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Abstract: Deep convolutional neural networks (CNNs) provide an effective tool to extract complex
information from images. In the area of image polarity detection, CNNs are customarily utilized
in combination with transfer learning techniques to tackle a major problem: the unavailability
of large sets of labeled data. Thus, polarity predictors in general exploit a pre-trained CNN as
the feature extractor that in turn feeds a classification unit. While the latter unit is trained from
scratch, the pre-trained CNN is subject to fine-tuning. As a result, the specific CNN architecture
employed as the feature extractor strongly affects the overall performance of the model. This paper
analyses state-of-the-art literature on image polarity detection and identifies the most reliable CNN
architectures. Moreover, the paper provides an experimental protocol that should allow assessing the
role played by the baseline architecture in the polarity detection task. Performance is evaluated in
terms of both generalization abilities and computational complexity. The latter attribute becomes
critical as polarity predictors, in the era of social networks, might need to be updated within hours or
even minutes. In this regard, the paper gives practical hints on the advantages and disadvantages of
the examined architectures both in terms of generalization and computational cost.

Keywords: convolutional neural networks; deep learning; transfer learning; image polarity detection;
computing resources

1. Introduction

“A picture is worth a thousand words” is an English idiom that is becoming every day more actual.
Mainly thanks to social networks, images have become one of the most important communication
tools in the world. Every day, users share millions of images and videos; in most of the cases,
this content is expected to convey affective information. As a result, sentiment analysis is recently
witnessing an increasing number of applications to multimedia resources [1–3], in addition to text-only
resources [4–10].

Sentiment analysis is a branch of data mining that aims to aggregate emotions and feelings from
different types of documents. Image polarity detection indeed addresses a specific task within this
framework: to distinguish images that raise positive emotions in human users from images that cause
bad sentiments [11–14]. Image polarity detection stimulates interest both from industry and academia,
as its applications are countless [15], e.g., human–robot interaction, stock market prediction, political
forecasting, and social network analysis. In fact, in recent years, several works addressed this relatively
new topic [1,2,16,17].
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The literature highlights the advantages of deep learning in applying sentiment analysis to images.
Deep networks can yield powerful tools for automating the process of feature extraction, which may
prove challenging when dealing with complex, two-dimensional sources of information such as images.
The ability of deep networks to support automated feature extraction stems from a new approach to
learning, which disregards the traditional division between feature learning and classifier learning.
Accordingly, the training process is designed to learn both the classification rule and a meaningful
representation of the input patterns. Hence, deep networks play a major role in all the areas where
the learning problem involves complex and stratified feature sets [18]; for example: healthcare [19],
time series analysis [20], and object detection [21]. In the case of polarity detection, deep networks can
accomplish the task of understanding the interaction between the different components of an image.
Moreover, they can effectively support object recognition, which is a prerequisite to characterizing the
interactions between objects.

Polarity, however, also depends on the context in which the image is examined, as the same
objects, and even the same images, can lead to different polarities in different scenarios. Figure 1 is a
clear example of a picture that can be interpreted otherwise, depending on both cultural background
and historical moment: in the past, rainbow flags were associated with pacifist movements, whereas
currently, they mostly relate to homosexual rights. As a result, in the current era of social media, content
marketing, and custom profiles, a thorough re-training of the polarity-detection strategy might be
required within a short time interval (even minutes or hours) to keep the pace of evolving circumstances.
Re-training a deep network, however, raises major issues when addressing image polarity: firstly, one
cannot take the availability of many labeled data for granted; secondly, the complexity of the learning
process might require massive computational resources to support fast training.

Figure 1. Image from [22]. The polarity assigned to this image mostly depends on the circumstances
and the cultural background.

The paradigm of transfer learning [23–25] can provide a viable solution to both issues.
According to its general definition, in transfer learning, one reuses an existing model (optimized
for a given task) as a starting point to develop an upgraded model, for a somehow related task.
In practice, transfer learning involves a wide range of approaches [24,25], which are designed to cover
a variety of scenarios. The most important aspects in these cases are the amount of labeled data,
the expected similarity between the source domain and the target domain, and the characteristics of
the specific optimization problem. On the other hand, the great majority of the literature related to
image polarity detection relies on a specific scenario. A deep network trained for object recognition
provides the starting point, mostly because in that case, a huge amount of labeled data is accessible and
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one can benefit from a consistent number of effective trained models. By contrast, the target domain of
polarity detection can only provide a limited amount of labeled samples.

The literature confirms that transfer learning can yield superior performances in image polarity
detection [1,2,16]. Some crucial issues, however, remain open: first, to the best of the authors’
knowledge, a fair, comprehensive comparison is lacking between the various approaches to image
polarity detection when starting from object recognition. In the latter case, the predictors are usually
built around convolutional neural networks (CNN) that support the feature-extraction process for
object recognition, but the choice of the specific CNN adopted is indeed critical, as the literature
offers in turn a variety of options. This eventually leads to the second open issue, which relates to
the run-time performance: adopting a specific CNN ultimately affects the generalization ability of
the eventual predictor, its training time, and the computational cost of the inference phase. In this
sense, little attention has been given in the past to the trade-off between the computational costs and
generalization abilities.

Contribution

The proposed research yields a two-fold contribution. First, the paper presents a careful analysis
of the cutting-edge technologies for image polarity detection. The paper reviews (1) all the relevant
CNN architectures for object recognition and (2) the most effective approaches to image polarity
detection based on CNNs.

Secondly, the paper introduces an experiment-design strategy to attain a fair comparison
between different configurations of image-polarity detectors. The proposed benchmark involves
three different configurations and implementations of the transfer-learning process. The alternatives
satisfy the constraints imposed by a realistic scenario: (1) a limited amount of images with polarity
labels is available, and (2) the training process can only rely on limited computational resources.
The comparison involved eight different CNNs for object detection, and the eventual predictors were
evaluated according to three attributes: classification accuracy, the computational cost of the training
process, and the computational cost of the inference phase. Four real-world established datasets
formed the benchmark for the experimental evaluation. As a result, this work provides a handbook
for the selection of the right architecture, according to the available computational resources and the
expected generalization performances.

The rest of the paper is organized as follow. Section 2 provides a brief overview of the various
architectures adopted for object recognition. Section 3 analyzes the literature and reports on the
several design approaches for implementing image-polarity detection via transfer learning. Section 4
defines the design of the experiment that was used to discriminate the contributions of the CNNs
in the associated polarity-detection frameworks. Section 5 characterizes the three configurations in
terms of the computational complexity of the training process. In Section 6, the outcomes of the
experimental sessions involving the benchmarks are presented and discussed. Finally, Section 7 makes
a few concluding remarks.

2. CNNs for Object Recognition

This section briefly reviews the most significant CNN architectures, especially for object recognition,
which have already been used in the development of frameworks addressing image polarity detection.

The AlexNet [26] deep network first achieved important results in the field of image classification.
In its standard configuration, that architecture included eight weight layers (five convolutional layers
and three fully = connected layers). Overall, AlexNet was characterized by 61 · 106 parameters.
This feature clearly raised a major issue in terms of computational load, since the classification
performance strictly depended on the availability of huge training sets. This problem was suitably
tackled thanks to the computational power of graphics processing units (GPUs). GPUs proved decisive
to tackle the trade-off between training time and the size of the training set. That research actually
opened the way to the massive use of GPUs for the computational support of deep learning.
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Vgg_16 and Vgg_19 [27] improved the architecture of AlexNet by increasing the number of
weight layers to 16 and 19, respectively; besides, these architecture exploited exclusively stacks
of 3 × 3 convolutions. Both Vgg_16 and Vgg_19 proved able to outperform AlexNet in terms of
classification performance. On the other hand, they also inflated the number of parameters to be set by
the learning process.

