
14 

Research on Multi-Dimensional Cellular 
Automation Pseudorandom Generator of  

LFSR Architecture 

Yong Wang1,2, Dawu Gu2, Junrong Liu2, Xiuxia Tian1 and Jing Li1  
1Shanghai University of Electric Power, 

 2Shanghai Jiao Tong University  
China 

1. Introduction      

Linear feedback shift register (LFSR) is widely used in pseudorandom generator. Chien 

described an optimized BIST scheme which has a configurable 2-D LFSR structure and 

presented a synthesis procedure for this test generator. Experimental results show that the 

hardware overhead is considerably reduced compared with 2-D LFSR generators [1]. Erik 

H. presents a new test response compaction technique with any Number of Unknowns 

using a new LFSR Architecture in the test response bits [2]. 

Cellular automata (CA) are used in modern cryptography. R. Breukelaar research on the 

way using a genetic algorithm to evolve behavior in multi-dimensional cellular automata 

[3]. Sheng-Uei Guan proposed a variation of two-dimensional (2-D) cellular automata (CA) 

variation with asymmetric neighborship for pseudorandom number generation [4]. S. Nandi 

deals with the theory and application of Cellular Automata (CAI for a class of block ciphers 

and stream ciphers. Which has been proposed as running key generators in stream ciphers. 

Both the  schemes provide better security against different types of attacks [5]. 

We research on three-Dimensional CA algorithm and LFSR hardware device pseudorandom 

g feasibility and efficient generator [6]. In order to find feasibility and efficient of multi-

dimensional or multi-rank cellular automata (CA) algorithm with LFSR, we design more 

ways to test. The experiment result show they also can provide better pseudorandom key 

stream and pass the FIPS 140-1 standard tests. 

2. Multi-dimensional cellular automation definition 

2.1 One-dimensional cellular automation definition 

A simple one dimensional cellular automation (CA) is an 8-cell array. For examples, when 

the CA is initialized to 0100 1011, each cell changes its state based on some rule. One 

possible rule, for example, CA could be defined by the immediate neighborhood of each cell. 

The cell depends on the current value and the values of its left and its right cells [7]. The CA 

is assumed to be connected in a circle, so the cell to the left of cell 0 is cell 7,and the cell to 

the right cell 7 is cell 0.The CA Neighborhood is as follows:101 010 100 001 010 101 011 110.A 

www.intechopen.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357239147?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 Cellular Automata - Innovative Modelling for Science and Engineering 

 

298 

specific rule for this neighborhood could be:Neighborhood  000 001 010 011 100 101 110 111. 

New state:   0101  0110. 

Rules for this type of CA are identified by converting the new state bits into a decimal 
number. The new state for the preceding rule is 0101 0110, which in decimal is 86.Applying 
this rule to the initial CA results in the succeeding CA value becoming 1001 0111.A CA can 
be used to generate random bits by selecting a rule, a CA size, an initial seed and the cell to 
provide to the random bit [1]. For example, we choose the 7th cell to produce the random 
bit. The first 5 step to produce the random bits are 10100 [7]. 

2.2 Two-dimensional cellular automation definition 

A two-dimensional cellular CA offers a better random number generator at the expense of 
additional complexity. A two-dimensional cellular CA is an array of one-dimensional 
cellular, where a cell’s value is updated by some function of this current neighborhood 
which consist of the cells above, below, to the right, and to the left of the target cell [1]. A 
general rule structure is defined as follow: 
 ( ) ( ) ( ), , 1,1i j i j i jS t Xxor C S t xor N S t−⎡ ⎤ ⎡ ⎤+ = × ×⎣ ⎦ ⎣ ⎦  

( ) ( ) ( ), 1 1, , 1i j i j i jxor W S t xor S S t xor E S t− + +⎡ ⎤ ⎡ ⎤ ⎡ ⎤× × ×⎣ ⎦ ⎣ ⎦ ⎣ ⎦  

Where { }, , , , , 0,1X C N W S E∈  

(1) 

 

If X is 1, this is a nonlinear rule, otherwise, it is a linear rule. C,N,W,S and ,E represent the 
center, north, west, south, and east cells, respectively. The cells that participate in updating 
the center cell are determined by values of these five variables. The CA is assumed to be 
connected in a row circle and column circle as the one-dimensional cellular. A simple two-
dimensional 3*3cellular automation is like a double circle array. So the cell to the north of 
cell [0,0] is cell [2,0],and the cell to the west cell [0,0] is cell [0,2]. 
If N is 1,then the north cell is used to update the center cell ,The values of all six variables 
are used to identify each possible rule. If (X,C,N,W,S,E)=(001011), then the rule is defined as 
Rule 11, because 1011 is decimal 11. the rule looks like this: 
 ( ) ( ), 1,1i j i jS t N S t−⎡ ⎤+ = ×⎣ ⎦  

( ) ( )1, , 1i j i jxor S S t xor E S t+ +⎡ ⎤ ⎡ ⎤× ×⎣ ⎦ ⎣ ⎦  
(2) 

 

A random stream is generated by assigning a rule to each cell, initializing the CA to a 
random state, and running the CA using a center cell to produce the bit stream [1], For 
example, the CA is initialized to {001;000;010},each cell is assigned Rule 11.The value in the 
center cell is applied to construct the random stream. The cells are randomly initialized, 
after four steps, the random-bit stream is .01101 [7]. 

