6 research outputs found

    A Decade of Code Comment Quality Assessment: A Systematic Literature Review

    Get PDF
    Code comments are important artifacts in software systems and play a paramount role in many software engineering (SE) tasks related to maintenance and program comprehension. However, while it is widely accepted that high quality matters in code comments just as it matters in source code, assessing comment quality in practice is still an open problem. First and foremost, there is no unique definition of quality when it comes to evaluating code comments. The few existing studies on this topic rather focus on specific attributes of quality that can be easily quantified and measured. Existing techniques and corresponding tools may also focus on comments bound to a specific programming language, and may only deal with comments with specific scopes and clear goals (e.g., Javadoc comments at the method level, or in-body comments describing TODOs to be addressed). In this paper, we present a Systematic Literature Review (SLR) of the last decade of research in SE to answer the following research questions: (i) What types of comments do researchers focus on when assessing comment quality? (ii) What quality attributes (QAs) do they consider? (iii) Which tools and techniques do they use to assess comment quality?, and (iv) How do they evaluate their studies on comment quality assessment in general? Our evaluation, based on the analysis of 2353 papers and the actual review of 47 relevant ones, shows that (i) most studies and techniques focus on comments in Java code, thus may not be generalizable to other languages, and (ii) the analyzed studies focus on four main QAs of a total of 21 QAs identified in the literature, with a clear predominance of checking consistency between comments and the code. We observe that researchers rely on manual assessment and specific heuristics rather than the automated assessment of the comment quality attributes

    Study of Code Smells: A Review and Research Agenda

    Get PDF
    Code Smells have been detected, predicted and studied by researchers from several perspectives. This literature review is conducted to understand tools and algorithms used to detect and analyze code smells to summarize research agenda. 114 studies have been selected from 2009 to 2022 to conduct this review. The studies are deeply analyzed under the categorization of machine learning and non-machine learning, which are found to be 25 and 89 respectively. The studies are analyzed to gain insight into algorithms, tools and limitations of the techniques. Long Method, Feature Envy, and Duplicate Code are reported to be the most popular smells. 38% of the studies focused their research on the enhancement of tools and methods. Random Forest and JRip algorithms are found to give the best results under machine learning techniques. We extended the previous studies on code smell detection tools, reporting a total 87 tools during the review. Java is found to be the dominant programming language during the study of smells

    A decade of code comment quality assessment : a systematic literature review

    Get PDF
    Code comments are important artifacts in software systems and play a paramount role in many software engineering (SE) tasks related to maintenance and program comprehension. However, while it is widely accepted that high quality matters in code comments just as it matters in source code, assessing comment quality in practice is still an open problem. First and foremost, there is no unique definition of quality when it comes to evaluating code comments. The few existing studies on this topic rather focus on specific attributes of quality that can be easily quantified and measured. Existing techniques and corresponding tools may also focus on comments bound to a specific programming language, and may only deal with comments with specific scopes and clear goals (e.g., Javadoc comments at the method level, or in-body comments describing TODOs to be addressed). In this paper, we present a Systematic Literature Review (SLR) of the last decade of research in SE to answer the following research questions: (i) What types of comments do researchers focus on when assessing comment quality? (ii) What quality attributes (QAs) do they consider? (iii) Which tools and techniques do they use to assess comment quality?, and (iv) How do they evaluate their studies on comment quality assessment in general? Our evaluation, based on the analysis of 2353 papers and the actual review of 47 relevant ones, shows that (i) most studies and techniques focus on comments in Java code, thus may not be generalizable to other languages, and (ii) the analyzed studies focus on four main QAs of a total of 21 QAs identified in the literature, with a clear predominance of checking consistency between comments and the code. We observe that researchers rely on manual assessment and specific heuristics rather than the automated assessment of the comment quality attributes, with evaluations often involving surveys of students and the authors of the original studies but rarely professional developers

    Branch coverage prediction in automated testing

    Get PDF
    This is the peer reviewed version which has been published in final form at [DOI]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.Software testing is crucial in continuous integration (CI). Ideally, at every commit, all the test cases should be executed, and moreover, new test cases should be generated for the new source code. This is especially true in a Continuous Test Generation (CTG) environment, where the automatic generation of test cases is integrated into the continuous integration pipeline. In this context, developers want to achieve a certain minimum level of coverage for every software build. However, executing all the test cases and, moreover, generating new ones for all the classes at every commit is not feasible. As a consequence, developers have to select which subset of classes has to be tested and/or targeted by test‐case generation. We argue that knowing a priori the branch coverage that can be achieved with test‐data generation tools can help developers into taking informed decision about those issues. In this paper, we investigate the possibility to use source‐code metrics to predict the coverage achieved by test‐data generation tools. We use four different categories of source‐code features and assess the prediction on a large data set involving more than 3'000 Java classes. We compare different machine learning algorithms and conduct a fine‐grained feature analysis aimed at investigating the factors that most impact the prediction accuracy. Moreover, we extend our investigation to four different search budgets. Our evaluation shows that the best model achieves an average 0.15 and 0.21 MAE on nested cross‐validation over the different budgets, respectively, on EVOSUITE and RANDOOP. Finally, the discussion of the results demonstrate the relevance of coupling‐related features for the prediction accuracy

