27 research outputs found

    Machine learning for managing structured and semi-structured data

    Get PDF
    As the digitalization of private, commercial, and public sectors advances rapidly, an increasing amount of data is becoming available. In order to gain insights or knowledge from these enormous amounts of raw data, a deep analysis is essential. The immense volume requires highly automated processes with minimal manual interaction. In recent years, machine learning methods have taken on a central role in this task. In addition to the individual data points, their interrelationships often play a decisive role, e.g. whether two patients are related to each other or whether they are treated by the same physician. Hence, relational learning is an important branch of research, which studies how to harness this explicitly available structural information between different data points. Recently, graph neural networks have gained importance. These can be considered an extension of convolutional neural networks from regular grids to general (irregular) graphs. Knowledge graphs play an essential role in representing facts about entities in a machine-readable way. While great efforts are made to store as many facts as possible in these graphs, they often remain incomplete, i.e., true facts are missing. Manual verification and expansion of the graphs is becoming increasingly difficult due to the large volume of data and must therefore be assisted or substituted by automated procedures which predict missing facts. The field of knowledge graph completion can be roughly divided into two categories: Link Prediction and Entity Alignment. In Link Prediction, machine learning models are trained to predict unknown facts between entities based on the known facts. Entity Alignment aims at identifying shared entities between graphs in order to link several such knowledge graphs based on some provided seed alignment pairs. In this thesis, we present important advances in the field of knowledge graph completion. For Entity Alignment, we show how to reduce the number of required seed alignments while maintaining performance by novel active learning techniques. We also discuss the power of textual features and show that graph-neural-network-based methods have difficulties with noisy alignment data. For Link Prediction, we demonstrate how to improve the prediction for unknown entities at training time by exploiting additional metadata on individual statements, often available in modern graphs. Supported with results from a large-scale experimental study, we present an analysis of the effect of individual components of machine learning models, e.g., the interaction function or loss criterion, on the task of link prediction. We also introduce a software library that simplifies the implementation and study of such components and makes them accessible to a wide research community, ranging from relational learning researchers to applied fields, such as life sciences. Finally, we propose a novel metric for evaluating ranking results, as used for both completion tasks. It allows for easier interpretation and comparison, especially in cases with different numbers of ranking candidates, as encountered in the de-facto standard evaluation protocols for both tasks.Mit der rasant fortschreitenden Digitalisierung des privaten, kommerziellen und öffentlichen Sektors werden immer größere Datenmengen verfügbar. Um aus diesen enormen Mengen an Rohdaten Erkenntnisse oder Wissen zu gewinnen, ist eine tiefgehende Analyse unerlässlich. Das immense Volumen erfordert hochautomatisierte Prozesse mit minimaler manueller Interaktion. In den letzten Jahren haben Methoden des maschinellen Lernens eine zentrale Rolle bei dieser Aufgabe eingenommen. Neben den einzelnen Datenpunkten spielen oft auch deren Zusammenhänge eine entscheidende Rolle, z.B. ob zwei Patienten miteinander verwandt sind oder ob sie vom selben Arzt behandelt werden. Daher ist das relationale Lernen ein wichtiger Forschungszweig, der untersucht, wie diese explizit verfügbaren strukturellen Informationen zwischen verschiedenen Datenpunkten nutzbar gemacht werden können. In letzter Zeit haben Graph Neural Networks an Bedeutung gewonnen. Diese können als eine Erweiterung von CNNs von regelmäßigen Gittern auf allgemeine (unregelmäßige) Graphen betrachtet werden. Wissensgraphen spielen eine wesentliche Rolle bei der Darstellung von Fakten über Entitäten in maschinenlesbaren Form. Obwohl große Anstrengungen unternommen werden, so viele Fakten wie möglich in diesen Graphen zu speichern, bleiben sie oft unvollständig, d. h. es fehlen Fakten. Die manuelle Überprüfung und Erweiterung der Graphen wird aufgrund der großen Datenmengen immer schwieriger und muss daher durch automatisierte Verfahren unterstützt oder ersetzt werden, die fehlende Fakten vorhersagen. Das Gebiet der Wissensgraphenvervollständigung lässt sich grob in zwei Kategorien einteilen: Link Prediction und Entity Alignment. Bei der Link Prediction werden maschinelle Lernmodelle trainiert, um unbekannte Fakten zwischen Entitäten auf der Grundlage der bekannten Fakten vorherzusagen. Entity Alignment zielt darauf ab, gemeinsame Entitäten zwischen Graphen zu identifizieren, um mehrere solcher Wissensgraphen auf der Grundlage einiger vorgegebener Paare zu verknüpfen. In dieser Arbeit stellen wir wichtige Fortschritte auf dem Gebiet der Vervollständigung von Wissensgraphen vor. Für das Entity Alignment zeigen wir, wie die Anzahl der benötigten Paare reduziert werden kann, während die Leistung durch neuartige aktive Lerntechniken erhalten bleibt. Wir erörtern auch die Leistungsfähigkeit von Textmerkmalen und zeigen, dass auf Graph-Neural-Networks basierende Methoden Schwierigkeiten mit verrauschten Paar-Daten haben. Für die Link Prediction demonstrieren wir, wie die Vorhersage für unbekannte Entitäten zur Trainingszeit verbessert werden kann, indem zusätzliche Metadaten zu einzelnen Aussagen genutzt werden, die oft in modernen Graphen verfügbar sind. Gestützt auf Ergebnisse einer groß angelegten experimentellen Studie präsentieren wir eine Analyse der Auswirkungen einzelner Komponenten von Modellen des maschinellen Lernens, z. B. der Interaktionsfunktion oder des Verlustkriteriums, auf die Aufgabe der Link Prediction. Außerdem stellen wir eine Softwarebibliothek vor, die die Implementierung und Untersuchung solcher Komponenten vereinfacht und sie einer breiten Forschungsgemeinschaft zugänglich macht, die von Forschern im Bereich des relationalen Lernens bis hin zu angewandten Bereichen wie den Biowissenschaften reicht. Schließlich schlagen wir eine neuartige Metrik für die Bewertung von Ranking-Ergebnissen vor, wie sie für beide Aufgaben verwendet wird. Sie ermöglicht eine einfachere Interpretation und einen leichteren Vergleich, insbesondere in Fällen mit einer unterschiedlichen Anzahl von Kandidaten, wie sie in den de-facto Standardbewertungsprotokollen für beide Aufgaben vorkommen