2.3 Multi-dimensional cellular automation architecture 

A three-dimensional cellular CA is a cube of circle two-dimensional cellular. A cell’s value is 
updated by some function of its neighborhood, which consists of the cells above, below, to 
the right, to the left, to the up and to the down of the target cell. A general rule structure can 
be defined as follows:  

www.intechopen.com



Research on Multi-Dimensional Cellular Automation Pseudorandom Generator of  LFSR Architecture   

 

299 

( ) ( ), , , ,1i j k i j kS t Xxor C S t⎡ ⎤+ = ×⎣ ⎦   

( ) ( )1, , , 1i j k i jxor N S t xor W S t− −⎡ ⎤ ⎡ ⎤× ×⎣ ⎦ ⎣ ⎦   

( ) ( )1, , 1,i j i j kxor S S t xor E S t+ +⎡ ⎤ ⎡ ⎤× ×⎣ ⎦ ⎣ ⎦   

( ) ( )1, 1 1, 1i j i jxor NW S t xor NE S t− − − +⎡ ⎤ ⎡ ⎤× ×⎣ ⎦ ⎣ ⎦   

( ) ( )1, 1, 1, 1,i j k i j kxor SW S t xor SE S t+ − + +⎡ ⎤ ⎡ ⎤× ×⎣ ⎦ ⎣ ⎦   

( ) ( ) ( ), , , , , , 11 1i j k i j k i j kS t S t xor U S t+⎡ ⎤+ = + ×⎣ ⎦   

( ) ( ) ( ), , , , , , 11 1i j k i j k i j kS t S t xor D S t−⎡ ⎤+ = + ×⎣ ⎦  (3) 

If an element is in the corner near the border, its neighbor can’t be found. We can imagine 
the three-dimensional cellular is a cube of circle connection with beginning element and last 
element. So we can find every element neighbor in the imaged circle. For example element 
s[0][0][0] up neighbor is s[2][0][0] and it’s left neighbor is s[0][2][0].  
A simple three-dimensional 3*3*3 cellular automation is shown as Figure 1: 
 

 

Fig. 1. Three-dimensional cellular automation architecture 

Three-dimensional rule array has 0 or 1 variables. We changed the three-dimensional rule 

array into one-dimensional linear array. For example, element rule[0][0][0] is the first 

element of linear rule and rule[0][0][1] is the second element of linear rule. 

The values of all twenty-seven variables are applied to identify each possible rule.  

If the first rule is equal to binary (110 1001 1011 0100 0101 1001 0100), then the rule is also 

defined as rule 110839188, because the binary value is decimal 110839188. The first bit of the 

binary 1 is equal to the element of 3 rule array rule[0][0][0]. When the bit of binary rule is 

zero, it means the corresponding element don’t affect the random stream.  

www.intechopen.com



 Cellular Automata - Innovative Modelling for Science and Engineering 

 

300 

If the second rule is equal to binary (111 1111 1111 1111 1111 1111 1111), then the rule is also 

made as Rule 134217727, because the binary value is decimal 134217727. The first bit of the 

binary 1 is equal to the element of 3 rule array rule[0][0][0]. 

A random stream is generated by assigning a rule to each cell, initializing the CA to a 

random state, and running the CA using a center cell to produce the bit stream.CA is 

initialized to three-dimensional 3*3*3 array s[i][j][k]={0}, and the initial data is as follows: 

s[0][0][0]=1;s[0][2][1]=1; s[1][0][1]=1; s[2][1][1]=1;s[2][2][2]=1; 

For example, each cell is assigned the first rule. The value s[1][1][1] in the center cell is used 
to construct the random stream.  
Multi-dimensional cellular automation structure is much complicated than 3-dimesinal 
cellular automation. For example one 4-dimensional and 3 rank cellular automation is 
assumed to be two cubes connected with each other. We changed the two cubes into linear 
array by assigning the first cube’s then another cube’s element to the array in sequence. The 
Multi-dimensional cellular automation structure is shown in Figure 2: 
 

 

Fig. 2. Multi-dimensional cellular automation architecture 

Then by rotating the first cube we can get different sequence. All the cubes is connected with 
each other, the output terminal will affect with LFSR output bits. 

