1,270 research outputs found

    Transaction Propagation on Permissionless Blockchains: Incentive and Routing Mechanisms

    Full text link
    Existing permissionless blockchain solutions rely on peer-to-peer propagation mechanisms, where nodes in a network transfer transaction they received to their neighbors. Unfortunately, there is no explicit incentive for such transaction propagation. Therefore, existing propagation mechanisms will not be sustainable in a fully decentralized blockchain with rational nodes. In this work, we formally define the problem of incentivizing nodes for transaction propagation. We propose an incentive mechanism where each node involved in the propagation of a transaction receives a share of the transaction fee. We also show that our proposal is Sybil-proof. Furthermore, we combine the incentive mechanism with smart routing to reduce the communication and storage costs at the same time. The proposed routing mechanism reduces the redundant transaction propagation from the size of the network to a factor of average shortest path length. The routing mechanism is built upon a specific type of consensus protocol where the round leader who creates the transaction block is known in advance. Note that our routing mechanism is a generic one and can be adopted independently from the incentive mechanism.Comment: 2018 Crypto Valley Conference on Blockchain Technolog

    On Revenue Monotonicity in Combinatorial Auctions

    Full text link
    Along with substantial progress made recently in designing near-optimal mechanisms for multi-item auctions, interesting structural questions have also been raised and studied. In particular, is it true that the seller can always extract more revenue from a market where the buyers value the items higher than another market? In this paper we obtain such a revenue monotonicity result in a general setting. Precisely, consider the revenue-maximizing combinatorial auction for mm items and nn buyers in the Bayesian setting, specified by a valuation function vv and a set FF of nmnm independent item-type distributions. Let REV(v,F)REV(v, F) denote the maximum revenue achievable under FF by any incentive compatible mechanism. Intuitively, one would expect that REV(v,G)≥REV(v,F)REV(v, G)\geq REV(v, F) if distribution GG stochastically dominates FF. Surprisingly, Hart and Reny (2012) showed that this is not always true even for the simple case when vv is additive. A natural question arises: Are these deviations contained within bounds? To what extent may the monotonicity intuition still be valid? We present an {approximate monotonicity} theorem for the class of fractionally subadditive (XOS) valuation functions vv, showing that REV(v,G)≥c REV(v,F)REV(v, G)\geq c\,REV(v, F) if GG stochastically dominates FF under vv where c>0c>0 is a universal constant. Previously, approximate monotonicity was known only for the case n=1n=1: Babaioff et al. (2014) for the class of additive valuations, and Rubinstein and Weinberg (2015) for all subaddtive valuation functions.Comment: 10 page

    Julius-Kühn-Archiv 462

    Get PDF

    Addressing challenges to teach traditional and agile project management in academia

    Full text link
    In order to prepare students for a professional IT career, most universities attempt to provide a current educational curriculum in the Project Management (PM) area to their students. This is usually based on the most promising methodologies used by the software industry. As instructors, we need to balance traditional methodologies focused on proven project planning and control processes leveraging widely accepted methods and tools along with the newer agile methodologies. Such new frameworks emphasize that software delivery should be done in a flexible and iterative manner and with significant collaboration with product owners and customers. In our experience agile methodologies have witnessed an exponential growth in many diverse software organizations, and the various agile PM tools and techniques will continue to see an increase in adoption in the software development sector. Reflecting on these changes, there is a critical need to accommodate best practices and current methodologies in our courses that deliver Project Management content. In this paper we analyse two of the most widely used methodologies for traditional and agile software development – the widely used ISO/PMBOK standard provided by the Project Management Institute and the well-accepted Scrum framework. We discuss how to overcome curriculum challenges and deliver a quality undergraduate PM course for a Computer Science and Information systems curricula. Based on our teaching experience in Europe and North America, we present a comprehensive comparison of the two approaches. Our research covers the main concepts, processes, and roles associated with the two PM frameworks and recommended learning outcomes. The paper should be of value to instructors who are keen to see their computing students graduate with a sound understanding of current PM methodologies and who can deliver real-world software products.Accepted manuscrip
    • …
    corecore