    Machine learning for function synthesis

    Get PDF
    Function synthesis is the process of automatically constructing functions that satisfy a given specification. The space of functions as well as the format of the specifications vary greatly with each area of application. In this thesis, we consider synthesis in the context of satisfiability modulo theories. Within this domain, the goal is to synthesise mathematical expressions that adhere to abstract logical formulas. These types of synthesis problems find many applications in the field of computer-aided verification. One of the main challenges of function synthesis arises from the combinatorial explosion in the number of potential candidates within a certain size. The hypothesis of this thesis is that machine learning methods can be applied to make function synthesis more tractable. The first contribution of this thesis is a Monte-Carlo based search method for function synthesis. The search algorithm uses machine learned heuristics to guide the search. This is part of a reinforcement learning loop that trains the machine learning models with data generated from previous search attempts. To increase the set of benchmark problems to train and test synthesis methods, we also present a technique for generating synthesis problems from pre-existing satisfiability modulo theories problems. We implement the Monte-Carlo based synthesis algorithm and evaluate it on standard synthesis benchmarks as well as our newly generated benchmarks. An experimental evaluation shows that the learned heuristics greatly improve on the baseline without trained models. Furthermore, the machine learned guidance demonstrates comparable performance to CVC5 and, in some experiments, even surpasses it. Next, this thesis explores the application of machine learning to more restricted function synthesis domains. We hypothesise that narrowing the scope enables the use of machine learning techniques that are not possible in the general setting. We test this hypothesis by considering the problem of ranking function synthesis. Ranking functions are used in program analysis to prove termination of programs by mapping consecutive program states to decreasing elements of a well-founded set. The second contribution of this dissertation is a novel technique for synthesising ranking functions, using neural networks. The key insight is that instead of synthesising a mathematical expression that represents a ranking function, we can train a neural network to act as a ranking function. Hence, the synthesis procedure is replaced by neural network training. We introduce Neural Termination Analysis as a framework that leverages this. We train neural networks from sampled execution traces of the program we want to prove terminating. We enforce the synthesis specifications of ranking functions using the loss function and network design. After training, we use symbolic reasoning to formally verify that the resulting function is indeed a correct ranking function for the target program. We demonstrate that our method succeeds in synthesising ranking functions for programs that are beyond the reach of state-of-the-art tools. This includes programs with disjunctions and non-linear expressions in the loop guards

