10,002 research outputs found

    Performance model for two-tier mobile wireless networks with macrocells and small cells

    Full text link
    [EN] A new analytical model is proposed to evaluate the performance of two-tier cellular networks composed of macrocells (MCs) and small cells (SCs), where terminals roam across the service area. Calls being serviced by MCs may retain their channel when entering a SC service area, if no free SC channels are available. Also, newly offered SC calls can overflow to the MC. However, in both situations channels may be repacked to vacate MC channels. The cardinality of the state space of the continuous-time Markov chain (CTMC) that models the system dynamics makes the exact system analysis unfeasible. We propose an approximation based on constructing an equivalent CTMC for which a product-form solution exist that can be obtained with very low computational complexity. We determine performance parameters such as the call blocking probabilities for the MC and SCs, the probability of forced termination, and the carried traffic. We validate the analytical model by simulation. Numerical results show that the proposed analytical model achieves very good precision in scenarios with diverse mobility rates and MCs and SCs loads, as well as when MCs overlay a large number of SCs.Authors would like to thank you the anonymous reviewers for the review comments provided to our work that have decisively contributed to improve the paper. Most of the contribution of V. Casares-Giner was done while visiting the Huazhong University of Science and Technolgy (HUST), Whuhan, China. This visit was supported by the European Commission, 7FP, S2EuNet project. The authors from the Universitat Politecnica de Valencia are partially supported by the Ministry of Economy and Competitiveness of Spain under grant TIN2013-47272-C2-1-R and TEC2015-71932-REDT. The research of Xiaohu Ge was supported by the National Natural Science Foundation of China (NSFC) grant 61210002, the Fundamental Research Funds for the Central Universities grant 2015XJGH011, and China International Joint Research Center of Green Communications and Networking grant 2015B01008.Casares-Giner, V.; Martínez Bauset, J.; Ge, X. (2018). Performance model for two-tier mobile wireless networks with macrocells and small cells. Wireless Networks. 24(4):1327-1342. https://doi.org/10.1007/s11276-016-1407-8S13271342244ABIresearch. (2016). In-building mobile data traffic forecast. ABIreseach, Technical Report.NGMN Alliance. (2015). Recommendations for small cell development and deployment. NGMN Alliance, Technical Report.Chandrasekhar, V., Andrews, J., & Gatherer, A. (2008). Femtocell networks: A survey. IEEE Communications Magazine, 46(9), 59–67.Yamamoto, T., & Konishi, S. (2013). Impact of small cell deployments on mobility performance in LTE-Advanced systems. In IEEE PIMRC workshops (pp. 189–193).Balakrishnan, R., & Akyildiz, I. (2016). Local anchor schemes for seamless and low-cost handover in coordinated small cells. IEEE Transactions on Mobile Computing, 15(5), 1182–1196.Zahir, T., Arshad, K., Nakata, A., & Moessner, K. (2013). Interference management in femtocells. IEEE Communications Surveys & Tutorials, 15(1), 293–311.Yassin, M., AboulHassan, M. A., Lahoud, S., Ibrahim, M., Mezher, D., Cousin, B., & Sourour, E. A. (2015). Survey of ICIC techniques in LTE networks under various mobile environment parameters. Wireless Networks, 1–16.Andrews, M., & Zhang, L. (2015). Utility optimization in heterogeneous networks via CSMA-based algorithms. Wireless Networks, 1–14.El-atty, S. M. A., & Gharsseldien, Z. M. (2016). Performance analysis of an advanced heterogeneous mobile network architecture with multiple small cell layers. Wireless Networks, 1–22.Huang, Q., Huang, Y.