In 2014, GoogLeNet [28] introduced major novelties in the design of CNN architectures by
proposing the Inception Module. Such a module implements a local, small network topology as shown
in Figure 2. First, the output of the previous layer feeds different filter operations, which are completed
in parallel. Then, the outcomes of the filters merge into one third-order tensor, thus projecting the
resulting depth to a lower dimension. This strategy allows the eventual stack of Inception Modules to
limit the amount of parameters involved. In its standard configuration, GoogLeNet featured 22 weight
layers and still involved less parameters than AlexNet. Indeed, this architecture has been progressively
updated (e.g., Inc_V3 [29], and Inc_v4 [30]).

Figure 2. Example of the inception module: the output of the “previous layer” feeds four different
feature extractors. The information provided from the different branches are merged by the layer “filter
concatenation”.

ResNet architectures [31] tackled the design of very deep networks by using Residual Net as
building blocks, which replaced standard convolutional modules. A Residual Net is entitled to fit
F(x) = H(x)− x, where H(x) is any desired mapping (under the assumption that H(x) and x have the
same dimensionality). Overall, the architecture is organized as a stack of such blocks, in which each
element is trained on the residual representation of the previous one. Thus, in the lth layer, one has:

xl = Fl(xl−1) + xl−1. (1)

Figure 3 outlines the overall structure of a Residual Net. This architecture aims to deal with the
convergence issues brought about by the complexity of deep networks. Res_50, Res_101, and Res_152
adopted, respectively, a total of 50, 101, and 152 weight layers.



Electronics 2019, 8, 783 5 of 28

Figure 3. Graphical representation of a Residual Net [31].

Finally, the DenseNet architecture [32] introduced a different approach: each layer was connected
to every other layer in a feed-forward fashion. Basically, the eventual architecture was organized as
a stack of Dense Blocks; in the lth layer, one has:

xl = Fl([x0, x1, ..., xl−1]), (2)

where [x0, x1, ..., xl−1] is the concatenation of the outputs of the previous layers. The overall layout
was designed to achieve two goals: (1) to strengthen feature propagation and (2) to reduce the total
number of parameters. Different configurations of the DenseNet architecture were proposed in [32].
DenseNet-BC proved to be the most effective at dealing with the ImageNet benchmark [33].

Table 1 gives the main details of the architectures discussed above. For each network,
the table provides: the number of weight layers, the classification percentage accuracy scored in
the ImageNet [33] competition, the number of floating point operations required by one image
classification [34], and the total amount of parameters. The number of parameters mostly affects
memory occupation and the required size of the training set. When using a pre-trained network as
the starting point, transfer learning can require a smaller number of samples to attain fine-tuning
successfully. On the other hand, the size of the training set strictly relates to the number of parameters.
The number of floating point operations reasonably reflects the computational complexity of the
architecture. In fact, a detailed metric should take into account the fact that, in general, different
instructions have different computational costs (e.g., memory access timings), and this therefore
affects computational performance. The table shows that GoogLeNet seems the best choice in terms of
both parameters and computational complexity, whereas the other comparisons (except for AlexNet)
outperformed GoogLeNet in terms of accuracy.
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Table 1. Attributes of different CNN architectures exploited in the area of object recognition.

Architecture Weight Layers Acc (%) Operations (Gflops) Parameters (×106)

AlexNet [26] 8 54 0.7 61
Vgg_16 [27] 16 71 15.5 138
Vgg_19 [27] 19 71 19.6 144

GoogLeNet [28] 58 68 1.6 7
Inc_v3 [29] 46 78 6 24
Res_50 [31] 50 76 3.9 26
Res_101 [31] 101 77 7.6 45
Res_152 [31] 152 79 11.3 60

DenseNet [32] 201 77 4.0 20

3. Image Sentiment Analysis: State-of-the-Art

Image polarity detection is an emerging topic in the area of sentiment analysis and has been
covered recently by interesting surveys [1,2,16,17]. With respect to those works, this paper focuses
instead on the role played by CNN architectures and transfer learning in that domain. Several relevant
papers addressed the image polarity-detection problem before the spread of deep learning for image
processing [22,35–43], and the approaches based on CNNs today represent the state-of-the-art in
this area.

3.1. Polarity Detection

Approaches to polarity detection usually reflect the basic structure of object recognition frameworks.
In compliance with the transfer learning paradigm, subjectivity detection relies on lower-level features
that are worked out by a CNN, optimized for object recognition. In practice, this approach leads to two
design alternatives, as outlined in Figure 4.

In Figure 4a, access to low-level features is attained by removing the topmost (fully-connected)
layer of the pre-trained CNN. The features either feed a new fully-connected layer, including as many
neurons as the classes involved in the polarity detection problem, or an ad-hoc classifier. A fine-tuning
process allows re-training the CNN to adjust both its parameters and the resulting features according
to the specific polarity-detection problem.

In the second approach as per Figure 4b, the eventual classifier stems from a two-step procedure:
first, the topmost fully-connected layer in the trained CNN is replaced with a new architecture that
models an ontology. The resulting layout is re-trained by using a visual sentiment ontology (VSO).
Several approaches relied on adjective-noun pairs (ANPs) [11,12], which provide a collection of images
for a given pair {adjective, noun}. In the second step, the new layout becomes the building block of the
polarity detector. Therefore, as done in the first design approach, one might disconnect the topmost
fully-connected layer and get access to the features. Otherwise, one might plug a specific classifier on
top of the layout; in this case, the input values to this classifier would follow the probability distribution
of the classes characterizing the underlying ontology. A final training process then configures the
additional, topmost layout. In general, the learning process in the first step is affected by weak labels,
since VSOs are worked out by automated algorithms that add some noise to the labeling result.

Notably, in the first design, the assumption was that mid-level features can be inherently extracted
by the CNN. Differently, the second design explicitly models the mid-level features by using an
ontology. In principle, the first design tackles a more challenging problem; on the other hand, good local
minima can be reached also with a modest amount of training data. The second design conversely
requires a huge training set because an ontology involves several classes.
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Figure 4. Designs of polarity detection frameworks. (a) The low-level features provided by the
pre-trained CNN feed a classifier entitled to tackle polarity detection. (b) The low-level features
provided by the pre-trained CNN feed a module entitled to model an ontology; such mid-level
representation feeds the classifier entitled to tackle polarity detection.