    Knowledge Augmented Machine Learning with Applications in Autonomous Driving: A Survey

    Get PDF
    The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving

    The exploration of unknown environments by affective agents

    Get PDF
    Tese de doutoramento em Engenharia Informática apresentada à Fac. de Ciências e Tecnologia de CoimbraIn this thesis, we study the problem of the exploration of unknown environments populated with entities by affective autonomous agents. The goal of these agents is twofold: (i) the acquisition of maps of the environment – metric maps – to be stored in memory, where the cells occupied by the entities that populate that environment are represented; (ii) the construction of models of those entities. We examine this problem through simulations because of the various advantages this approach offers, mainly efficiency, more control, and easy focus of the research. Furthermore, the simulation approach can be used because the simplifications that we made do not influence the value of the results. With this end, we have developed a framework to build multi-agent systems comprising affective agents and then, based on this platform, we developed an application for the exploration of unknown environments. This application is a simulated multi-agent environment in which, in addition to inanimate agents (objects), there are agents interacting in a simple way, whose goal is to explore the environment. By relying on an affective component plus ideas from the Belief-Desire-Intention model, our approach to building artificial agents is that of assigning agents mentalistic qualities such as feelings, basic desires, memory/beliefs, desires/goals, and intentions. The inclusion of affect in the agent architecture is supported by the psychological and neuroscience research over the past decades which suggests that emotions and, in general, motivations play a critical role in decision-making, action, and reasoning, by influencing a variety of cognitive processes (e.g., attention, perception, planning, etc.). Reflecting the primacy of those mentalistic qualities, the architecture of an agent includes the following modules: sensors, memory/beliefs (for entities - which comprises both analogical and propositional knowledge representations -, plans, and maps of the environment), desires/goals, intentions, basic desires (basic motivations/motives), feelings, and reasoning. The key components that determine the exhibition of the exploratory behaviour in an agent are the kind of basic desires, feelings, goals and plans with which the agent is equipped. Based on solid, psychological experimental evidence, an agent is equipped in advance with the basic desires for minimal hunger, maximal information gain (maximal reduction of curiosity), and maximal surprise, as well as with the correspondent feelings of hunger, curiosity and surprise. Each one of those basic desires drives the agent to reduce or to maximize a particular feeling. The desire for minimal hunger, maximal information gain and maximal surprise directs the agent, respectively, to reduce the feeling of hunger, to reduce the feeling of curiosity (by maximizing information gain) and to maximize the feeling of surprise. The desire to reduce curiosity does not mean that the agent dislike curiosity. Instead, it means the agent desires selecting actions whose execution maximizes the reduction of curiosity, i.e., actions that are preceded by maximal levels of curiosity and followed by minimal levels of curiosity, which corresponds to maximize information gain. The intensity of these feelings is, therefore, important to compute the degree of satisfaction of the basic desires. For the basic desires of minimal hunger and maximal surprise it is given by the expected intensities of the feelings of hunger and surprise, respectively, after performing an action, while for the desire of maximal information gain it is given by the intensity of the feeling of curiosity before performing the action (this is the expected information gain). The memory of an agent is setup with goals and decision-theoretic, hierarchical task-network plans for visiting entities that populate the environment, regions of the environment, and for going to places where the agent can recharge its battery. New goals are generated for each unvisited entity of the environment, for each place in the frontier of the explored area, and for recharging battery, by adapting past goals and plans to the current world state computed based on sensorial information and on the generation of expectations and assumptions for the gaps in the environment information provided by the sensors. These new goals and respective plans are then ranked according to their Expected Utility which reflects the positive and negative relevance for the basic desires of their accomplishment. The first one, i.e., the one with highest Expected Utility is taken as an intention. Besides evaluating the computational model of surprise, we experimentally investigated through simulations the following issues: the role of the exploration strategy (role of surprise, curiosity, and hunger), environment complexity, and amplitude of the visual field on the performance of the exploration of environments populated with entities; the role of the size or, to some extent, of the diversity of the memory of entities, and environment complexity on map-building by exploitation. The main results show that: the computational model of surprise is a satisfactory model of human surprise; the exploration of unknown environments populated with entities can be robustly and efficiently performed by affective agents (the strategies that rely on hunger combined or not with curiosity or surprise outperform significantly the others, being strong contenders to the classical strategy based on entropy and cost)

    Policy-based Contracting in Semantic Web Service Markets

    Get PDF
    corecore