5 research outputs found

    Raising awareness about cloud security in industry through a board game

    Get PDF
    Today, many products and solutions are provided on the cloud; however, the amount and financial losses due to cloud security incidents illustrate the critical need to do more to protect cloud assets adequately. A gap lies in transferring what cloud and security standards recommend and require to industry practitioners working in the front line. It is of paramount importance to raise awareness about cloud security of these industrial practitioners. Under the guidance of design science paradigm, we introduce a serious game to help participants understand the inherent risks, understand the different roles, and encourage proactive defensive thinking in defending cloud assets. In our game, we designed and implemented an automated evaluator as a novel element. We invite the players to build defense plans and attack plans for which the evaluator calculates success likelihoods. The primary target group is industry practitioners, whereas people with limited background knowledge about cloud security can also participate in and benefit from the game. We design the game and organize several trial runs in an industrial setting. Observations of the trial runs and collected feedback indicate that the game ideas and logic are useful and provide help in raising awareness of cloud security in industry. Our preliminary results share insight into the design of the serious game and are discussed in this paper.info:eu-repo/semantics/publishedVersio

    Use Case Based Blended Teaching of IIoT Cybersecurity in the Industry 4.0 Era

    Get PDF
    [Abstract] Industry 4.0 and Industrial Internet of Things (IIoT) are paradigms that are driving current industrial revolution by connecting to the Internet industrial machinery, management tools or products so as to control and gather data about them. The problem is that many IIoT/Industry 4.0 devices have been connected to the Internet without considering the implementation of proper security measures, thus existing many examples of misconfigured or weakly protected devices. Securing such systems requires very specific skills, which, unfortunately, are not taught extensively in engineering schools. This article details how Industry 4.0 and IIoT cybersecurity can be learned through practical use cases, making use of a methodology that allows for carrying out audits to students that have no previous experience in IIoT or industrial cybersecurity. The described teaching approach is blended and has been imparted at the University of A Coruña (Spain) during the last years, even during the first semester of 2020, when the university was closed due to the COVID-19 pandemic lockdown. Such an approach is supported by online tools like Shodan, which ease the detection of vulnerable IIoT devices. The feedback results provided by the students show that they consider useful the proposed methodology, which allowed them to find that 13% of the IIoT/Industry 4.0 systems they analyzed could be accessed really easily. In addition, the obtained teaching results indicate that the established course learning outcomes are accomplished. Therefore, this article provides useful guidelines for teaching industrial cybersecurity and thus train the next generation of security researchers and developers.This work has been funded by the Xunta de Galicia (ED431G 2019/01), the Agencia Estatal de Investigación of Spain (TEC2016-75067-C4-1-R, RED2018-102668-T, PID2019-104958RB-C42) and ERDF funds of the EU (AEI/FEDER, UE)Xunta de Galicia; ED431G 2019/0

    Teaching and Learning IoT Cybersecurity and Vulnerability Assessment with Shodan through Practical Use Cases

    Get PDF
    [Abstract] Shodan is a search engine for exploring the Internet and thus finding connected devices. Its main use is to provide a tool for cybersecurity researchers and developers to detect vulnerable Internet-connected devices without scanning them directly. Due to its features, Shodan can be used for performing cybersecurity audits on Internet of Things (IoT) systems and devices used in applications that require to be connected to the Internet. The tool allows for detecting IoT device vulnerabilities that are related to two common cybersecurity problems in IoT: the implementation of weak security mechanisms and the lack of a proper security configuration. To tackle these issues, this article describes how Shodan can be used to perform audits and thus detect potential IoT-device vulnerabilities. For such a purpose, a use case-based methodology is proposed to teach students and users to carry out such audits and then make more secure the detected exploitable IoT devices. Moreover, this work details how to automate IoT-device vulnerability assessments through Shodan scripts. Thus, this article provides an introductory practical guide to IoT cybersecurity assessment and exploitation with Shodan.This work has been funded by the Xunta de Galicia (ED431G2019/01), the Agencia Estatal de Investigación of Spain (TEC2016-75067-C4-1-R, RED2018-102668-T, PID2019-104958RB-C42) and ERDF funds of the EU (AEI/FEDER, UE)Xunta de Galicia; ED431G2019/0
    corecore