The literature offers a variety of implementations of both design strategies. The implementations
mostly differ in the adopted CNN, in the transfer-learning methodology, and the specific domain from
which the training data are drawn. A few papers relied on AlexNet for low-level feature extraction
in the schema as per Figure 4a. In [11], a logistic regression layer supported the classifier, and the
comparison covered two approaches: (1) the classifier replaced the topmost fully-connected layer in
AlexNet; (2) the classifier was stacked over the AlexNet architecture. Campos et al. [44] adopted AlexNet
as a feature extractor and yielded an interesting analysis on the effects of both layer ablation and layer
addition on the accuracy performance of polarity detection. A design based on ontology representation
(as per Figure 4b) was adopted in [45]; the authors developed a sentiment-recognition layout based on
AlexNet, in which the topmost layer included one neuron for each ANP. This approach outperformed
the SentiBankclassifier based on SVMs [22] and was employed for egocentric sentiment prediction
in [46]. Jou et al. [47] improved on the approach presented in [45] by a multilingual visual sentiment
ontology (MVSO). The methodology presented in [12] involved a custom architecture for image
polarity prediction: the model included a pair of convolutional layers and four fully-connected layers.
The training procedure involved weak labels generated by ANP. The authors followed a multi-step
learning strategy: after each step, the dataset was pruned by taking out the images that had been
classified correctly. A comparison between this approach, the architectures discussed in [44], and the
method proposed in [47] was presented in [14], in which the authors focused on the role played by
the specific ontology in transfer learning. The best performances were scored by the models relying
on AlexNet and on the English version of MVSO. The Vgg_19 and the GoogLeNet architectures were
implemented in [13,48], respectively. Interestingly, the papers pointed out that the predictors based
on the compared architectures outperformed state-of-the-art predictors based on AlexNet. In [49],
the authors compared Vgg_16, Res_50, Inc_v3, and the approach presented in [12] for outdoor polarity
detection and proved that the model proposed in [12] compared favorably with the other three
alternatives. In addition, the paper showed that higher accuracy performances could be obtained by
combining the four CNNs in an ensemble.
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The enhancement of the ontology representation in the schema of Figure 4b was the specific
goal of some works. Fernandez et al. [50] proposed a framework in which two independent CNNs
were adopted to learn ANPs, one network to deal with nouns and the other to deal with adjectives.
Both predictors relied on the Res_50 architecture. A similar approach was used in [51], but the
eventual framework followed a different strategy to merge the information provided by the two
CNNs. Wang et al. [52] proposed a model in which adjectives and nouns were predicted by different
CNNs; the two networks were coupled by a mutual supervision mechanism. A modified version
of Res_50 supported the model proposed in [53]; in that case, the residual learning mechanism was
extended to multitask cross-residual learning. As a result, a single network could manage explicitly
the interactions between different ANP couples (e.g., “shiny-cars”, “shiny-shoes”).

CNN architectures also supported models for image polarity detection that did not fit into either
of the two designs schemes described above. In [48], the Vgg_19 architecture processed an image
including the conventional R, G, and B channels and a focal channel; the latter channel was set to
model human attention. Likewise, the works in [54,55] studied the relevance of salience in sentiment
detection. Attention mechanisms [56,57] were addressed in [58], where the authors combined VggNet
architectures with a recurrent neural network (RNN). The RNN allowed the model to explore an image
as a composition of small areas, thus mimicking the human attention process in which a person only
focuses on significant areas of the image. The approach based on the exploration of small regions
further evolved to [59,60], which introduced two approaches explicitly designed to learn salient regions
of an image. Those models integrated Vgg_16 and ResNet_101 into ad-hoc architectures that combined
polarity detection with the local information embedded in images. In the paper by Rao et al. [61], a fast
R-CNN located the distinctive parts of an image. The approach by Song et al. [62] combined attention
and salience. The procedure extracted a pair of maps for salience and attention from an input image
and worked out a score based on the correspondence between the pair. The system was completed by
a VggNet for extracting features. In [63], the authors combined VggNet with art features to enhance the
model effectiveness at finding the image polarity. In [64], the same CNN structure computed features
in an integrated framework, which embedded low-rank and inverse-covariance regularization terms
to learn a robust feature representation and a reasonable prediction model at the same time. Finally,
Balouchian et al. [65] explored the use of context information to enhance VGGNet_16 and Res_50.

Table 2 summarizes the various options for object detection architectures within image-polarity
frameworks. The table rows group the object-detection architectures into families; for example,
the ResNet entry indexes all the networks characterized by residual layers. The table columns refer to
the various approaches for image polarity detection. The column marked as “Standard” identifies all
those approaches that can be summarized according to the schema illustrated in Figure 4a. Likewise,
the third column (“Ontology”) indexes models that follow the design in Figure 4b. The last column
(“Ad-hoc”) identifies models that do not fit the previous categories.

Table 2. Usage of object detection architectures in the reviewed papers.

Architecture
Schema

Standard Ontology Ad-hoc

AlexNet [11,44] [45–47] -
Vgg [48,49] [51] [48,54,55,58,59,62–65]

Inception [13,49] - -
ResNet [49] [50,53] [60,65]
Custom [12,49] [52] -

3.2. Sentiment Analysis: Other Applications

The automated generation of image captions with sentiment terms is closely related to sentiment
prediction and aims to extract affective information from images. Actually, a crucial aspect concerns
how information is conveyed, since the final user of a caption-generation model is a person.
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The archetypal model [66] in this field included a CNN architecture that fed gated RNNs [67]. The CNN
extracted low-level features from the image, while a long short-term memory (LSTM) network modeled
the textual description of the image. In [68–70], a VggNet architecture was adopted to extract low-level
features; in [71], such a task was accomplished by a Res_152 architecture. Karayil et al. [72], conversely,
used AlexNet to model ANPs; a multi-directed graph ranked the ANP couples provided by the CNN
and generated captions accordingly. For the purpose of improving sentiment description, Sun et al. [73]
extended a pre-trained caption generation model with an emotion classifier to add abstract knowledge.

Image polarity detection can also apply to multimodal sentiment analysis. Remarkable results have
been achieved in [74–79], where ensembles of handcrafted features were worked out from images and
combined with information provided by text analysis. Those approaches were subsequently outperformed
by frameworks that integrated CNNs for extracting features from visual content [12,78,80–85].

In addition to polarity-based methods, fine-grained representations of sentiments were
addressed in [52,86–92]; approaches ranged from multi-class labeling to continuous probability
distributions. The common rationale is that one image can evoke several feelings at the same time.
Both analogical and discrete models were employed to describe the emotional contents of the images.
From a methodological view point, though, that research did not convey any significant novelty
about the automated feature extraction process via CNNs, since most of them relied on ensembles of
handcrafted features, with the partial exception of [89,90]. In [89], the authors introduced a custom
architecture, including three convolutional layers and three fully-connected layers. That structure
for polarity detection contributed to a framework for the classification of emotional states into eight
categories. The final prediction of the polarity model introduced a bias in the final result, by activating
a subset of neurons of a fully-connected layer that prompted the eventual prediction. Zhao et al.
presented in [90] an ensemble of features composed of handcrafted features and the representation
retrieved using the AlexNet architecture. Recently, ref. [93] embedded a ResNet architecture within a
domain-adaptation framework.

It is worth mentioning, finally, that polarity and sentiment detection were also exploited in
face analysis [94–99], posture analysis [100], brain signals [101], and the behavioral analysis of
groups of people [102]. These methodologies were tailored to specific tasks and strictly related
to the video domain.

3.3. Benchmarks

Table 3 lists the most common benchmarks in the area of image sentiment prediction. The table
intentionally does not include datasets designed for caption generation, face-sentiment detection,
and multimodal analysis. The first column marks the name of the dataset with the reference paper;
the second and third columns give the size of the dataset and the number of classes, respectively;
the last column lists possible supplementary material provided with the images.