3. Multi-dimensional cellular automation pseudorandom generator of LFSR 
architecture  

3.1 LFSR architecture 

The most familiar method is to use a hardware device called a linear feedback shift register 
(LFSR). Shift register is a very useful, because registers are packed in CPU with very high 
access speed. This device stores a set of bits. The typical registers are 8-bits and 32-bits registers 
used in P4 CPU. The bits in register can shift to right by using assembly language instruction. 
Shift logical right instruction can shift each bit to the right and the leftmost bit is zero. The 
needed shift register’s function is shifting each bits to the right, and the rightmost bit is lost, 
leftmost bit is replaced with the input bit. Linear feedback shift register (LFSR) choose some 
bits from the shift register and XOR he input shift in bits. The XOR result is the shift in bits [7]. 

www.intechopen.com



Research on Multi-Dimensional Cellular Automation Pseudorandom Generator of  LFSR Architecture   

 

301 

A general LFSR can be represented by a function of its stored bits and the connections to the 

shift-in bits. The function is: 

 1 1 2 2n n nb c b XORc b XOR XORc b= A  (4) 

3.2 Multi-dimensional cellular automation with LFSR architecture 

The Multi-dimensional cellular automation LFSR combine the dimensional cellular method 

and linear feedback shift register (LFSR) to create continues stream bits. The method can be 

represented by a function of its stored bits and the connections to the shift-in bits from both 

selected bits and CA random-bit stream. The function is 

 

 

Fig. 3. LFSR hardware device architecture 

For example, if 8-bits LFSR is set 0010 1111,in which the shift XOR function among the Shift 

in bit, cell 3 and cell 6. The LFSR shift procedure includes three steps: the first step is 

calculating cell 3 and cell 6 by XOR to create shift in bit. The second step is shift bit including 

shift in bit from left to right [1]. The last step is filling the shift out cell with the cell 7.Then 

circulate this three steps until the counter is back to 0 [6]. 

 1 1 2 2n n nb CArbXORc b XORc b XOR XORc b= A  (5) 

CArb stands for cellular automation random bit .Where, if the bit is selected for the XOR 

operation; otherwise, it is 0. For example the operation of a simple 8-bit LFSR, in which the 

shift in is the XOR of cells 3 and 6 with s[1][1][1]is shown in Figure 4. 

 

 

Fig. 4. Multi-dimensional cellular automation pseudorandom generator of LFSR architecture 

If 8-bits three-dimensional cellular automation LFSR is set 0010 1111 same as to the CA Rule 

decimal 110839188, in which the shift XOR function among the Shift in bit, cell 3 and cell 6 

with the CA random bit. The procedure is illustrated in Table 2.Then initial data in s[i][j][k] 

is as CA example. 

www.intechopen.com



 Cellular Automata - Innovative Modelling for Science and Engineering 

 

302 

When loop counter is 20000 times, the 4-dimensional and 3-rank cellular automation LFSR 
algorithm can create stream bits including 10002 bit zero and 9998 bit one. The result can 
pass the bit test. 

4. Pseudorandom generator program  

4.1 Macro definition 

#define N 3 //rank N=3,4,5,6,7,8,9,10,11,12,13,14 
#define RuleInitKey 110839188 

#define RuleInitFullKey 134217727 
#define E 5 
#define Nd N*N*N*N*N 
#include<stdio.h> 

4.2 Variables definition 

int s[N][N][N]={0},t[N][N][N]={0},i,j,k,count,cx; 
int se[Nd]={0},ch,ecx=0,chJudge=N*N*N;//number of N in se array = E dimensional  
long low=N*N*N,high=Nd; 
int rule[3][3][3]={0},ruleJudge[27]={0}; 
unsigned long  ruleKey=RuleInitKey,ruleKeyTemp=0; 
int ic,jc,kc,icc,jcc,kcc;//near i j k 
int LFSR[8]={0,0,1,0,1,1,1,1},shiftIN,shiftOUT,loop; 
int nsi=0,ssi=0,wsj=0,esj=0,kup=0,kdn=0,x=1; 
// Variables definition for mono test  
int number1=0,number0=0;  
// Variables definition for poker test  
int n[16]={0},splitCounter=0,number=0,pokerCounter=0; 
double sumNIsquare=0.0,pokerX=0.0; 
// Variables definition for run test 
int runNum[20000]={0},run[20]={0},runLoop,runCounter=1,run1Counter=0,run0Counter=0;
 FILE *fp; 

