    The term Big Data has become pervasive in recent years, as smart phones, televisions, washing machines, refrigerators, smart meters, diverse sensors, eyeglasses, and even clothes connect to the Internet. However, their generated data is essentially worthless without appropriate data analytics that utilizes information retrieval, statistics, as well as various other techniques. As Big Data is commonly too big for a single person or institution to investigate, appropriate tools are being used that go way beyond a traditional data warehouse and that have been developed in recent years. Unfortunately, there is no single solution but a large variety of different tools, each of which with distinct functionalities, properties and characteristics. Especially small and medium-sized companies have a hard time to keep track, as this requires time, skills, money, and specific knowledge that, in combination, result in high entrance barriers for Big Data utilization. This paper aims to reduce these barriers by explaining and structuring different classes of technologies and the basic criteria for proper technology selection. It proposes a framework that guides especially small and mid-sized companies through a suitable selection process that can serve as a basis for further advances

    A Survey on Array Storage, Query Languages, and Systems

    Full text link
    Since scientific investigation is one of the most important providers of massive amounts of ordered data, there is a renewed interest in array data processing in the context of Big Data. To the best of our knowledge, a unified resource that summarizes and analyzes array processing research over its long existence is currently missing. In this survey, we provide a guide for past, present, and future research in array processing. The survey is organized along three main topics. Array storage discusses all the aspects related to array partitioning into chunks. The identification of a reduced set of array operators to form the foundation for an array query language is analyzed across multiple such proposals. Lastly, we survey real systems for array processing. The result is a thorough survey on array data storage and processing that should be consulted by anyone interested in this research topic, independent of experience level. The survey is not complete though. We greatly appreciate pointers towards any work we might have forgotten to mention.Comment: 44 page
    corecore