All the benchmarks involving two classes explicitly referred to polarity detection. The datasets
Multi-view, T4sa, and OutdoorSent can be viewed as special cases, as they also included the class
neutral. Except for Twitter and OutdoorSent, the benchmarks also provided the textual message
associated with each image. The benchmarks involving eight classes, instead, referred to emotion
recognition. LUCFERincludes a large collection of images with contextual information; the labels
were obtained by merging sentiment and context information. The last pair of datasets in Table 3 are
examples of ontologies, which associated a collection of images with the corresponding adjective-noun
pairs. Such datasets can support the design implementation illustrated in Figure 4b. The ANP dataset
also provided the polarity of single ANPs pairs. Finally, in [92], the authors introduced a dataset that
provided three kinds of labels for each pattern, thus allowing multiple analysis of the dataset.
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Table 3. Benchmarks for image sentiment prediction. ANP, adjective-noun pair; MVSO, multilingual
visual sentiment ontology.

Name Size Classes Supplementary Material

Twitter [12] 882 2 n.a.

Phototweet [22] 603 2 text

Multi-view [74] 19,600 3 text

OutdoorSent [49] 1950 3 n.a.

Flickr [76] 105,587 2 text

Instagram [76] 120,000 2 text

IAPS [103] 394 8 n.a.

Art photo [37] 807 8 n.a.

Abstract paintings [37] 228 8 n.a.

Image-Emotion-Social-Net [92] 1,434,080 8,2, continuous n.a.

MVSA [104] 23,308 8 n.a.

Twitter_LDL [87] 10,045 8 n.a.

T4sa [105] 1.5 M 3 text

Flickr_LDL [87] 10,700 8 n.a.

Visual Realism [48] 2520 2 n.a

LUCFER [106] 3.6 M 275 context

ANP [22] 1 M 2,3244 adjective name pairs

MVSO(EN) [47] 4 M 4422 adjective name pairs

4. A Comparative Analysis

A crucial result of the literature reviewed in the previous section is that CNNs are widely
used for feature extraction (in the transfer-learning setup) in all the frameworks that need to rely
on image sentiment analysis. The various design approaches differed in terms of both the feature
extraction process and the overall polarity predictor arrangement. Thus, one deals with a plethora
of heterogeneous approaches, which may be classified according to the adopted pre-trained CNN,
the training dataset, and the fine-tuning strategies. Such a variety makes it difficult to evaluate the
actual contribution yielded by a given setup in boosting the performance of image polarity detection.

This paper aims to address this issue by proposing a formal experimental protocol, to support
a fair comparison between different configurations of polarity predictors and different setups of feature
extractors. In this sense, the schema introduced in Figure 4a is used as a reference, mostly because it
covers three general, distinct configurations, as shown in Figure 5. Such configurations differ in the
classification block that processes the outputs of the pre-trained CNN and in the learning strategy
applied to the resulting predictor; the latter option may either include or not a fine-tuning procedure
for the parameters of the pre-trained architecture. In the figure, bold identifies blocks that are trained
from scratch for polarity detection, whereas italics identify pre-trained blocks that are just subject
to fine-tuning. These configurations cover the majority of the setups proposed in the literature for
image polarity detection. Moreover, they satisfy the (reasonable) constraints taken into account in
the proposed analysis, i.e., (1) a small number of images with polarity labels is only available for
fine-tuning, and (2) the computational resources are limited. The details of the three configurations
will be discussed in Sections 4.1–4.3, respectively.

The configurations illustrated in Figure 5 can highlight the specific contributions of the CNN
architectures to the overall prediction performances. In this regard, the present analysis covered
two main aspects: the accuracy of the predictor and the computational load brought about by the
associated learning process. In contrast, it would seem that the configurations following the design
strategy as per Figure 4b would prove less effective to support a fair comparison between the possible
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alternatives. This is because the intermediate layers, deployed to model ontologies, might actually
introduce some bias, due to both the actual configuration of those layers and the adopted ANP.
The latter aspect is indeed critical because ontologies tend to induce a cultural bias [47,107], as well.
The tested configurations could benefit from an unbiased background, by only relying on CNNs that
had been pre-trained with the ImageNet dataset [33], which gave a well-established benchmark in
object-recognition applications.

Figure 5. Three different configurations of the polarity predictor: (a) layer replacement; (b) layer
addition; (c) classifier. Blocks with bold refers to modules that are retrained from scratch; blocks with
italics refer to modules that are subject to fine-tuning.

4.1. Layer Replacement

The configuration outlined in Figure 5a refers to the most common layout for image polarity
detection: the topmost fully-connected layer of a CNN that has been previously trained on object
recognition is replaced with a new fully-connected layer. The latter layer includes as many neurons as
the number of classes in the polarity problem and acts as a classification layer for the eventual prediction
outcome. The eventual predictor system performs as a universal approximator, which integrates
a feature-extraction block (whose parameterization is inherited from object recognition) and a
classification layer (which has to be trained from scratch). This approach allows training the predictor
on the new application domain in a limited number of epochs. When extending training to the feature
extraction block, one implements fine-tuning, but by suitably setting the learning rate, the adjusted
parameters therein are only subject to small perturbations [23].

Similar configurations can be obtained by implementing other strategies of layer ablation.
Campos et al. [14], though, showed that replacing the last fully-connected layer represents the most
convenient choice in image-sentiment analysis. This conclusion seems reasonable when considering
that the topmost fully-connected layer models the probability distributions of different objects in
the image.

4.2. Layer Addition

The alternative configuration as per Figure 5b augments the standard layout options discussed
above. Pre-trained CNNs still provide the basic building blocks whose topmost fully-connected layers
were removed. In this case, though, that block feeds a fully-connected layer including Nh neurons,
and the eventual classification layer is then stacked on top of such an intermediate layer. Therefore,
the resulting layout has a single-layer feedforward network (SLFN) that processes the features provided
by the CNN. As SLFNs are universal approximators by themselves, this configuration need not rely on
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the linear separability of data in the feature space, thus removing a requirement that characterized
the first configuration. Accordingly, in the layer replacement configuration, fine-tuning is expected to
adjust the feature space suitably.

The main goal of the learning procedure was to train the SLFN from scratch, whereas the
parameters of the feature-extraction block just underwent fine-tuning. The presence of the SLFN
simplifies and speeds up the training process, as convergence might be reached without achieving
the linear separation of samples in the feature space. On the other hand, one faces two drawbacks:
(1) the quantity Nh conveys a hyperparameter that should be properly set; (2) the overall configuration
is prone to overfitting, especially when using limited training sets.

4.3. Classifier

The third configuration as per Figure 5c inherits the overall concept from the second approach
and deploys a universal approximator to classify the data that are mapped in the feature space by
the CNN. These implementations usually include SVMs to support the classification task. In general,
other classifiers could play the same role, but the SVM model combines remarkable generalization
performances with a convex optimization problem.

In this approach, a pre-trained CNN (without the topmost fully-connected layer) feeds an
SVM that embeds a Gaussian kernel. The SVM classifier is trained by applying conventional
convex-optimization methods, which do not suffer from the presence of local minima. This setup
precludes any fine-tuning process in the feature-extraction block, since it does not involve any
backpropagation mechanism, and one has to only rely on the feature space targeted to the object-
recognition application. Such a potential drawback counterbalances the adoption of a convex
optimization problem; moreover, the Gaussian kernel, like most kernels, involves hyperparameters.