4.3 Initialize the data and rule  

//----------------init data-------------------------- 
if((fp=fopen("nn_data.txt","a+"))==NULL) 
 printf("Can't open file!\n"); 
    fprintf(fp,"The %d dimensional array with %d depth\n",E,N); 
//init the cube data 
s[0][0][0]=1; 
s[0][2][1]=1; 
s[1][0][1]=1; 
s[2][1][1]=1; 
s[2][2][2]=1; 
 //init the rule:  N dimen rule is  i j k sequecnce  using hex  
// 110 100 110 110 100 010 110 010 100 =>69B 4594H=>1 1083 9188 D 
 count=26; // [0..26]  

www.intechopen.com



Research on Multi-Dimensional Cellular Automation Pseudorandom Generator of  LFSR Architecture   

 

303 

ruleKeyTemp=ruleKey; 
for(k=2;k>=0;k--) 
 for(i=2;i>=0;i--) 
  for(j=2;j>=0;j--) 
  { 
   rule[i][j][k]=ruleKeyTemp&1; 
   ruleJudge[count]=rule[i][j][k]; 
   count--; 
   ruleKeyTemp=ruleKeyTemp>>1; 
                                             // printf("rule[%d][%d][%d]=%d\t",i,j,k,rule[i][j][k]); 
  } 
fprintf(fp,"The rule is %ld\n",ruleKey); 
for(count=0;count<27;count++) 
 fprintf(fp,"%d ",ruleJudge[count]); 
 fprintf(fp,"\n"); 
  //getchar(); 

4.4 N dimensional with N depth cube Using LFSR 

for(count=0;count<=20000;count++) 
{ 
// loop three count=20000  
 //k i j means every element  
 ch=N*N*N; 
 for(k=0;k<=N-1;k++) 
 { 
  for(i=0;i<=N-1;i++) 
  { 
   for(j=0;j<=N-1;j++) 
   { 
//3 cipher Rule is 00101111(            north       south east kdown kup)=decimal Rule 47 
//n Rule is 10101111(self center north  west south east kdown kup)=decimal Rule 175 
//-----n dimensional----------- 
/* 
    if(i-1<0) nsi=N-1; else nsi=i-1; 
           if(i+1>N-1) ssi=0;  else ssi=i+1; 
//------n dimensional------  
                   if(j-1<0) wsj=N-1; else wsj=j-1; 
            if(j+1>N-1) esj=0;  else esj=j+1; 
    if(k-1<0) kdn=N-1;  

else kdn=k-1; 
                   if(k+1>N-1) kdn=0;  else kup=k+1 
 */ 
   //----------loop  cube1--------------------- 
    cx=0; 
    for(kc=-1;kc<=1;kc++) 
     for(ic=-1;ic<=1;ic++) 

www.intechopen.com



 Cellular Automata - Innovative Modelling for Science and Engineering 

 

304 

      for(jc=-1;jc<=1;jc++) 
      { 
       if(i+ic<0)   icc=N-1;  
       else if(i+ic>N-1) icc=0;    
            else icc=i+ic; 
       if(j+jc<0)   jcc=N-1;  
       else if(j+jc>N-1) jcc=0;   
            else jcc=j+jc; 
       if(k+kc<0)   kcc=N-1;  
       else if(k+kc>N-1) kcc=0;    
            else kcc=k+kc; 
       if(ruleJudge[cx++]==1)   
      t[i][j][k]=t[i][j][k]^s[icc][jcc][kcc]; 
      } 
                                  t[i][j][k]=x^t[i][j][k];  
//printf("t[%d][%d][%d]=%d",i,j,k,t[i][j][k]); 
      //getchar(); 
 /* 
t[i][j][k]=x^s[i][j][k]^s[nsi][j][k] ^ s[ssi][j][k]^s[i][wsj][k]^s[i][esj][k]; 
t[i][j][k]=t[i][j][k]^s[nsi][wsj][k]^s[nsi][esj][k]^s[ssi][wsj][k]^s[ssi][esj][k]; 
t[i][j][k]=t[i][j][k]^s[i][j][kup]^s[nsi][j][kup] ^ s[ssi][j][kup]^s[i][wsj][kup]^s[i][esj][kup]; 
t[i][j][k]=t[i][j][k]^s[nsi][wsj][kup]^s[nsi][esj][kup]^s[ssi][wsj][kup]^s[ssi][esj][kup]; 
t[i][j][k]=t[i][j][k]^s[i][j][kdn]^s[nsi][j][kdn] ^ s[ssi][j][kdn]^s[i][wsj][kdn]^s[i][esj][kdn]; 
t[i][j][k]=t[i][j][k]^s[nsi][wsj][kdn]^s[nsi][esj][kdn]^s[ssi][wsj][kdn]^s[ssi][esj][kdn]; 
*/ 
    s[i][j][k]=t[i][j][k]; 
//----------rotate cube----------- 
//i<->j  j<->k i<->k 
 //s[j][i][k]=s[i][j][k]; 
    s[k][j][i]=s[i][j][k]; 
                    s[j][k][i]=s[i][j][k]; 
//----------------------- expend n dimensional to higher dimensional----------------- 
    for(ecx=1;ecx<=E-1;ecx++) 
    { 
     if (ch>=low && ch<=high)  
      se[ch++]=s[i][j][k]; 
// n dimensional cube xor          
//printf("ch=%d\tse[%d]=%d\ts[%d][%d][%d]=%d\n",ch,ch,se[ch],i,j,k,s[i][j][k]); 
     if(ch%(chJudge/2)==0) 
     { 
      s[i][j][k]=s[i][j][k]^se[ch]; 
//printf("ch=%d s[%d][%d][%d]=%d\n",ch,i,j,k,s[i][j][k]); 
//getchar();//debug 
     } 
    } 
//------n dimensional------- 

