13 research outputs found

    Optimization of 2-d lattice cellular automata for pseudorandom number generation

    Get PDF
    This paper proposes a generalized approach to 2-d CA PRNGs – the 2-d lattice CA PRNG – by introducing vertical connections to arrays of 1-d CA. The structure of a 2-d lattice CA PRNG lies in between that of 1-d CA and 2-d CA grid PRNGs. With the generalized approach, 2-d lattice CA PRNG offers more 2-d CA PRNG variations. It is found that they can do better than the conventional 2-d CA grid PRNGs. In this paper, the structure and properties of 2-d lattice CA are explored by varying the number and location of vertical connections, and by searching for different 2-d array settings that can give good randomness based on Diehard test. To get the most out of 2-d lattice CA PRNGs, genetic algorithm is employed in searching for good neighborhood characteristics. By adopting an evolutionary approach, the randomness quality of 2-d lattice CA PRNGs is optimized. In this paper, a new metric, #rn is introduced as a way of finding a 2-d lattice CA PRNG with the least number of cells required to pass Diehard test. Following the introduction of the new metric #rn, a cropping technique is presented to further boost the CA PRNG performance. The cost and efficiency of 2-d lattice CA PRNG is compared with past works on CA PRNGs

    A transformation sequencing approach to pseudorandom number generation

    Get PDF
    This paper presents a new approach to designing pseudorandom number generators based on cellular automata. Current cellular automata designs either focus on i) ensuring desirable sequence properties such as maximum length period, balanced distribution of bits and uniform distribution of n-bit tuples etc. or ii) ensuring the generated sequences pass stringent randomness tests. In this work, important design patterns are first identified from the latter approach and then incorporated into cellular automata such that the desirable sequence properties are preserved like in the former approach. Preliminary experiment results show that the new cellular automata designed have potential in passing all DIEHARD tests

    Cellular Automata

    Get PDF
    Modelling and simulation are disciplines of major importance for science and engineering. There is no science without models, and simulation has nowadays become a very useful tool, sometimes unavoidable, for development of both science and engineering. The main attractive feature of cellular automata is that, in spite of their conceptual simplicity which allows an easiness of implementation for computer simulation, as a detailed and complete mathematical analysis in principle, they are able to exhibit a wide variety of amazingly complex behaviour. This feature of cellular automata has attracted the researchers' attention from a wide variety of divergent fields of the exact disciplines of science and engineering, but also of the social sciences, and sometimes beyond. The collective complex behaviour of numerous systems, which emerge from the interaction of a multitude of simple individuals, is being conveniently modelled and simulated with cellular automata for very different purposes. In this book, a number of innovative applications of cellular automata models in the fields of Quantum Computing, Materials Science, Cryptography and Coding, and Robotics and Image Processing are presented

    2-D CA Variation With Asymmetric Neighborship for Pseudorandom Number Generation

    Get PDF
    10.1109/TCAD.2004.823344IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems233378-388ITCS
    corecore