5. Computational Complexity

The three configuration options discussed above can be compared according to the computational
load involved in the learning process. The process does not require empirical protocols, as the
individual computational costs can be derived analytically. Noticeably, the configurations of
Sections 4.1 and 4.2 may witness substantial speedups when implemented on GPUs. By contrast,
the most effective implementations of SVM training rely on CPUs. As a consequence, execution time
would hardly represent a good parameter for a fair comparison. Aspects related to the implementation
strategies of CNNs that best performed empirically will be further discussed in Section 6.5. In the case
of the first configuration, layer replacement, the computational cost of the training procedure Olr can
be approximated by defining the following quantities:

• ntg: number of training samples;
• nep: number of epochs;
• nlay: number of layers;
• npar,i: number of parameters in the ith layer;
• O f f : computational cost of a feedforward step;
• Obw: computational cost of a backward step, which involves gradient computation and parameters’

update.

The choice of the architecture directly affects the last four quantities. Accordingly, Olr can be
expressed as:

Olr = nep ∗ ntg ∗ [(O f f (P) + Obw(P)] =

nep ∗ ntg ∗ [(O f f (P) + α ∗O f f (P)] =

nep ∗ ntg ∗ (α + 1)[(O f f (P)];

(3)
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where:

P =

nlay

∑
i=1

n3
par,i. (4)

Empirical evidence suggests that the value of the coefficient α in (3) can be roughly approximated
by setting α = 2 [34].

The expressions (3) and (4) show that both O f f and Obw scale with the third power of the number
of parameters. At the same time, expression (4) indicates that an architecture is not only characterized
by the total number of parameters. In the presence of an uneven distribution of the parameters,
the computational cost is mostly determined by the largest layers (in terms of weights).

Equation (3), in practice, also approximates the computational cost Ola of the training
procedure for the second configuration, layer addition. Actually, such a configuration just adds one
fully-connected layer to the layout of the first configuration; besides, the additional layer is expected
to include a small number of neurons (Nh < 500), since small- or medium-sized datasets are involved.
Thus, the computational cost of layer addition training can be formalized as:

Ola ≈ Olr. (5)

The third configuration relies on a different learning process that does not require any fine-tuning
of the pre-trained CNNs. Hence, the basic training procedure includes two steps: (1) the CNN maps
training samples into the feature space and (2) the SVM is trained on the extracted feature values
by solving a convex optimization problem. If one denotes by OSVM the computational cost of SVM
training, the computational cost Ocl of the overall training procedure is:

Ocl = O f f (P) ∗ ntg + OSVM(n3
tg). (6)

In Equation (6), O f f scales with the cube of the number of parameters in the largest layer, whereas
OSVM scales with the cube of the number of training samples. Therefore, the second component is
expected to prevail over the first component only when large training sets are involved, as ntg > npar,i
for any i.

A fair comparison between the three options also requires considering a few aspects that do
not show up in Expressions (3) and (6). First, all the configurations need, in principle, to rely on
model selection; this in turn means that the actual learning process encompasses multiple runs of the
training algorithm. The overall computational cost of this procedure can be roughly approximated
by a multiplicative factor α. The second configuration might therefore prove more computationally
demanding than the first one, even if Ola ≈ Olr, since one has to add Nh to the parameters to be set by
model selection. As a consequence αla > αlr, which in turn means αlaOla > αlrOlr.

Secondly, the presence of sub-optimal solutions characterizes empirical optimization methods
such as stochastic gradient-descent algorithms. As transfer learning of polarity predictors relies on
small datasets, that problem would plausibly perturb the training process when using the first and
second configurations. The adoption of early stopping strategies to prevent overfitting also increases
the risk of being trapped in local minima. Multi-start optimization, through multiple independent
runs of the training algorithm, represents a viable solution, to the clear detriment of the computational
efficiency in the learning procedure. The third configuration does not suffer from the issue of local
minima, thanks to the underlying convex optimization problem. As a result, this option may be
preferred when one wants to avoid multi-start optimization.

Finally, the execution time of a given architecture also depends on its specific layout. In particular,
the eventual execution time of a CNN architecture does not only depend on the quantity P: while GPUs
aim to exploit data and model parallelism fully, CNNs in principle are realized as a stack of layers
that operate sequentially. Jung et al. [108] analyzed the role played by non-convolutional layers in
accelerating CNNs’ training. As anticipated, Section 6.5 will address these aspects.
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6. Experimental Results

The experimental campaign aimed at assessing the role played by the specific CNN architecture
in augmenting the generalization ability of a polarity detector. Accordingly, the experiments only
involved the three configurations presented in Section 4 to allow a fair comparison. For the sake of
consistency, all the experiments were implemented in MATLAB R© with the Neural Network Toolbox,
which provided the pre-trained versions of the architectures listed in Table 1. The Res_152 option was
the only architecture not included in the experiments, as the Neural Network Toolbox did not include
its implementation.

6.1. Datasets

The datasets containing labels for the polarity problem were only considered. The experiments
involved the most common benchmarks for polarity detection: Twitter (Tw) [12], Phototweet (PT) [22],
Multi-view (Mv_a and Mv_b) [74], and ANP40 [22]. Table 4 provides, for each dataset, the total number
of patterns, the number of patterns belonging to the class “positive polarity”, and the number of
patterns belonging to the class “negative polarity”. The first four benchmarks were used to test the
three configurations presented in Section 4 in the presence of small training sets. Instead, ANP40 covered
the situation in which a larger dataset is available.

Twitter is the most common benchmark for image polarity recognition. In its original version,
the dataset collected 1269 images obtained from image tweets, i.e., Twitter messages that also contain
an image. All images were labeled via an Amazon Mechanical Turk (AMT) experiment. This paper
actually utilized the “5 agree” version of the dataset. Such a version includes only the images for
which all the five human assessors agreed on the same label. Thus, the eventual dataset included a
total of 882 images (581 labeled as “positive” and 301 labeled as “negative”).

Phototweet [22] is another dataset that collects image tweets; it includes a total of 603 images.
Labeling was completed via an AMT experiment. Eventually, 470 images were labeled as “positive”
and 133 images were labeled as “negative”. This dataset represents a challenging benchmark because
(1) it is small and (2) it is quite unbalanced.

Multi-view also provides a collection of image tweets [74]. Tweets were filtered according to
a predetermined vocabulary of 406 emotional words. The vocabulary spanned ten distinct categories
covering most of the feelings of human beings (e.g., happiness and depression). The eventual dataset
only included those samples whose textual contents (hashtags included) included at least one emotional
word. Three annotators labeled the pairs {text,image} by using a three-value scale: positive, negative,
and neutral; text and image were annotated separately. This paper utilized a pruned version of
the dataset: only images for which all the annotators agreed on the same label were employed,
thus obtaining a total of 4109 images. As only 351 images out of 4109 were labeled as negative, such a
pruned version of Multi-view resulted in being very unbalanced. Thus, two different balanced datasets
(Mv_a and Mv_b) were generated by adding to the 351 “negative” images two different subsets of 351
images randomly extracted from the total amount of “positive” images.

The ANP dataset implements an ontology and is composed of a set of Flickr images [22].
It includes 3316 adjective-noun pairs; each pair is associated with at most 1000 images, thus leading
to a total of about one million pictures. The ANP tags assigned from Flickr users provided the
labels for the images; hence, noise severely affects this dataset. To mitigate this issue, the presented
research used a pruned version of the dataset, and the 20 ANPs with the highest polarity values
and the 20 ANPs with the lowest polarity values were selected (the website of the dataset’ authors
(http://visual-sentiment-ontology.appspot.com/) was exploited as a reference). Eventually, the dataset
used for the experiments included 11,857 “positive” images and 5257 “negative” images.

http://visual-sentiment-ontology.appspot.com/
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Table 4. Benchmarks adopted in the experimental sessions. Tw, Twitter; PT, Phototweet; Mv,
Multi-view.