www.intechopen.com



Research on Multi-Dimensional Cellular Automation Pseudorandom Generator of  LFSR Architecture   

 

305 

//[j][k]=s[nsi][j][k] ^ s[ssi][j][k];  
//printf("\t%d ",t[i][j][k]); 
//if(j+1>N-1) esj=0; 
//else  esj=j+1; 
//t[i][j][k]=t[i][j][k] ^ s[i][esj][k]; 
//printf("%d ",t[i][j][k]); 
 //(k-1<0) kdn=N-1; 
//else kdn=k-1; 
//t[i][j][k]=t[i][j][k] ^ t[i][j][kdn]; 
//printf("%d ",t[i][j][k]); 
//if(k+1>N-1) kdn=0; 
//else kup=k+1; 
//t[i][j][k]=t[i][j][k] ^ t[i][j][kup]; 
//printf("\tt[%d,%d,%d]=%d",i,j,k,t[i][j][k]); 
    if(i==N/2&&j==N/2&&k==N/2) 
    {   //LFSR 
     shiftIN=s[N/2][N/2][N/2]; 
     shiftIN=shiftIN ^ LFSR[3]; 
     shiftIN=shiftIN ^ LFSR[6]; 
     shiftOUT=LFSR[7]; 
     for(loop=7;loop>=1;loop--) 
      LFSR[loop]=LFSR[loop-1]; 
     LFSR[0]=shiftIN; 
//printf("\nshiftIN=%d\t shiftOUT=%d\n",shiftIN,shiftOUT); 
//getchar(); 

4.5 Mono bit test program 

//printf("%d \n",shiftOUT); 
     if(shiftOUT==0) number0++; 
     else number1++;    
//poker test 
                        splitCounter++; 
     if(splitCounter<=4) 
number=number+(shiftOUT << (splitCounter-1));// binary bit shift left 
     else  
     { 
//printf("number=%d",number); 
//getchar(); 
      n[number]++; 
      splitCounter=1; 
      number=0; 
    number=number+(shiftOUT << (splitCounter-1)); 
     } 
//0110111 run test 
     runNum[runCounter++]=shiftOUT;                 
    } 

www.intechopen.com



 Cellular Automata - Innovative Modelling for Science and Engineering 

 

306 

   }//end of j  
//printf("%d ",j);// endline 
  }// end of i 
 }//end of k 
//printf("\tch=%d",ch);  
 // printf("\t%d",count); 
 for(k=0;k<=N-1;k++) 
  for(i=0;i<=N-1;i++) 
   for(j=0;j<=N-1;j++) 
   { 
    s[i][j][k]=t[i][j][k]; 
    t[i][j][k]=0; 
   } 
//printf("\n"); 
//end of the array 
} 
fprintf(fp,"\nThe bit test including 0 and 1\n"); 
fprintf(fp,"bit test:number0=%d number1=%d\n",number0,number1); 

4.6 Poker test program 

fprintf(fp,"\nThe pokertest pass  1.03<x<57.4 \n"); 
for(pokerCounter=0;pokerCounter<=15;pokerCounter++) 
{ 
 fprintf(fp,"n[%d]=%d\n",pokerCounter,n[pokerCounter]); 
 sumNIsquare=sumNIsquare+n[pokerCounter]*n[pokerCounter] ; 
} 
fprintf(fp,"sumNIsquare=%f\n",sumNIsquare); 
pokerX=(16.0*sumNIsquare)/5000.0-5000.0; 
if(pokerX>1.03 && pokerX<57.4) 
 fprintf(fp,"pokerX=%f Passes the Poker Test\n",pokerX); 
else 
 fprintf(fp,"pokerX=%f Failure the Poker Test\n",pokerX); 

