403 research outputs found

    DCU@TRECMed 2012: Using ad-hoc baselines for domain-specific retrieval

    Get PDF
    This paper describes the first participation of DCU in the TREC Medical Records Track (TRECMed). We performed some initial experiments on the 2011 TRECMed data based on the BM25 retrieval model. Surprisingly, we found that the standard BM25 model with default parameters, performs comparable to the best automatic runs submitted to TRECMed 2011 and would have resulted in rank four out of 29 participating groups. We expected that some form of domain adaptation would increase performance. However, results on the 2011 data proved otherwise: concept-based query expansion decreased performance, and filtering and reranking by term proximity also decreased performance slightly. We submitted four runs based on the BM25 retrieval model to TRECMed 2012 using standard BM25, standard query expansion, result filtering, and concept-based query expansion. Official results for 2012 confirm that domain-specific knowledge does not increase performance compared to the BM25 baseline as applied by us

    Combining information seeking services into a meta supply chain of facts

    Get PDF
    The World Wide Web has become a vital supplier of information that allows organizations to carry on such tasks as business intelligence, security monitoring, and risk assessments. Having a quick and reliable supply of correct facts from perspective is often mission critical. By following design science guidelines, we have explored ways to recombine facts from multiple sources, each with possibly different levels of responsiveness and accuracy, into one robust supply chain. Inspired by prior research on keyword-based meta-search engines (e.g., metacrawler.com), we have adapted the existing question answering algorithms for the task of analysis and triangulation of facts. We present a first prototype for a meta approach to fact seeking. Our meta engine sends a user's question to several fact seeking services that are publicly available on the Web (e.g., ask.com, brainboost.com, answerbus.com, NSIR, etc.) and analyzes the returned results jointly to identify and present to the user those that are most likely to be factually correct. The results of our evaluation on the standard test sets widely used in prior research support the evidence for the following: 1) the value-added of the meta approach: its performance surpasses the performance of each supplier, 2) the importance of using fact seeking services as suppliers to the meta engine rather than keyword driven search portals, and 3) the resilience of the meta approach: eliminating a single service does not noticeably impact the overall performance. We show that these properties make the meta-approach a more reliable supplier of facts than any of the currently available stand-alone services

    The Archive Query Log: Mining Millions of Search Result Pages of Hundreds of Search Engines from 25 Years of Web Archives

    Full text link
    The Archive Query Log (AQL) is a previously unused, comprehensive query log collected at the Internet Archive over the last 25 years. Its first version includes 356 million queries, 166 million search result pages, and 1.7 billion search results across 550 search providers. Although many query logs have been studied in the literature, the search providers that own them generally do not publish their logs to protect user privacy and vital business data. Of the few query logs publicly available, none combines size, scope, and diversity. The AQL is the first to do so, enabling research on new retrieval models and (diachronic) search engine analyses. Provided in a privacy-preserving manner, it promotes open research as well as more transparency and accountability in the search industry.Comment: SIGIR 2023 resource paper, 13 page

    What Makes a Top-Performing Precision Medicine Search Engine? Tracing Main System Features in a Systematic Way

    Full text link
    From 2017 to 2019 the Text REtrieval Conference (TREC) held a challenge task on precision medicine using documents from medical publications (PubMed) and clinical trials. Despite lots of performance measurements carried out in these evaluation campaigns, the scientific community is still pretty unsure about the impact individual system features and their weights have on the overall system performance. In order to overcome this explanatory gap, we first determined optimal feature configurations using the Sequential Model-based Algorithm Configuration (SMAC) program and applied its output to a BM25-based search engine. We then ran an ablation study to systematically assess the individual contributions of relevant system features: BM25 parameters, query type and weighting schema, query expansion, stop word filtering, and keyword boosting. For evaluation, we employed the gold standard data from the three TREC-PM installments to evaluate the effectiveness of different features using the commonly shared infNDCG metric.Comment: Accepted for SIGIR2020, 10 page

    DCU@FIRE2010: term conflation, blind relevance feedback, and cross-language IR with manual and automatic query translation

    Get PDF
    For the first participation of Dublin City University (DCU) in the FIRE 2010 evaluation campaign, information retrieval (IR) experiments on English, Bengali, Hindi, and Marathi documents were performed to investigate term conation (different stemming approaches and indexing word prefixes), blind relevance feedback, and manual and automatic query translation. The experiments are based on BM25 and on language modeling (LM) for IR. Results show that term conation always improves mean average precision (MAP) compared to indexing unprocessed word forms, but different approaches seem to work best for different languages. For example, in monolingual Marathi experiments indexing 5-prefixes outperforms our corpus-based stemmer; in Hindi, the corpus-based stemmer achieves a higher MAP. For Bengali, the LM retrieval model achieves a much higher MAP than BM25 (0.4944 vs. 0.4526). In all experiments using BM25, blind relevance feedback yields considerably higher MAP in comparison to experiments without it. Bilingual IR experiments (English!Bengali and English!Hindi) are based on query translations obtained from native speakers and the Google translate web service. For the automatically translated queries, MAP is slightly (but not significantly) lower compared to experiments with manual query translations. The bilingual English!Bengali (English!Hindi) experiments achieve 81.7%-83.3% (78.0%-80.6%) of the best corresponding monolingual experiments

    Streamlined Data Fusion: Unleashing the Power of Linear Combination with Minimal Relevance Judgments

    Full text link
    Linear combination is a potent data fusion method in information retrieval tasks, thanks to its ability to adjust weights for diverse scenarios. However, achieving optimal weight training has traditionally required manual relevance judgments on a large percentage of documents, a labor-intensive and expensive process. In this study, we investigate the feasibility of obtaining near-optimal weights using a mere 20\%-50\% of relevant documents. Through experiments on four TREC datasets, we find that weights trained with multiple linear regression using this reduced set closely rival those obtained with TREC's official "qrels." Our findings unlock the potential for more efficient and affordable data fusion, empowering researchers and practitioners to reap its full benefits with significantly less effort.Comment: 12 pages, 8 figure

    Temporal Information Models for Real-Time Microblog Search

    Get PDF
    Real-time search in Twitter and other social media services is often biased towards the most recent results due to the “in the moment” nature of topic trends and their ephemeral relevance to users and media in general. However, “in the moment”, it is often difficult to look at all emerging topics and single-out the important ones from the rest of the social media chatter. This thesis proposes to leverage on external sources to estimate the duration and burstiness of live Twitter topics. It extends preliminary research where itwas shown that temporal re-ranking using external sources could indeed improve the accuracy of results. To further explore this topic we pursued three significant novel approaches: (1) multi-source information analysis that explores behavioral dynamics of users, such as Wikipedia live edits and page view streams, to detect topic trends and estimate the topic interest over time; (2) efficient methods for federated query expansion towards the improvement of query meaning; and (3) exploiting multiple sources towards the detection of temporal query intent. It differs from past approaches in the sense that it will work over real-time queries, leveraging on live user-generated content. This approach contrasts with previous methods that require an offline preprocessing step
    corecore