Name Size Positive Samples Negative Samples

Tw [12] 882 581 301

PT [22] 603 470 133

Mv_a [74] 702 351 351

Mv_b [74] 702 351 351

ANP40 [22] 17114 11857 5257

6.2. Experimental Setup

The experimental campaign was organized into two sessions. In the first session, Tw, Mv_a, Mv_b,
and ANP40 were used as benchmarks. The first three benchmarks covered the most common scenario
in which a small training set was available. This supported the assessment of the convolutional
architectures for the three configurations discussed in Section 4. ANP40 covered the dual case in which
a larger dataset is available. The second session only involved the PT benchmark, which was treated
separately due to its peculiar properties, namely small size and class unbalance.

In all sessions, the layer replacement configuration was set up as follows. The optimization of the
layer in the pre-trained CNN followed stochastic gradient descent with momentum, with momentum
= 0.9 and learning rate = 10−4. In the upper classification layer, the learning rate was 10−3 and the
regularization parameter was 0.5. The validation patience for early stopping was two. Training
involved a maximum of 10 epochs.

The same setup was adopted for the layer addition configuration. In this case, the learning rate
was 10−3, and the regularization parameter was 0.5 for both the fully-connected and the classification
layer. Cross-validation drove the setting of the hyper-parameter, Nh, which could take on a discrete set
of values: Nh ∈ {10, 50, 100, 200}.

The classifier configuration did not require fine-tuning. The SVM with Gaussian kernel was
trained with a standard algorithm. The two hyper-parameters, regularization term C and kernel
standard deviation σ, were set via model selection.

6.3. Experimental Session #1

According to the proposed experimental design, eight different pre-trained architectures were
used to generate as many implementations of each configuration. The experimental session aimed at
comparing the generalization performances of such implementations.

For each configuration, the performances of the eight predictors were evaluated according to
a five-fold strategy. Hence, for each dataset, the classification accuracy of a predictor was measured in
five different experiments, corresponding to as many different splittings of the dataset into training/test
pairs. Five separate runs of each single experiment were completed; each run involved a different
composition of the mini-batch. As a result, for each predictor and each benchmark, 25 measurements
of the classification accuracy on the test set were eventually available.

Table 5 reports on the performances measured by applying the layer replacement configuration
to Tw, Mv_a, Mv_b, and ANP40. The first column marks the pre-trained architecture used for
implementing the predictor; the second column gives, for the Tw dataset, the average accuracy obtained
by the predictor over the 25 experiments, together with its standard uncertainty (between brackets);
the third, fourth, and fifth columns report the same quantities for the experiments on the Mv_a, Mv_b,
and ANP40 datasets, respectively. Best results are marked in bold. The experimental outcomes proved
that DenseNet slightly outperformed the other architectures on Tw and Mv_a. Vgg_19 scored the best
average accuracy on Mv_b; the gap between such a predictor and Vgg_16, Inc_v3, and DenseNet though,
was very small, especially if one considered the corresponding standard uncertainties. Furthermore,
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Res_101 always proved competitive with the best solution. At the same time, one can conclude that
Inc_v3 and Res_101 proved the best predictors on ANP40. It is worth noting that seven predictors out
of eight achieved an average accuracy in the percentage range [79.7, 78.7]; only the predictor based on
AlexNet was slightly less effective on ANP40.

Table 5. Experimental results: Session #1, layer replacement.

Architecture Tw Mv_a Mv_b ANP40

AlexNet 82.5 (0.6) 66.2 (0.5) 65.4 (0.7) 76.3 (0.3)

Vgg_16 86.6 (0.4) 68.9 (1.0) 70.7 (1.0) 79.0 (0.3)

Vgg_19 86.4 (0.5) 69.2 (0.7) 71.0 (0.8) 78.7 (0.3)

GoogLeNet 84.2 (0.5) 66.0 (0.6) 68.2 (0.5) 79.2 (0.3)

Inc_v3 86.5 (0.7) 68.1 (0.7) 70.5 (0.9) 79.9 (0.2)

Res_50 85.8 (0.6) 68.9 (0.9) 68.8 (1.5) 79.2 (0.2)

Res_101 88.2 (0.4) 70.8 (0.6) 69.2 (0.8) 79.7 (0.2)

DenseNet 89.4 (0.5) 71.3 (0.8) 70.6 (0.6) 79.3 (0.3)

The results reported in Table 5 are consistent with those presented in the literature. Layer replacement
was adopted in several frameworks for image polarity detection; most of the related works used the
Tw dataset as a benchmark; hence, a direct comparison was feasible. In [44], an accuracy of 82% was
achieved with AlexNet, while in [13], Inc_v3 and Vgg_19 attained percentage accuracy scores of 86%
and 84%, respectively. These results indirectly confirm the reliability of the experimental setup adopted
in this research.

The experiments involving the layer replacement configurations could point out which
architecture proved most consistent on the various dataset and the different training/set pairs. Thus,
for each benchmark and for each training/set pair, the eight architectures were ranked according to the
classification accuracy scored by the associated predictors. In this case, the accuracy score associated
with a predictor was the best accuracy over the five runs completed for a given training/set pair.
In each rank, one point was assigned to the best predictor, two points to the second best predictor,
and so on, until the worst predictor, which took eight points. Figure 6 presents, for each architecture,
the total points scored over the 20 ranks (5 training/test pairs× 4 benchmarks). In principle, a predictor
could not mark less than 20 points, which would mean scoring first position (i.e., best predictor) for
every rank. The graph shows that the predictors based on Vgg_16 and Vgg_19 resulted in being the
most consistent. This outcome indeed reflected the results reported in Table 5, which showed that
Vgg_16 and Vgg_19 always performed effectively on the different benchmarks. One should consider,
however, that a classifier obtaining a good average accuracy might get a high score if the distribution
of its accuracy is non-unimodal or its variance is high.

Table 6 reports on the performance obtained when applying the layer addition configuration
on Tw, Mv_a, Mv_b, and ANP40. The Table follows the same format of Table 5. In each experiment,
the training set was split into an actual training set and a validation set to support the model-selection
procedure and set the hyperparameter Nh in the eventual predictor. Experimental outcomes pointed
out that Res_101 yielded the best average accuracy on Mv_a and Mv_b, whereas DenseNet achieved the
best performance for Tw and ANP40. Overall, the gap with respect to the runner-up was always small,
especially in the case of the experiments on Mv_b. On ANP40, seven predictors out of eight again
achieved almost the same average accuracy. This confirmed that the availability of a large dataset
somewhat counterbalanced the possible differences between the various comparisons. Noticeably,
the predictors attained better average accuracy with the layer addition configuration than with the
layer replacement setup. That improvement came at the cost of a more complex training procedure,
as the layer addition configuration also required completing a model selection for setting Nh.
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Layer Replacement
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Figure 6. Consistency evaluation of the eight architectures under the layer replacement configuration;
the plot gives the architectures on the x-axis and the corresponding total amount of collected points on
the y-axis.

Table 6. Experimental results: Session #1, layer addition.