4.7 Run test program 

fprintf(fp,"\n The runtest including 0 and 1\n"); 
for(runLoop=0;runLoop<20000;runLoop++) 
if(runNum[runLoop+1]!=runNum[runLoop]) 
 { 
  run[runCounter]++; 
  runCounter=1; 
 }    
 else 
  runCounter++; 
for(runLoop=1;runLoop<20;runLoop++) 
 fprintf(fp,"01 run[%d]=%d\n",runLoop,run[runLoop]); 
 //------------runTest ------------1 

www.intechopen.com



Research on Multi-Dimensional Cellular Automation Pseudorandom Generator of  LFSR Architecture   

 

307 

for(runLoop=1;runLoop<20;runLoop++) 

 run[runLoop]=0; 

for(runLoop=0;runLoop<20000;runLoop++) 

 

 if(runNum[runLoop]==1) 

 { 

  run1Counter++; 

  run0Counter=0; 

    

 } 

 else  

 { 

  run0Counter++; 

  if(run0Counter==1) 

  { 

   run[run1Counter]++; 

   run1Counter=0; 

  } 

 } 

for(runLoop=1;runLoop<20;runLoop++) 

 fprintf(fp,"1 run[%d]=%d\n",runLoop,run[runLoop]); 

 //------------runTest--------------- 0 

for(runLoop=1;runLoop<20;runLoop++) 

 run[runLoop]=0; 

for(runLoop=0;runLoop<20000;runLoop++) 

 

 if(runNum[runLoop]==0) 

 { 

  run1Counter++; 

  run0Counter=0; 

 } 

 else  

 { 

  run0Counter++; 

  if(run0Counter==1) 

  { 

   run[run1Counter]++; 

   run1Counter=0; 

  } 

 } 

for(runLoop=1;runLoop<20;runLoop++) 

 fprintf(fp,"0 run[%d]=%d\n",runLoop,run[runLoop]); 

fprintf(fp,"\n--------------end--------------\n"); 

return 0; 
} 

www.intechopen.com



 Cellular Automata - Innovative Modelling for Science and Engineering 

 

308 

5. Pseudorandom bit tests  

5.1 LFSR pseudorandom bit test 

There are several ways to prove whether the bit stream has the characteristics expected of a 
random set of bits. The FIPS 140-1 test suite includes tests, which are in the collection of 
National Institute of Standards and Technology (NIST).The FIPS 140-1 includes three tests: 
mono test, poker test and runs test. Three tests suite accept 20,000 bits from a random 
source.  
The first test is mono bit test, which verifies that the number of 1’s and 0’s are almost equal; 
The process counts the number of 1’s: if it is within the range 9654-10,346, then the bit 
stream passes the mono bit test[1].  
We initial LFSR with 0010 1111 set in which the shift XOR function among the Shift in bit, 
cell 3 and cell 6.The mono test result is:Cycle = 20000;Ones bits Count = 10060;Passes the 
One bits Count Test (Mono bit test) 
The second test is poker test. Passing the mono bit test does not guarantee that a bit stream 
is truly random. Poker test is another specified test by FIPS 140-1. For the poker test, the 
20,000 bits are divided into 4-bit segments. Each 4-bit segment represents a decimal number 
between 0 and 15. A truly random sequence of bits should result in a random distribution of 
the numbers 0-15.Let   be the number of occurrences of a number  .  is the number of 4-bit 
0110.These values are substituted into: 

 
15

2

0

16
5000

5000 i

X n
=

= −∑  (6) 

The poker test is passed if 1.03<X<57.4.The LFSR poker test result is: 

Cycle = 20000;The number of occurrences of number from 0 to 15 is as follows set:{275, 317, 

316, 314, 313, 315, 314, 315, 314, 316, 313, 314, 318, 316, 315, 315} 

X=4.8896 ;1.03<X<57.4, Passes the poker test.   
A third randomness test is called the runs test. A run is a consecutive sequence of either 1’s 

or 0’s.In a truly random-bit stream, there should be a random distribution so maximal-

length runs. If the number of each run falls within the following guidelines, then the 

sequence passes the test. The required interval is illustrated in Table 1. 

 

Required Interval and Run Test Result
Length 

1 2 3 4 5 6+ 

min interval 2267 1079 502 223 90 90 

gaps count 2517 1261 630 315 157 158 

runs count 2519 1259 630 315 157 158 

max interval 2733 1421 748 402 223 223 

Table 1. Required interval of runs test   

Passes the run gap test [7].  

