8 research outputs found

    Advanced Mobile Robotics: Volume 3

    Get PDF
    Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective

    Advanced Operation and Maintenance in Solar Plants, Wind Farms and Microgrids

    Get PDF
    This reprint presents advances in operation and maintenance in solar plants, wind farms and microgrids. This compendium of scientific articles will help clarify the current advances in this subject, so it is expected that it will please the reader

    Technology 2002: The Third National Technology Transfer Conference and Exposition, volume 2

    Get PDF
    Proceedings from symposia of the Technology 2002 Conference and Exposition, December 1-3, 1992, Baltimore, MD. Volume 2 features 60 papers presented during 30 concurrent sessions

    2-D Modeling of Dual-Gate MOSFET Devices Using Quintic Splines

    No full text

    Bibliography of Lewis Research Center technical publications announced in 1993

    Get PDF
    This compilation of abstracts describes and indexes the technical reporting that resulted from the scientific and engineering work performed and managed by the Lewis Research Center in 1993. All the publications were announced in the 1993 issues of STAR (Scientific and Technical Aerospace Reports) and/or IAA (International Aerospace Abstracts). Included are research reports, journal articles, conference presentations, patents and patent applications, and theses

    United Technologies Robotic Tool for Aircraft Rim Cleaning

    Get PDF
    Conventional systems for cleaning aircraft split rims waste millions of dollars in water and electrical resources annually. Team B.E.E.M. was tasked by the United Technologies Research Center (UTRC) in East Hartford, CT, with developing an alternative method for cleaning aircraft rims. To suit the needs of operation facilities under United Technologies Aerospace Systems, the product must reduce annual waste, maintain the current cleaning cycle time, and avoid damaging the anodized coating on the wheel rim’s surface. These design requirements are to be met with a fully automated system that implements laser ablation. Laser ablation is a no-contact process that vaporizes targeted materials, eliminates the use of water, and significantly reduces electrical wattage. The system design consists of a 1.0 KW Yttrium-fiber laser coupled with a collimator and galvanometer on the head of a robotic arm. The galvanometer aims at a rotating wheel to ablate the entire surface. Scaled testing with a 20-watt laser and five varying mixtures of dirt, grease, and carbon dust proved that an ablation system can clean up to 95% of the targeted dirt surface. A half-scale model of the loading system was developed to simulate the laser trajectory across the surface of the wheel rim and proved to be capable of reaching all surfaces, including the bolt and spoke holes. This report presents design specifications for the project, as well as research on optic technology and contamination found on an aircraft wheel rim. The team proposed 120 concepts as alternative methods for cleaning aircraft split rims, which were judged by the ability to satisfy parameters in a Quality Function Deployment analysis set by the United Technologies Research Center. Engineering analysis is provided for theoretical energy requirements for vaporizing contamination, the dynamics and structural integrity of the turntable, and the trajectory algorithm for the robotic manipulator. The design and production of the half-scale model are documented, along with additional redesign features. The laser parameters were verified through scaled tests at IPG Photonics in Oxford, Massachusetts, and the half-scale model was tested for covering the entire surface of the wheel rim. A financial analysis of the project proved to significantly reduce operation costs after a high initial cost. The Laser Ablation Robotic Rim Intensive Cleaner (LARRIC) has exceeded all design specifications outlined throughout this report. The LARRIC successfully met design considerations throughout the prototyping phase of product development. Further design considerations are provided in this report to optimize the system design and laser trajectory

    General Course Catalog [2012/14]

    Get PDF
    Undergraduate Course Catalog, 2012/14https://repository.stcloudstate.edu/undergencat/1119/thumbnail.jp
    corecore