    Assessing Comment Quality in Object-Oriented Languages

    Get PDF
    Previous studies have shown that high-quality code comments support developers in software maintenance and program comprehension tasks. However, the semi-structured nature of comments, several conventions to write comments, and the lack of quality assessment tools for all aspects of comments make comment evaluation and maintenance a non-trivial problem. To understand the specification of high-quality comments to build effective assessment tools, our thesis emphasizes acquiring a multi-perspective view of the comments, which can be approached by analyzing (1) the academic support for comment quality assessment, (2) developer commenting practices across languages, and (3) developer concerns about comments. Our findings regarding the academic support for assessing comment quality showed that researchers primarily focus on Java in the last decade even though the trend of using polyglot environments in software projects is increasing. Similarly, the trend of analyzing specific types of code comments (method comments, or inline comments) is increasing, but the studies rarely analyze class comments. We found 21 quality attributes that researchers consider to assess comment quality, and manual assessment is still the most commonly used technique to assess various quality attributes. Our analysis of developer commenting practices showed that developers embed a mixed level of details in class comments, ranging from high-level class overviews to low-level implementation details across programming languages. They follow style guidelines regarding what information to write in class comments but violate the structure and syntax guidelines. They primarily face problems locating relevant guidelines to write consistent and informative comments, verifying the adherence of their comments to the guidelines, and evaluating the overall state of comment quality. To help researchers and developers in building comment quality assessment tools, we contribute: (i) a systematic literature review (SLR) of ten years (2010–2020) of research on assessing comment quality, (ii) a taxonomy of quality attributes used to assess comment quality, (iii) an empirically validated taxonomy of class comment information types from three programming languages, (iv) a multi-programming-language approach to automatically identify the comment information types, (v) an empirically validated taxonomy of comment convention-related questions and recommendation from various Q&A forums, and (vi) a tool to gather discussions from multiple developer sources, such as Stack Overflow, and mailing lists. Our contributions provide various kinds of empirical evidence of the developer’s interest in reducing efforts in the software documentation process, of the limited support developers get in automatically assessing comment quality, and of the challenges they face in writing high-quality comments. This work lays the foundation for future effective comment quality assessment tools and techniques

    Assessing Comment Quality in Object-Oriented Languages

    Get PDF
    Previous studies have shown that high-quality code comments support developers in software maintenance and program comprehension tasks. However, the semi-structured nature of comments, several conventions to write comments, and the lack of quality assessment tools for all aspects of comments make comment evaluation and maintenance a non-trivial problem. To understand the specification of high-quality comments to build effective assessment tools, our thesis emphasizes acquiring a multi-perspective view of the comments, which can be approached by analyzing (1) the academic support for comment quality assessment, (2) developer commenting practices across languages, and (3) developer concerns about comments. Our findings regarding the academic support for assessing comment quality showed that researchers primarily focus on Java in the last decade even though the trend of using polyglot environments in software projects is increasing. Similarly, the trend of analyzing specific types of code comments (method comments, or inline comments) is increasing, but the studies rarely analyze class comments. We found 21 quality attributes that researchers consider to assess comment quality, and manual assessment is still the most commonly used technique to assess various quality attributes. Our analysis of developer commenting practices showed that developers embed a mixed level of details in class comments, ranging from high-level class overviews to low-level implementation details across programming languages. They follow style guidelines regarding what information to write in class comments but violate the structure and syntax guidelines. They primarily face problems locating relevant guidelines to write consistent and informative comments, verifying the adherence of their comments to the guidelines, and evaluating the overall state of comment quality. To help researchers and developers in building comment quality assessment tools, we contribute: (i) a systematic literature review (SLR) of ten years (2010–2020) of research on assessing comment quality, (ii) a taxonomy of quality attributes used to assess comment quality, (iii) an empirically validated taxonomy of class comment information types from three programming languages, (iv) a multi-programming-language approach to automatically identify the comment information types, (v) an empirically validated taxonomy of comment convention-related questions and recommendation from various Q&A forums, and (vi) a tool to gather discussions from multiple developer sources, such as Stack Overflow, and mailing lists. Our contributions provide various kinds of empirical evidence of the developer’s interest in reducing efforts in the software documentation process, of the limited support developers get in automatically assessing comment quality, and of the challenges they face in writing high-quality comments. This work lays the foundation for future effective comment quality assessment tools and techniques
    corecore