6 research outputs found

    Folding Transformation Rules for Constraint Logic Programs

    Get PDF
    We consider the folding transformation rule for constraint logic programs. We propose an algorithm for applying the folding rule in the case where the constraints are linear equations and inequations over the rational or the real numbers. Basically, our algorithm consists in reducing a rule application to the solution of one or more systems of linear equations and inequations. We also introduce two variants of the folding transformation rule. The first variant combines the folding rule with the clause splitting rule, and the second variant eliminates the existential variables of a clause, that is, those variables which occur in the body of the clause and not in its head. Finally, we present the algorithms for applying these variants of the folding rule

    Combining Spatial and Temporal Logics: Expressiveness vs. Complexity

    Full text link
    In this paper, we construct and investigate a hierarchy of spatio-temporal formalisms that result from various combinations of propositional spatial and temporal logics such as the propositional temporal logic PTL, the spatial logics RCC-8, BRCC-8, S4u and their fragments. The obtained results give a clear picture of the trade-off between expressiveness and computational realisability within the hierarchy. We demonstrate how different combining principles as well as spatial and temporal primitives can produce NP-, PSPACE-, EXPSPACE-, 2EXPSPACE-complete, and even undecidable spatio-temporal logics out of components that are at most NP- or PSPACE-complete

    Sixth Biennial Report : August 2001 - May 2003

    No full text

    Interactions between Knowledge and Time in a First-Order Logic for Multi-Agent Systems: Completeness Results

    No full text
    We investigate a class of first-order temporal-epistemic logics for reasoning about multiagent systems. We encode typical properties of systems including perfect recall, synchronicity, no learning, and having a unique initial state in terms of variants of quantified interpreted systems, a first-order extension of interpreted systems. We identify several monodic fragments of first-order temporal-epistemic logic and show their completeness with respect to their corresponding classes of quantified interpreted systems. 1

    Hierarchical contextual reasoning

    Get PDF
    Computer supported development of proofs requires user interaction even for theorems that are simple by human standards. In this thesis we define a communication infrastructure as a mediator between the user and the automatic reasoning procedures. It is based on a new uniform meta proof theory for contextual reasoning and encompasses most aspects of communication from the presentation of the proof state, via the supply of relevant contextual information about possible proof continuations, to the support for a hierarchical proof development. The proof theory is uniform for a variety of logics. It exploits proof theoretic annotations in formulas for a contextual reasoning style that is as far as possible intuitive for the user while at the same time still adequate for automatic reasoning procedures. Furthermore, concepts are defined to accomodate both the use and the explicit representation of hierarchies that are inherent in problem solving in general.Das computergestuetzte Beweisen von Theoremen erfordert den Eingriff des menschlichen Benutzers selbst fuer nach menschlichen Maßstaeben einfache Theoreme. Diese Arbeit definiert eine Kommunikationsplattform, die eine synergetische Kooperationsform des Benutzers mit dem Beweisverfahren ermöglicht
    corecore