A variety of powerful extremal results have been shown for the chromatic
number of triangle-free graphs. Three noteworthy bounds are in terms of the
number of vertices, edges, and maximum degree given by Poljak \& Tuza (1994),
and Johansson. There have been comparatively fewer works extending these types
of bounds to graphs with a small number of triangles. One noteworthy exception
is a result of Alon et. al (1999) bounding the chromatic number for graphs with
low degree and few triangles per vertex; this bound is nearly the same as for
triangle-free graphs. This type of parametrization is much less rigid, and has
appeared in dozens of combinatorial constructions.
In this paper, we show a similar type of result for χ(G) as a function
of the number of vertices n, the number of edges m, as well as the triangle
count (both local and global measures). Our results smoothly interpolate
between the generic bounds true for all graphs and bounds for triangle-free
graphs. Our results are tight for most of these cases; we show how an open
problem regarding fractional chromatic number and degeneracy in triangle-free
graphs can resolve the small remaining gap in our bounds