27 research outputs found

    THE CHOICE OF TECHNOLOGICAL SOLUTIONS FOR SOFTWARE DEVELOPMENT FOR DISTRIBUTED INFORMATION SYSTEMS

    Get PDF
    The choice of tools and programming technologies for creating information systems is a current trend. Each projected system needs you to define a set of criteria for the development environment used by li- braries and technologies. This article considers a choice of technological solutions using an example of the developed digital computing web platform of the Russian Academy of Education to provide information support to the activities of psychologists doing research, including population and longitudinal studies. The peculiarity of the system are: magnitude and significant development time requiring the implementa- tion and assurance of the guaranteed computing reliability of a wide range of digital tools used in psycho- logical research; maintenance of functioning in various conditions, in particular when carrying out mass research in schools with different characteristics of computing resources and communication channels; the possibility of scaling services; security and data privacy, as well as the use of technologies and pro- gramming tools that would ensure the compatibility and conversion of data with other means of process- ing psychological research. For the developed system, criteria were introduced for evaluating software technologies that take into account the features of the functioning and life cycle of a product, a specific example shows the selection of appropriate technological solutions. An important component in the de- velopment is the training of the development team for the technologies used. A system that implements the training program for selected technologies is given. The developed training system is used to reduce the time of inclusion in the development of new software developers, as the tasks are expanded

    Agents and Robots for Reliable Engineered Autonomy:A Perspective from the Organisers of AREA 2020

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-05-13, pub-electronic 2021-05-14Publication status: PublishedFunder: Engineering and Physical Sciences Research Council; Grant(s): EP/R026092, EP/R026173, EP/R026084, 694277Multi-agent systems, robotics and software engineering are large and active research areas with many applications in academia and industry. The First Workshop on Agents and Robots for reliable Engineered Autonomy (AREA), organised the first time in 2020, aims at encouraging cross-disciplinary collaborations and exchange of ideas among researchers working in these research areas. This paper presents a perspective of the organisers that aims at highlighting the latest research trends, future directions, challenges, and open problems. It also includes feedback from the discussions held during the AREA workshop. The goal of this perspective is to provide a high-level view of current research trends for researchers that aim at working in the intersection of these research areas

    Agents and Robots for Reliable Engineered Autonomy

    Get PDF
    This book contains the contributions of the Special Issue entitled "Agents and Robots for Reliable Engineered Autonomy". The Special Issue was based on the successful first edition of the "Workshop on Agents and Robots for reliable Engineered Autonomy" (AREA 2020), co-located with the 24th European Conference on Artificial Intelligence (ECAI 2020). The aim was to bring together researchers from autonomous agents, as well as software engineering and robotics communities, as combining knowledge from these three research areas may lead to innovative approaches that solve complex problems related to the verification and validation of autonomous robotic systems

    Harnessing Knowledge, Innovation and Competence in Engineering of Mission Critical Systems

    Get PDF
    This book explores the critical role of acquisition, application, enhancement, and management of knowledge and human competence in the context of the largely digital and data/information dominated modern world. Whilst humanity owes much of its achievements to the distinct capability to learn from observation, analyse data, gain insights, and perceive beyond original realities, the systematic treatment of knowledge as a core capability and driver of success has largely remained the forte of pedagogy. In an increasingly intertwined global community faced with existential challenges and risks, the significance of knowledge creation, innovation, and systematic understanding and treatment of human competence is likely to be humanity's greatest weapon against adversity. This book was conceived to inform the decision makers and practitioners about the best practice pertinent to many disciplines and sectors. The chapters fall into three broad categories to guide the readers to gain insight from generic fundamentals to discipline-specific case studies and of the latest practice in knowledge and competence management

    Evolution, testing and configuration of variability intensive systems

    Get PDF
    Tesis descargada desde ResearchGateOne of the key characteristics of software is its ability to be adapted and configured to different scenarios. Recently, software variability has been studied as a first-class concept in different domains ranging from software product lines to pervasive systems. Variability is the ability of a software product to vary depending on different circumstances. Variability intensive systems are those software products where variability management is a core engineering activity. The varying parts of those systems are commonly modeled by us- ing different variability model flavors, being feature modeling one of the most common ones. Feature models were first introduced by Kang et al. back in 1990 and are a compact representation of a set of configurations in a variability intensive system. The large number of configurations that a feature model can encode makes the manual analysis of feature models an error prone and costly task. Then, computer-aided mechanisms appeared as a solution to extract useful information from feature models. This process of extracting information from feature models is known as ¿Automated Analysis of Feature models¿ that has been one of the main areas of research in the last years where more than thirty analysis operations have been proposed.Premio Extraordinario de Doctorado U

    Harnessing Knowledge, Innovation and Competence in Engineering of Mission Critical Systems

    Get PDF
    This book explores the critical role of acquisition, application, enhancement, and management of knowledge and human competence in the context of the largely digital and data/information dominated modern world. Whilst humanity owes much of its achievements to the distinct capability to learn from observation, analyse data, gain insights, and perceive beyond original realities, the systematic treatment of knowledge as a core capability and driver of success has largely remained the forte of pedagogy. In an increasingly intertwined global community faced with existential challenges and risks, the significance of knowledge creation, innovation, and systematic understanding and treatment of human competence is likely to be humanity's greatest weapon against adversity. This book was conceived to inform the decision makers and practitioners about the best practice pertinent to many disciplines and sectors. The chapters fall into three broad categories to guide the readers to gain insight from generic fundamentals to discipline-specific case studies and of the latest practice in knowledge and competence management

    A Formal Methodology for Engineering Heterogeneous Railway Signalling Systems

    Get PDF
    Ph. D. Thesis.Over the last few decades, the safety assurance of cyber-physical systems has become one of the biggest challenges in the field of model-based system engineering. The challenge arises from an immense complexity of cyber-physical systems which have deeply intertwined physical, software and network system aspects. With significant improvements in a wireless communication and microprocessor technologies, the railway domain has become one of the frontiers for deploying cyber-physical signalling systems. However, because of the safety-critical nature of railway signalling systems, the highest level of safety assurance is essential. This study attempts to address the challenge of guaranteeing the safety of cyber-physical railway signalling systems by proposing a development methodology based on formal methods. In particular, this study is concerned with the safety assurance of heterogeneous cyber-physical railway signalling systems, which have emerged by gradually replacing outdated signalling systems and integrating mainline with urban signalling systems. The main contribution of this work is a formal development methodology of railway signalling systems. The methodology is based on the Event-B modelling language, which provides an expressive modelling language, a stepwise model development and a proof-based model verification. At the core of the methodology is a generic communication-based railway signalling Event-B model, which can be further refined to capture specific heterogeneous or homogeneous railway signalling configurations. In order to make signalling modelling more systematic we developed communication and hybrid railway signalling modelling patterns. The proposed methodology and modelling patterns have been evaluated on two case studies. The evaluation shows that the methodology does provide a system-level railway signalling modelling and verification method. This is crucial for verifying the safety of cyber-physical systems, as safety is dependent on interactions between different subsystems. However, the study has also shown that automatic formal verification of hybrid systems is still a major challenge and must be addressed in the future work in order to make this methodology more practical.(EPSRC and Siemens Rail Automation
    corecore