66,556 research outputs found

    Some conditions implying stability of graphs

    Full text link
    A graph XX is said to be unstable if the direct product X×K2X\times K_2 (also called the canonical double cover of XX) has automorphisms that do not come from automorphisms of its factors XX and K2K_2. It is non-trivially unstable if it is unstable, connected, non-bipartite, and distinct vertices have distinct sets of neighbours. In this paper, we prove two sufficient conditions for stability of graphs in which every edge lies on a triangle, revising an incorrect claim of Surowski and filling in some gaps in the proof of another one. We also consider triangle-free graphs, and prove that there are no non-trivially unstable triangle-free graphs of diameter 2. An interesting construction of non-trivially unstable graphs is given and several open problems are posed.Comment: 13 page

    On The Multiparty Communication Complexity of Testing Triangle-Freeness

    Full text link
    In this paper we initiate the study of property testing in simultaneous and non-simultaneous multi-party communication complexity, focusing on testing triangle-freeness in graphs. We consider the coordinator\textit{coordinator} model, where we have kk players receiving private inputs, and a coordinator who receives no input; the coordinator can communicate with all the players, but the players cannot communicate with each other. In this model, we ask: if an input graph is divided between the players, with each player receiving some of the edges, how many bits do the players and the coordinator need to exchange to determine if the graph is triangle-free, or far\textit{far} from triangle-free? For general communication protocols, we show that O~(k(nd)1/4+k2)\tilde{O}(k(nd)^{1/4}+k^2) bits are sufficient to test triangle-freeness in graphs of size nn with average degree dd (the degree need not be known in advance). For simultaneous\textit{simultaneous} protocols, where there is only one communication round, we give a protocol that uses O~(kn)\tilde{O}(k \sqrt{n}) bits when d=O(n)d = O(\sqrt{n}) and O~(k(nd)1/3)\tilde{O}(k (nd)^{1/3}) when d=Ω(n)d = \Omega(\sqrt{n}); here, again, the average degree dd does not need to be known in advance. We show that for average degree d=O(1)d = O(1), our simultaneous protocol is asymptotically optimal up to logarithmic factors. For higher degrees, we are not able to give lower bounds on testing triangle-freeness, but we give evidence that the problem is hard by showing that finding an edge that participates in a triangle is hard, even when promised that at least a constant fraction of the edges must be removed in order to make the graph triangle-free.Comment: To Appear in PODC 201

    Packing 3-vertex paths in claw-free graphs and related topics

    Get PDF
    An L-factor of a graph G is a spanning subgraph of G whose every component is a 3-vertex path. Let v(G) be the number of vertices of G and d(G) the domination number of G. A claw is a graph with four vertices and three edges incident to the same vertex. A graph is claw-free if it has no induced subgraph isomorphic to a claw. Our results include the following. Let G be a 3-connected claw-free graph, x a vertex in G, e = xy an edge in G, and P a 3-vertex path in G. Then (a1) if v(G) = 0 mod 3, then G has an L-factor containing (avoiding) e, (a2) if v(G) = 1 mod 3, then G - x has an L-factor, (a3) if v(G) = 2 mod 3, then G - {x,y} has an L-factor, (a4) if v(G) = 0 mod 3 and G is either cubic or 4-connected, then G - P has an L-factor, (a5) if G is cubic with v(G) > 5 and E is a set of three edges in G, then G - E has an L-factor if and only if the subgraph induced by E in G is not a claw and not a triangle, (a6) if v(G) = 1 mod 3, then G - {v,e} has an L-factor for every vertex v and every edge e in G, (a7) if v(G) = 1 mod 3, then there exist a 4-vertex path N and a claw Y in G such that G - N and G - Y have L-factors, and (a8) d(G) < v(G)/3 +1 and if in addition G is not a cycle and v(G) = 1 mod 3, then d(G) < v(G)/3. We explore the relations between packing problems of a graph and its line graph to obtain some results on different types of packings. We also discuss relations between L-packing and domination problems as well as between induced L-packings and the Hadwiger conjecture. Keywords: claw-free graph, cubic graph, vertex disjoint packing, edge disjoint packing, 3-vertex factor, 3-vertex packing, path-factor, induced packing, graph domination, graph minor, the Hadwiger conjecture.Comment: 29 page

    Perfect Matchings in Claw-free Cubic Graphs

    Full text link
    Lovasz and Plummer conjectured that there exists a fixed positive constant c such that every cubic n-vertex graph with no cutedge has at least 2^(cn) perfect matchings. Their conjecture has been verified for bipartite graphs by Voorhoeve and planar graphs by Chudnovsky and Seymour. We prove that every claw-free cubic n-vertex graph with no cutedge has more than 2^(n/12) perfect matchings, thus verifying the conjecture for claw-free graphs.Comment: 6 pages, 2 figure

    On Large-Scale Graph Generation with Validation of Diverse Triangle Statistics at Edges and Vertices

    Full text link
    Researchers developing implementations of distributed graph analytic algorithms require graph generators that yield graphs sharing the challenging characteristics of real-world graphs (small-world, scale-free, heavy-tailed degree distribution) with efficiently calculable ground-truth solutions to the desired output. Reproducibility for current generators used in benchmarking are somewhat lacking in this respect due to their randomness: the output of a desired graph analytic can only be compared to expected values and not exact ground truth. Nonstochastic Kronecker product graphs meet these design criteria for several graph analytics. Here we show that many flavors of triangle participation can be cheaply calculated while generating a Kronecker product graph. Given two medium-sized scale-free graphs with adjacency matrices AA and BB, their Kronecker product graph has adjacency matrix C=ABC = A \otimes B. Such graphs are highly compressible: E|{\cal E}| edges are represented in O(E1/2){\cal O}(|{\cal E}|^{1/2}) memory and can be built in a distributed setting from small data structures, making them easy to share in compressed form. Many interesting graph calculations have worst-case complexity bounds O(Ep){\cal O}(|{\cal E}|^p) and often these are reduced to O(Ep/2){\cal O}(|{\cal E}|^{p/2}) for Kronecker product graphs, when a Kronecker formula can be derived yielding the sought calculation on CC in terms of related calculations on AA and BB. We focus on deriving formulas for triangle participation at vertices, tC{\bf t}_C, a vector storing the number of triangles that every vertex is involved in, and triangle participation at edges, ΔC\Delta_C, a sparse matrix storing the number of triangles at every edge.Comment: 10 pages, 7 figures, IEEE IPDPS Graph Algorithms Building Block

    Some results on chromatic number as a function of triangle count

    Full text link
    A variety of powerful extremal results have been shown for the chromatic number of triangle-free graphs. Three noteworthy bounds are in terms of the number of vertices, edges, and maximum degree given by Poljak \& Tuza (1994), and Johansson. There have been comparatively fewer works extending these types of bounds to graphs with a small number of triangles. One noteworthy exception is a result of Alon et. al (1999) bounding the chromatic number for graphs with low degree and few triangles per vertex; this bound is nearly the same as for triangle-free graphs. This type of parametrization is much less rigid, and has appeared in dozens of combinatorial constructions. In this paper, we show a similar type of result for χ(G)\chi(G) as a function of the number of vertices nn, the number of edges mm, as well as the triangle count (both local and global measures). Our results smoothly interpolate between the generic bounds true for all graphs and bounds for triangle-free graphs. Our results are tight for most of these cases; we show how an open problem regarding fractional chromatic number and degeneracy in triangle-free graphs can resolve the small remaining gap in our bounds
    corecore