16 research outputs found

    Two-layer distributed content caching for infotainment applications in VANETs

    Get PDF
    For vehicular ad-hoc networks (VANETs), edge caching has attracted considerable research attention to maximize the efficiency and reliability of infotainment applications. In this paper, we propose a two-layer distributed content caching scheme for VANETs by jointly exploiting the cache at both vehicles and roadside units (RSUs). Specifically, we formulate content caching problem to minimize the overall transmission delay and cost as a nonlinear integer programming (NLIP) problem and propose an alternate dynamic programming search (ADPS) based algorithm to solve it. In ADPS, we divide the original problem into three sub-problems, then we use the dynamic programming (DP) method to solve each sub-problem separately. To reduce the complexity, we further propose a cooperation-based greedy (CBG) algorithm to solve the large scale original problem. Both numerical simulation results and experiments in testbed show that the proposed caching scheme outperforms existed caching schemes, the transmission delay and cost can be reduced by 10% and 24% respectively, while the hit ratio can be increased by 30% in a practical environment, as compared to popularity-based caching scheme

    Flood Detection Using Multi-Modal and Multi-Temporal Images: A Comparative Study

    Get PDF
    Natural disasters such as flooding can severely affect human life and property. To provide rescue through an emergency response team, we need an accurate flooding assessment of the affected area after the event. Traditionally, it requires a lot of human resources to obtain an accurate estimation of a flooded area. In this paper, we compared several traditional machine-learning approaches for flood detection including multi-layer perceptron (MLP), support vector machine (SVM), deep convolutional neural network (DCNN) with recent domain adaptation-based approaches, based on a multi-modal and multi-temporal image dataset. Specifically, we used SPOT-5 and RADAR images from the flood event that occurred in November 2000 in Gloucester, UK. Experimental results show that the domain adaptation-based approach, semi-supervised domain adaptation (SSDA) with 20 labeled data samples, achieved slightly better values of the area under the precision-recall (PR) curve (AUC) of 0.9173 and F1 score of 0.8846 than those by traditional machine approaches. However, SSDA required much less labor for ground-truth labeling and should be recommended in practice

    A survey on deep learning in image polarity detection: Balancing generalization performances and computational costs

    Get PDF
    Deep convolutional neural networks (CNNs) provide an effective tool to extract complex information from images. In the area of image polarity detection, CNNs are customarily utilized in combination with transfer learning techniques to tackle a major problem: the unavailability of large sets of labeled data. Thus, polarity predictors in general exploit a pre-trained CNN as the feature extractor that in turn feeds a classification unit. While the latter unit is trained from scratch, the pre-trained CNN is subject to fine-tuning. As a result, the specific CNN architecture employed as the feature extractor strongly affects the overall performance of the model. This paper analyses state-of-the-art literature on image polarity detection and identifies the most reliable CNN architectures. Moreover, the paper provides an experimental protocol that should allow assessing the role played by the baseline architecture in the polarity detection task. Performance is evaluated in terms of both generalization abilities and computational complexity. The latter attribute becomes critical as polarity predictors, in the era of social networks, might need to be updated within hours or even minutes. In this regard, the paper gives practical hints on the advantages and disadvantages of the examined architectures both in terms of generalization and computational cost

    Biometric Systems

    Get PDF
    Because of the accelerating progress in biometrics research and the latest nation-state threats to security, this book's publication is not only timely but also much needed. This volume contains seventeen peer-reviewed chapters reporting the state of the art in biometrics research: security issues, signature verification, fingerprint identification, wrist vascular biometrics, ear detection, face detection and identification (including a new survey of face recognition), person re-identification, electrocardiogram (ECT) recognition, and several multi-modal systems. This book will be a valuable resource for graduate students, engineers, and researchers interested in understanding and investigating this important field of study
    corecore