249 research outputs found

    Fusion-Based Versatile Video Coding Intra Prediction Algorithm with Template Matching and Linear Prediction

    Get PDF
    The new generation video coding standard Versatile Video Coding (VVC) has adopted many novel technologies to improve compression performance, and consequently, remarkable results have been achieved. In practical applications, less data, in terms of bitrate, would reduce the burden of the sensors and improve their performance. Hence, to further enhance the intra compression performance of VVC, we propose a fusion-based intra prediction algorithm in this paper. Specifically, to better predict areas with similar texture information, we propose a fusion-based adaptive template matching method, which directly takes the error between reference and objective templates into account. Furthermore, to better utilize the correlation between reference pixels and the pixels to be predicted, we propose a fusion-based linear prediction method, which can compensate for the deficiency of single linear prediction. We implemented our algorithm on top of the VVC Test Model (VTM) 9.1. When compared with the VVC, our proposed fusion-based algorithm saves a bitrate of 0.89%, 0.84%, and 0.90% on average for the Y, Cb, and Cr components, respectively. In addition, when compared with some other existing works, our algorithm showed superior performance in bitrate savings

    Two stream network for stroke detection in table tennis

    Get PDF
    This paper presents a table tennis stroke detection method from videos. Themethod relies on a two-stream Convolutional Neural Network processing inparallel the RGB Stream and its computed optical flow. The method has beendeveloped as part of the MediaEval 2021 benchmark for the Sport task. Ourcontribution did not outperform the provided baseline on the test set but hasperformed the best among the other participants with regard to the mAP metric.<br

    BiRA-Net: Bilinear Attention Net for Diabetic Retinopathy Grading

    Full text link
    Diabetic retinopathy (DR) is a common retinal disease that leads to blindness. For diagnosis purposes, DR image grading aims to provide automatic DR grade classification, which is not addressed in conventional research methods of binary DR image classification. Small objects in the eye images, like lesions and microaneurysms, are essential to DR grading in medical imaging, but they could easily be influenced by other objects. To address these challenges, we propose a new deep learning architecture, called BiRA-Net, which combines the attention model for feature extraction and bilinear model for fine-grained classification. Furthermore, in considering the distance between different grades of different DR categories, we propose a new loss function, called grading loss, which leads to improved training convergence of the proposed approach. Experimental results are provided to demonstrate the superior performance of the proposed approach.Comment: Accepted at ICIP 201

    Robust Backdoor Attacks on Object Detection in Real World

    Full text link
    Deep learning models are widely deployed in many applications, such as object detection in various security fields. However, these models are vulnerable to backdoor attacks. Most backdoor attacks were intensively studied on classified models, but little on object detection. Previous works mainly focused on the backdoor attack in the digital world, but neglect the real world. Especially, the backdoor attack's effect in the real world will be easily influenced by physical factors like distance and illumination. In this paper, we proposed a variable-size backdoor trigger to adapt to the different sizes of attacked objects, overcoming the disturbance caused by the distance between the viewing point and attacked object. In addition, we proposed a backdoor training named malicious adversarial training, enabling the backdoor object detector to learn the feature of the trigger with physical noise. The experiment results show this robust backdoor attack (RBA) could enhance the attack success rate in the real world.Comment: 22 pages, 13figure

    Distorted Representation Space Characterization Through Backpropagated Gradients

    Full text link
    In this paper, we utilize weight gradients from backpropagation to characterize the representation space learned by deep learning algorithms. We demonstrate the utility of such gradients in applications including perceptual image quality assessment and out-of-distribution classification. The applications are chosen to validate the effectiveness of gradients as features when the test image distribution is distorted from the train image distribution. In both applications, the proposed gradient based features outperform activation features. In image quality assessment, the proposed approach is compared with other state of the art approaches and is generally the top performing method on TID 2013 and MULTI-LIVE databases in terms of accuracy, consistency, linearity, and monotonic behavior. Finally, we analyze the effect of regularization on gradients using CURE-TSR dataset for out-of-distribution classification.Comment: 5 pages, 5 figures, 2 tables, ICIP 201
    • …
    corecore