-C., Ko, K.-T., & Iversen, V. B. (2011). Loss performance modeling for hierarchical heterogeneous wireless networks with speed-sensitive call admission control. IEEE Transactions on Vehicular Technology, 60(5), 2209–2223.Bonald, T., & Roberts, J. W. (2003). Congestion at flow level and the impact of user behaviour. Computer Networks, 42, 521–536.Lee, Y. L., Chuah, T. C., Loo, J., & Vinel, A. (2014). Recent advances in radio resource management for heterogeneous LTE/LTE-A networks. IEEE Communications Surveys & Tutorials, 16(4), 2142–2180.Rappaport, S. S., & Hu, L.-R. (1994). Microcellular communication systems with hierarchical macrocell overlays: Traffic performance models and analysis. Proceedings of the IEEE, 82(9), 1383–1397.Ge, X., Han, T., Zhang, Y., Mao, G., Wang, C.-X., Zhang, J., et al. (2014). Spectrum and energy efficiency evaluation of two-tier femtocell networks with partially open channels. IEEE Transactions on Vehicular Technology, 63(3), 1306–1319.Song, W., Jiang, H., & Zhuang, W. (2007). Performance analysis of the WLAN-first scheme in cellular/WLAN interworking. IEEE Transactions on Wireless Communications, 6(5), 1932–1952.Ge, X., Martinez-Bauset, J., Gasares-Giner, V., Yang, B., Ye, J., & Chen, M. (2013). Modeling and performance analysis of different access schemes in two-tier wireless networks. In IEEE Globecom (pp. 4402–4407).Tsai, H.-M., Pang, A.-C., Lin, Y.-C., & Lin, Y.-B. (2005). Repacking on demand for hierarchical cellular networks. Wireless Networks, 11(6), 719–728.Maheshwari, K., & Kumar, A. (2000). Performance analysis of microcellization for supporting two mobility classes in cellular wireless networks. IEEE Transactions on Vehicular Technology, 49(2), 321–333.Whiting, P., & McMillan, D. (1990). Modeling for repacking in cellular radio. In 7th UK Teletraffic Symposium, IEE, Durham.Kelly, F. (1989). Fixed point models of loss networks. The Journal of the Australian Mathematical Society. Series B. Applied Mathematics, 31(02), 204–218.McMillan, D. (1991). Traffic modelling and analysis for cellular mobile networks. In A. Jensen & V. Iversen (Eds.), Proceedigs of ITC-13 (pp. 627–632). IAC. Copenhaguen: Elsevier Science.Fu, H.-L., Lin, P., & Lin, Y.-B. (2012). Reducing signaling overhead for femtocell/macrocell networks. IEEE Transactions on Mobile Computing, 12(8), 1587–1597.Eklundh, B. (1986). Channel utilization and blocking probability in a cellular mobile telephone system with directed retry. IEEE Transactions on Communications, 37, 329–337.Karlsson, J., & Eklundh, B. (1989). A cellular telephone system with load sharing—An enhancement of directed retry. IEEE Transactions on Communications, 37(5), 530–535.Nelson, R. (1995). Probability, stochastic processes and queueing theory. New York: Springer.Iversen, V.B. (Aug. 1987). The exact evaluation of multi-service loss systems with access control. In Proceedings of the Seventh Nordic Teletraffic Seminar (NTS-7) (Vol. 31, pp. 56–61) Lund, (Sweden).Ross, K. W. (1995). Multiservice loss models for broadband telecommunication networks. New York: Springer.Lin, Y.-B., & Mak, V. W. (1994). Eliminating the boundary effect of a large-scale personal communication service network simulation. ACM Transactions on Modeling and Computer Simulation (TOMACS), 4(2), 165–190.Karray, M.K. (2010). Evaluation of the blocking probability and the throughput in the uplink of wireless cellular networks. In IEEE ComNet (pp. 1–8)