Architecture Tw Mv_a Mv_b ANP40

AlexNet 84.9 (0.4) 68.2 (0.4) 69.9 (0.7) 78.6 (0.2)

Vgg_16 88.0 (0.3) 70.9 (0.6) 72.3 (0.8) 80.0 (0.3)

Vgg_19 87.6 (0.4) 71.0 (0.7) 73.4 (0.6) 80.3 (0.2)

GoogLeNet 86.3 (0.3) 70.0 (0.4) 71.3 (0.5) 80.0 (0.3)

Inc_v3 85.3 (0.4) 66.4 (0.4) 68.5 (0.7) 80.3 (0.2)

Res_50 87.0 (0.3) 69.4 (0.6) 72.1 (0.8) 80.1 (0.2)

Res_101 89.1 (0.3) 72.1 (0.7) 73.9 (0.6) 80.2 (0.2)

DenseNet 89.3 (0.6) 70.9 (0.4) 71.2 (0.6) 80.6 (0.2)

The layer replacement configuration did not allow a direct comparison with the frameworks
published in the literature. The related frameworks typically adopted ad-hoc solutions for the design of
the classification layer, whereas the present analysis required a standard solution for fair comparisons.
Nevertheless, the literature seems to confirm that the best performances were obtained when using
either VggNets or ResNets as feature extractors. Figure 7 provides the outcomes of the consistency
assessment for the layer replacement configuration. The plot again gives, for each architecture, the
total points marked over the 20 ranks (5 training/test pairs × 4 benchmarks). In this case, too, Vgg_19
proved to be the most consistent architecture, whereas Vgg_16 collected as much points as Res_101.
These results are not in contrast to the results of Table 6; the practical hint is that classifiers based on
Vgg_19 most likely lead to reliable predictors. Conversely, the chances reach a bad local minimum
increase when Res_101 and DenseNet are involved in the training process.

Table 7 reports on the performance obtained with the classification configuration on Tw, Mv_a,
and Mv_b. The table follows the same format of Table 5. In this case, ANP40 was not included in the
experiments, as (6) suggested that such a configuration should be avoided for computational reasons
when large training sets are involved. The classification configuration required a model-selection
procedure, as was the case for the layer addition configuration. Therefore, in each experiment,
the training set was split into a training and a validation set to support the model-selection procedure
to set up the hyperparameters C and σ in the eventual predictors. Predictors based on the classification
configuration could benefit from a convex optimization problem in the training phase; hence,
the classification accuracy obtained with a given training/test pair could be estimated without resorting
to multiple runs of the experiment. The table gives the average classification accuracy values over the
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five training/test pairs, together with the corresponding standard uncertainty. Experimental outcomes
point out a few peculiarities of the classifier configuration, without fine-tuning. First, the predictor
based on Res_101 never scored the best average accuracy; as a matter of fact, each benchmark witnessed
a different winner. Secondly, the standard uncertainty associated with the average accuracy always
was quite large. For each benchmark and each architecture, the variance of the accuracy over the five
experiments always turned out to be quite wide; the composition of the training set played a major
role. In practice, this meant that by adopting the classification configuration, one increases the risk of
incurring a weak predictor, independently of the specific CNN architecture.

Layer Addition
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Figure 7. Consistency evaluation of the eight architectures under the layer addition configuration;
the plot gives the architectures on the x-axis and the corresponding total amount of collected points on
the y-axis.

Table 7. Experimental results: Session #1, classifier.

Architecture Tw Mv_a Mv_b

AlexNet 80.7(3.7) 63.5(3.7) 70.2(1.0)

Vgg_16 86.3(0.1) 70.7(1.0) 70.4(2.3)

Vgg_19 85.3(1.3) 70.4(1.2) 73.3(1.6)

GoogLeNet 79.1(5.3) 67.7(1.3) 69.5(1.7)

Inc_v3 85.1(2.1) 72.1(0.9) 75.2(1.7)

Res_50 84.5(4.6) 72.4(2.3) 72.9(2.4)

Res_101 80.0(5.7) 70.5(1.6) 74.3(1.8)

DenseNet 85.0(4.8) 72.5(1.0) 70.2 (1.8)

Figure 8 gives the consistency assessments for the classification configuration and follows the same
format adopted in the previous graphs. The plot gives, for each architecture, the overall points scored
in the 15 ranks (5 training/test pairs × 3 benchmarks). As expected, results differed significantly from
those presented above: Res_50 and Inc_v3 proved to be the most consistent architectures, while Vgg_16
and Vgg_19 did not perform satisfactorily.

Interestingly, the Inc_v3 architecture did not attain good results when involved in the
configurations requiring fine-tuning. Table 7 and Figure 8, though, suggest that Inc_v3 anyway
represents a good starting point for image polarity detection. Making fine-tuning effective would
require a more fine-grained selection of the optimizer hyper-parameters, but this would be paid at the



Electronics 2019, 8, 783 19 of 28

cost of higher computational loads. As a result, the Inc_v3 architecture may not be compliant with the
premises of this analysis.

Classification Configuration

AlexNet Vgg_16 Vgg_19 GoogLeNet Inc_v3 Res_50 Res_101 DenseNet
0

10

20

30

40

50

60

70

80

90

100

Figure 8. Consistency evaluation of the eight architectures under the classifier configuration; the plot
gives the architectures on the x-axis and the corresponding total amount of collected points on the y-axis.

6.4. Experimental Session #2

The dataset PT poses major challenges to polarity predictors, since a naive classifier that always
predicts “positive” would achieve a 78% accuracy on this dataset. On the other hand, the literature
proved that it is very difficult to attain a predictor that can discriminate effectively both classes in
this benchmark.

The experimental session showed that neither the layer replacement configuration, nor the
classification one could yield acceptable result on PT; the classifiers always featured accuracy values
lower than 50% for at least one of the two classes. Hence, this analysis will only consider the outcomes
of the experiments with the layer addition configuration. The performances of the related eight
predictors were evaluated by adopting a five-fold strategy. Accordingly, the classification accuracy of
a predictor was detected in five different experiments. In each experiment, the original (imbalanced)
training set was processed to obtain a more balanced set. For this purpose, oversampling [109] was
applied to the negative (minority) class.

For each predictor, five separate runs of each five-fold experiment were carried out; this routine
was repeated over the four admissible values of Nh. This procedure led to a total of 100 estimates of
the test classification accuracy for each predictor. Table 8 reports on the related outcomes and gives,
for each predictor (first column), two quantities: the number of successful trials, i.e., the trials that led
to a classification accuracy greater than 50% on both classes; the average accuracy over the number
of successful trials. The empirical results suggest two remarks: Inc_v3 and Res_50 only achieved
an acceptable share of successful trials. Secondly, Vgg_16, Vgg_19, and Res_101 outperformed the other
comparisons in terms of average accuracy, in those few cases where successful trials were attained.
In summary, the latter architectures were confirmed to be effective at polarity detection, but at the
same time proved to be more prone to the problem of local minima.

The number of unsuccessful trials was in general quite high because the proposed dataset was
very small and noisy. The purpose of this experiment was to evaluate the ability of the different
configurations to learn complex rules with small training sets. Unsurprisingly, layer addition was
the only configuration that obtained reasonable performance, possibly because it could train two
layers from scratch. Layer replacement possibly failed because training just one layer from scratch
would not render complex relationships adequately. The classification configurations relied on SVM,
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which embedded an inference function and the notion of the similarity between patterns. This might
be a disadvantage when the number of training patterns is very small. In the case of layer addition,
one should also take into account that the learning process strongly depends on the initial setup.
In summary, Table 8 shows that the probability of reaching a good local minimum over 100 trails
significantly varies with the CNN.

Table 8. Experimental results: Session #2, layer addition.