5.2 Pseudorandom bits test of multi- dimensional CA and LFSR algorithm 

We initial 3-dimensional cellular automation LFSR. CA is initialized to three-dimensional 
array 

www.intechopen.com



Research on Multi-Dimensional Cellular Automation Pseudorandom Generator of  LFSR Architecture   

 

309 

 s[i][j][k]={0};s[0][0][0]=1;s[0][2][1]=1;s[1][0][1]=1; s[2][1][1]=1; s[2][2][2]=1;  
For example, each cell is assigned rule1:110839188 and rule2: 134217727. LFSR is 0010 1111 
set in which the shift XOR function among the Shift in bit, cell 3, cell 6 and s[1][1][1] .The 
poker test is passed if 1.03<X<57.4.The Multi-dimensional CA LFSR algorithm mono test 
and poker test result is shown in table 2: 
 

Mono Test ( Num. of Bit 0) Poker Test(Value of X)N=3 
Rank

rule1 rule2 rule1 rul2 

3 10014 9994 4.37 1.32 

4 9957 9969 5.27 7.11 

5 9991 9956 13.40 8.33 

6 9998 10054 4.50 17.24 

7 10085 10096 9.42 9.64 

8 10112 9944 14.71 16.14 

9 9923 10083 11.97 10.04 

10 10042 10010 10.07 8.476 

11 10117 10001 19.67 10.25 

12 9918 9895 17.72 6.25 

13 10014 10077 20.04 15.78 

14 10076 10158 10.65 14.72 

Table 2. Poker test of three-dimensional and multi-rank CA algorithm 

When changed dimensional and rank simultaneously, the algorithm can also pass the poker 
test as table 3 shows: 
 

N=4 N=5 N=6 poker
rank rule1 rule2 rule1 rule2 rule1 rule2

3 12.66 1.75 17.20 1.06 4.58 6.46 

4 16.07 18.29 15.20 25.69 5.82 11.37

5 14.59 13.92 18.11 15.97 10.51 10.28

6 10.37 12.85 7.57 13.54 12.45 22.02

Table 3. Poker test of multi-dimensional and multi-rank CA algorithm 

All the poker X value is 1.03<X<57.4, passes the poker test. We can’t draw other obvious 
character from the table. It seems that the result isn’t apparently changed with the number 
of dimensional and rank. It implies that it is not necessary to increase the number of 
dimensional and rank if we want to get stream bit. Maybe a lower dimensional and rank CA 
is enough. 

6. Discussion  

According to the random bits test result, Multi-dimensional cellular automation (CA) linear 
feedback shift register (LFSR) passed three stream bit test. Three tests suite accept 20,000 bits 
from a random source. The first test is mono bit test, which verifies that the number of 1’s 

www.intechopen.com



 Cellular Automata - Innovative Modelling for Science and Engineering 

 

310 

and 0’s are almost equal, the Multi-dimensional CA LFSR algorithm can create 1 bits and 0 
bits, different rank from 3 to 14 of 3-dimensional CA LFSR algorithm can create bit stream. 
The difference between 0 bit and 1 bits is shown in Figure 5:  
  

-165

-65

35

135

1 2 3 4 5 6 7 8 9 10 11 12 13 14

rank

d
i
f
f
e
r
e
n
c
e

R1 R2

 

Fig. 5. Bits difference of multi-dimensional and multi-rank CA LFSR algorithm 

According the figure, the bits difference can’t be decreased by increasing 3-dimensional CA 
LFSR rank. That’s means simple algorithm maybe better than complicated algorithm. 
Multi-dimensional CA LFSR algorithm can also pass the poker test. The X value is between 
1.03 and 57.4. When 3-dimensional CA LFSR increases its rank from 3 to 14, all the result can 
pass the poker test. The result is shown in Figure 6: 
   

1.03

11.03

21.03

31.03

41.03

51.03

1 2 3 4 5 6 7 8 9 10 11 12 13 14

poker1 poker2

 

Fig. 6. Poker test of three-dimensional and multi rank CA LFSR algorithm 

When increase the dimensional and rank at the same time. The result illustrates the 
algorithm can also pass the poker test shown in Figure 7: 
   

1.03

11.03

21.03

31.03

41.03

51.03

R1 R2 R1 R2 R1 R2 R1 R2

N=3 N=4 N=5 N=6

poker

rank=3 rank=4 rank=5 rank=6

 

Fig. 7. Poker test of multi-dimensional and multi-rank CA LFSR algorithm 

www.intechopen.com



Research on Multi-Dimensional Cellular Automation Pseudorandom Generator of  LFSR Architecture   

 

311 

Compared with the Multi-dimensional CA LFSR and 3-dimensional CA LFSR, we can’t find 
the obvious superiority by dimensional or rank increase. The Multi-dimensional CA LFSR 
algorithm can also pass the runs test, the average 1 bits and 0 bits pass the run and gaps test, 
the result fills in required interval almost same to the LFSR run gap test. The algorithm 
result is shown in Figure 8. 
    

