5 research outputs found

    Private hospital workflow optimization via secure k-means clustering

    Get PDF
    Optimizing the workflow of a complex organization such as a hospital is a difficult task. An accurate option is to use a real-time locating system to track locations of both patients and staff. However, privacy regulations forbid hospital management to assess location data of their staff members. In this exploratory work, we propose a secure solution to analyze the joined location data of patients and staff, by means of an innovative cryptographic technique called Secure Multi-Party Computation, in which an additional entity that the staff members can trust, such as a labour union, takes care of the staff data. The hospital, owning location data of patients, and the labour union perform a two-party protocol, in which they securely cluster the staff members by means of the frequency of their patient facing times. We describe the secure solution in detail, and evaluate the performance of our proof-of-concept. This work thus demonstrates the feasibility of secure multi-party clustering in this setting

    Towards Large-Scale, Heterogeneous Anomaly Detection Systems in Industrial Networks: A Survey of Current Trends

    Get PDF
    Industrial Networks (INs) are widespread environments where heterogeneous devices collaborate to control and monitor physical processes. Some of the controlled processes belong to Critical Infrastructures (CIs), and, as such, IN protection is an active research field. Among different types of security solutions, IN Anomaly Detection Systems (ADSs) have received wide attention from the scientific community.While INs have grown in size and in complexity, requiring the development of novel, Big Data solutions for data processing, IN ADSs have not evolved at the same pace. In parallel, the development of BigData frameworks such asHadoop or Spark has led the way for applying Big Data Analytics to the field of cyber-security,mainly focusing on the Information Technology (IT) domain. However, due to the particularities of INs, it is not feasible to directly apply IT security mechanisms in INs, as IN ADSs face unique characteristics. In this work we introduce three main contributions. First, we survey the area of Big Data ADSs that could be applicable to INs and compare the surveyed works. Second, we develop a novel taxonomy to classify existing INbased ADSs. And, finally, we present a discussion of open problems in the field of Big Data ADSs for INs that can lead to further development

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    Low-latency mix networks for anonymous communication

    Get PDF
    Every modern online application relies on the network layer to transfer information, which exposes the metadata associated with digital communication. These distinctive characteristics encapsulate equally meaningful information as the content of the communication itself and allow eavesdroppers to uniquely identify users and their activities. Hence, by exposing the IP addresses and by analyzing patterns of the network traffic, a malicious entity can deanonymize most online communications. While content confidentiality has made significant progress over the years, existing solutions for anonymous communication which protect the network metadata still have severe limitations, including centralization, limited security, poor scalability, and high-latency. As the importance of online privacy increases, the need to build low-latency communication systems with strong security guarantees becomes necessary. Therefore, in this thesis, we address the problem of building multi-purpose anonymous networks that protect communication privacy. To this end, we design a novel mix network Loopix, which guarantees communication unlinkability and supports applications with various latency and bandwidth constraints. Loopix offers better security properties than any existing solution for anonymous communications while at the same time being scalable and low-latency. Furthermore, we also explore the problem of active attacks and malicious infrastructure nodes, and propose a Miranda mechanism which allows to efficiently mitigate them. In the second part of this thesis, we show that mix networks may be used as a building block in the design of a private notification system, which enables fast and low-cost online notifications. Moreover, its privacy properties benefit from an increasing number of users, meaning that the system can scale to millions of clients at a lower cost than any alternative solution
    corecore