Architecture Successful Trials Accuracy

AlexNet 4 66.5

Vgg_16 10 72.4

Vgg_19 5 72.6

GoogLeNet 8 67.0

Inc_v3 50 62.5

Res_50 45 69.7

Res_101 20 72.9

DenseNet 30 68.1

6.5. Computational Complexity: An Insight on the Role of CNNs

The experimental campaign showed that, overall, Vgg_16, Vgg_19, Res_101, and DenseNet proved
to be the most reliable architectures in terms of generalization abilities. Computational aspects may be
a discriminant factor, as the specific CNN determines the values assumed by O f f and Obw in (3) and
(6) when targeting an implementation on GPUs.

The computational cost of the forward phase O f f is taken into consideration first. In terms of
storage, i.e., number of parameters, the requirements by the pair of VggNet approaches were almost
three- or four-times bigger than Res_101 and six- or eight-times bigger than DenseNet. Furthermore,
the forward phase of VggNets involved two- or three-times the number of floating point operations as
compared with Res_101. Notably, DenseNet used only 4 Gflops operations in the forward phase and
would therefore appear as the best choice. On the other hand, in VggNets, most of the parameters and
operations were introduced in the topmost fully-connected layers. As a result, these layers may take
advantage of parallel computing, which can boost the overall efficiency when a sufficient amount of
memory and computing units is available [110,111]. By contrast, both Res_101 and DenseNet exhibited
a larger number of layers that needed to be computed sequentially; hence, the impact of parallel
computing in improving their execution time is expected to be low. In conclusion, predictors based on
Vgg_16 and Vgg_19 may represent the best option when the forward phase is allocated on a GPU with
a considerable amount of memory. On the other hand, DenseNet seems preferable when one has to
cope with memory constraints. Res_101 represents an intermediate solution.

Evaluating the cost of the back propagation phase Obw calls for a more detailed analysis.
The classifier configuration does not require this phase; at the same time, the experimental
campaign proved that better results can be obtained when fine-tuning is applied. For a qualitative
analysis, the expression Obw ' 2O f f provided a valid approximation. The actual proportion,
though, can substantially differ when considering that deep CNNs are complex models involving
different types of blocks. Approximations of computational costs often disregard the contributions
of components such as ReLU, pooling, and batch normalization (BN) layers [108]. However,
such a simplification gets less reliable in the presence of more and more complex, non-convolutional,
or fully-connected layers. This issue shows up in the analysis proposed in [108], which is summarizes
in Table 9. The table compares the three architectures involved in the present evaluation, VggNet,
ResNet, and DenseNet. For each architecture, the first row gives the percentages of time spent in
convolutions and fully-connected layers; the second row gives the computing time percentage of
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time spent in the remaining layers. Even if the experiments in [108] did not address exactly Res_101
and Dense_201, one can reasonably assume that the same trend applies to those networks, as well.
In conclusion, the approximation Obw ' 2O f f becomes less reliable as long as newer models are
proposed. For instance, batch normalization units play a crucial role in the training phase of the ResNet
and DenseNet architectures (as per Table 9), but these logical blocks are not included in the eventual
predictors. This in turn means that O f f is definitely lighter than Obw.

Table 9. Computational time trade off between convolutional and fully-connected layer versus other
layer topologies [108].

Architectures Vgg_19 Res_50 DenseNet_121

CONV/FC 95.1% 61.9% 41.5%
non-CONV/non-FC 4.9% 38.1% 58.5%

The memory consumption during the training phase is an additional significant factor. Storage
is nonlinear with respect to the number of parameters and is strongly influenced by the number of
connections within the network. It is well known that deeper and thinner networks are less efficient
in terms of parallelism and memory consumption as compared with structures with less, but wider,
layers. An intuitive explanation is that, during back propagation, the output of each layer needs
to be stored; hence, the memory requirement grows as the number of layers grow. Most existing
implementations of DenseNet require indeed an amount of memory that grows quadratically with
the number of layers, even if DenseNet involves a small number of parameters as compared with the
other comparisons. Nonetheless, ad-hoc implementations of DenseNet exist that make the growth
linear [112].

Overall, the plain implementation of the VggNets might result in being simpler than the plain
implementation of Res_101 and DenseNet. On the other hand, an optimized implementation of DenseNet
and Res_101 could attain valuable improvement in terms of performances. Anyway, one should always
take into account that layers must be executed in sequential order; hence, the depth of the network
impacts latency.

7. Concluding Remarks and Discussion

This paper evaluated the role played by CNNs and transfer learning in image polarity detection.
The experimental protocol considered three configurations of the predictors, which covered the most
significant approaches proposed in the literature. The predictors were analyzed and compared in terms
of both generalization performance and computational complexity. The former issue is critical because
image-polarity detection applications usually involve limited datasets; at the same time, computational
costs may represent a key factor when the implementation of the prediction system is targeted to
an electronic device. The experimental outcomes of the protocol yielded useful insights on the network
architectures, the predictor’s configurations, and the underlying fine-tuning strategies.

Layer addition proved most effective in terms of classification accuracy. That approach, however,
also turned out to be the most computationally demanding, as the training process involved both the
back propagation for weight adjustment and the model selection procedure to support the setup of
Nh. Besides, the regularization parameter actually played the role of a hyperparameter. In this work,
this quantity was always set to 0.5, mostly for exploiting the regularization properties of early stopping.
On the other hand, by a proper model selection, one could boost the generalization performance, at the
cost of an increased computational load.

The classifier configuration represents the most convenient option from the computational point
of view. In contrast, this approach proved to be possibly too sensitive to the composition of the training
set, which might make this approach impractical in real-word scenarios.

Conversely, the layer replacement configuration achieved a satisfactory balance between accuracy,
convergence in the training process, and computational cost. It is worth noting that the training
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procedure of both the layer replacement and the layer addition solutions can be simplified by inhibiting
fine-tuning in the lowest layers of the CNN, and only involving the upper layers of either architecture
in the training process. The experimental protocol did not explore this setup because the networks
differed significantly in the number of layers (from 8 to 101), so a fair comparison would be difficult.

The results of the experimental section were consistent with the trend presented in the literature:
the frameworks that did not augment the original object detection architecture by fine-tuning were
generally lower performing. The layer replacement option can be considered a simplified version of
models that employ sophisticated configurations to process the features extracted by retrained CNNs
for object detection.

The architectures Vgg_16, Vgg_19, Res_101, and DenseNet proved to be the most robust options
in terms of generalization abilities; hence, the computational impact may become the discriminative
criteria. The Vgg_16 and Vgg_19 architectures are “shallow and wide”, whereas Res_101 and DenseNet
can be regarded as “deep and thin” structures. Thus, the VggNet architectures can most benefit from
the advantages of parallel computing; conversely, Res_101 and DenseNet feature complex structures
that require careful implementations.

Image polarity detection is a young research field; hence, many important issues still remain open.
Deep learning is by all means contributing to making polarity detectors very reliable. A very interesting
research direction is the development of models capable of locating the most important regions in an
image, to exploit saliency to improve sentiment analysis [48,54–58]. Up to now, multi-task learning
has received little attention, although several applications exist that require solving multiple visual
tasks. Autonomous interactive robots, for instance, might need to combine object classification and
image polarity detection. Finally, more attention should be dedicated in the future to the deployment
of image polarity detection models that can be hosted on embedded systems. In this regard, it could
be interesting to take advantage of multi-objective optimization to design cost-sensitive loss functions.
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