    Reputation Agent: Prompting Fair Reviews in Gig Markets

    Full text link
    Our study presents a new tool, Reputation Agent, to promote fairer reviews from requesters (employers or customers) on gig markets. Unfair reviews, created when requesters consider factors outside of a worker's control, are known to plague gig workers and can result in lost job opportunities and even termination from the marketplace. Our tool leverages machine learning to implement an intelligent interface that: (1) uses deep learning to automatically detect when an individual has included unfair factors into her review (factors outside the worker's control per the policies of the market); and (2) prompts the individual to reconsider her review if she has incorporated unfair factors. To study the effectiveness of Reputation Agent, we conducted a controlled experiment over different gig markets. Our experiment illustrates that across markets, Reputation Agent, in contrast with traditional approaches, motivates requesters to review gig workers' performance more fairly. We discuss how tools that bring more transparency to employers about the policies of a gig market can help build empathy thus resulting in reasoned discussions around potential injustices towards workers generated by these interfaces. Our vision is that with tools that promote truth and transparency we can bring fairer treatment to gig workers.Comment: 12 pages, 5 figures, The Web Conference 2020, ACM WWW 202

    IEEE Access special section editorial: Artificial intelligence enabled networking

    Get PDF
    With today’s computer networks becoming increasingly dynamic, heterogeneous, and complex, there is great interest in deploying artificial intelligence (AI) based techniques for optimization and management of computer networks. AI techniques—that subsume multidisciplinary techniques from machine learning, optimization theory, game theory, control theory, and meta-heuristics—have long been applied to optimize computer networks in many diverse settings. Such an approach is gaining increased traction with the emergence of novel networking paradigms that promise to simplify network management (e.g., cloud computing, network functions virtualization, and software-defined networking) and provide intelligent services (e.g., future 5G mobile networks). Looking ahead, greater integration of AI into networking architectures can help develop a future vision of cognitive networks that will show network-wide intelligent behavior to solve problems of network heterogeneity, performance, and quality of service (QoS)

    Next Generation Cloud Computing: New Trends and Research Directions

    Get PDF
    The landscape of cloud computing has significantly changed over the last decade. Not only have more providers and service offerings crowded the space, but also cloud infrastructure that was traditionally limited to single provider data centers is now evolving. In this paper, we firstly discuss the changing cloud infrastructure and consider the use of infrastructure from multiple providers and the benefit of decentralising computing away from data centers. These trends have resulted in the need for a variety of new computing architectures that will be offered by future cloud infrastructure. These architectures are anticipated to impact areas, such as connecting people and devices, data-intensive computing, the service space and self-learning systems. Finally, we lay out a roadmap of challenges that will need to be addressed for realising the potential of next generation cloud systems.Comment: Accepted to Future Generation Computer Systems, 07 September 201

    Innovation Initiatives in Large Software Companies: A Systematic Mapping Study

    Full text link
    To keep the competitive advantage and adapt to changes in the market and technology, companies need to innovate in an organised, purposeful and systematic manner. However, due to their size and complexity, large companies tend to focus on maintaining their business, which can potentially lower their agility to innovate. This study aims to provide an overview of the current research on innovation initiatives and to identify the challenges of implementing the initiatives in the context of large software companies. The investigation was performed using a systematic mapping approach of published literature on corporate innovation and entrepreneurship. Then it was complemented with interviews with four experts with rich industry experience. Our study results suggest that, there is a lack of high quality empirical studies on innovation initiative in the context of large software companies. A total of 7 studies are conducted in such context, which reported 5 types of initiatives: intrapreneurship, bootlegging, internal venture, spin-off and crowdsourcing. Our study offers three contributions. First, this paper represents the map of existing literature on innovation initiatives inside large companies. The second contribution is to provide an innovation initiative tree. The third contribution is to identify key challenges faced by each initiative in large software companies. At the strategic and tactical levels, there is no difference between large software companies and other companies. At the operational level, large software companies are highly influenced by the advancement of Internet technology. Large software companies use open innovation paradigm as part of their innovation initiatives. We envision a future work is to further empirically evaluate the innovation initiative tree in large software companies, which involves more practitioners from different companies
    • …
    corecore