0

500

1000

1500

2000

2500

1 2 3 4 5 6+
length

bits

run test Min Max

 

Fig. 8. Run gap test of multi-dimensional CA LFSR algorithm 

The Multi-dimensional cellular automation (CA) linear feedback shift register (LFSR) 
algorithm combined cellular automation method and LFSR method to create random stream 
bit The design method can pass three FIPS 140-1 standard pseudorandom stream bit test 
and also can provide better pseudorandom key stream. The results illustrate it is feasible 
and efficient. 

7. Acknowledgment 

The paper is supported by the Shanghai Education Commission Innovation Foundation 
(11YZ192). 

8. References 

Chien-In & Henry C., Synthesis of configurable linear feedback shifter registers for detecting 
random-pattern-resistant faults, ACM ISSS'01, pp.203-208, Montreal, Quebec, 
Canada, October 2001. 1-3 

Erik H. & Volkerink  Subhasish M.   Response compaction with any number of unknowns 
using a new LFSR architecture, DAC 2005 ACM, pp.117-122, Anaheim, California, 
USA. , June 13-17, 2005 

Breukelaar R. ; Th. B. & Nutech, S. G. sing a genetic algorithm to evolve behavior in multi 
dimensional cellular automata, GECCO’05, pp.107-114, Washington, DC, 

USA，June 25–29, 2005 

Sheng-Uei G. ; Shu Z. & Marie, T. Q. 2-D CA variation with asymmetric neighborship for 
pseudorandom number generation”,  IEEE Transactions on Computer-aided Design of 
Integrated Circuits and Systems , pp. 378-388, March 2004 

Nandi, S. ; Kar, B. K.  &  Chaudhuri, P.P.  Theory and applications of cellular automata in 
cryptography, IEEE Transactions on Computers, pp.1346-1357, December 1994, VOL. 
43, NO 12 

www.intechopen.com



 Cellular Automata - Innovative Modelling for Science and Engineering 

 

312 

Yong, W. ; Xinming, G. & YuW. Three-dimensional cellular automation LFSR algorithm, The 
Sixth International Workshop for Applied PKC，pp.188-194, Perth, Australia, 3-4, 

December 2007 
Richard J.S. Classical and Contemporary Cryptology, The Tsinghua Press, China, July.2005. 

www.intechopen.com



Cellular Automata - Innovative Modelling for Science and
Engineering
Edited by Dr. Alejandro Salcido

ISBN 978-953-307-172-5
Hard cover, 426 pages
Publisher InTech
Published online 11, April, 2011
Published in print edition April, 2011

InTech Europe
University Campus STeP Ri 
Slavka Krautzeka 83/A 
51000 Rijeka, Croatia 
Phone: +385 (51) 770 447 
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai 
No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 
Fax: +86-21-62489821

Modelling and simulation are disciplines of major importance for science and engineering. There is no science
without models, and simulation has nowadays become a very useful tool, sometimes unavoidable, for
development of both science and engineering. The main attractive feature of cellular automata is that, in spite
of their conceptual simplicity which allows an easiness of implementation for computer simulation, as a detailed
and complete mathematical analysis in principle, they are able to exhibit a wide variety of amazingly complex
behaviour. This feature of cellular automata has attracted the researchers' attention from a wide variety of
divergent fields of the exact disciplines of science and engineering, but also of the social sciences, and
sometimes beyond. The collective complex behaviour of numerous systems, which emerge from the
interaction of a multitude of simple individuals, is being conveniently modelled and simulated with cellular
automata for very different purposes. In this book, a number of innovative applications of cellular automata
models in the fields of Quantum Computing, Materials Science, Cryptography and Coding, and Robotics and
Image Processing are presented.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Yong Wang, Dawu Gu, Junrong Liu, Xiuxia Tian and Jing Li (2011). Research on Multi-Dimensional Cellular
Automation Pseudorandom Generator of LFSR Architecture, Cellular Automata - Innovative Modelling for
Science and Engineering, Dr. Alejandro Salcido (Ed.), ISBN: 978-953-307-172-5, InTech, Available from:
http://www.intechopen.com/books/cellular-automata-innovative-modelling-for-science-and-
engineering/research-on-multi-dimensional-cellular-automation-pseudorandom-generator-of-lfsr-architecture



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed
under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike-3.0 License, which permits use, distribution and reproduction for
non-commercial purposes, provided the original is properly cited and
derivative works building on this content are distributed under the same
license.

https://creativecommons.org/licenses/by-nc-sa/3.0/

