4 research outputs found

    LOW-POWER LOW-VOLTAGE ANALOG CIRCUIT TECHNIQUES FOR WIRELESS SENSORS

    Get PDF
    This research investigates lower-power lower-voltage analog circuit techniques suitable for wireless sensor applications. Wireless sensors have been used in a wide range of applications and will become ubiquitous with the revolution of internet of things (IoT). Due to the demand of low cost, miniature desirable size and long operating cycle, passive wireless sensors which don\u27t require battery are more preferred. Such sensors harvest energy from energy sources in the environment such as radio frequency (RF) waves, vibration, thermal sources, etc. As a result, the obtained energy is very limited. This creates strong demand for low power, lower voltage circuits. The RF and analog circuits in the wireless sensor usually consume most of the power. This motivates the research presented in the dissertation. Specially, the research focuses on the design of a low power high efficiency regulator, low power Resistance to Digital Converter (RDC), low power Successive Approximation Register (SAR) Analog to Digital Converter (ADC) with parasitic error reduction and a low power low voltage Low Dropout (LDO) regulator. This dissertation includes a low power analog circuit design for the RFID wireless sensor which consists of the energy harvest circuits (an optimized rectifier and a regulator with high current efficiency) and a sensor measurement circuit (RDC), a single end sampling SAR ADC with no error induced by the parasitic capacitance and a digital loop LDO whose line and load variation response is improved. These techniques will boost the design of the wireless sensor and they can also be used in other similar low power design

    Integrated Circuit Design for Radiation Sensing and Hardening.

    Full text link
    Beyond the 1950s, integrated circuits have been widely used in a number of electronic devices surrounding people’s lives. In addition to computing electronics, scientific and medical equipment have also been undergone a metamorphosis, especially in radiation related fields where compact and precision radiation detection systems for nuclear power plants, positron emission tomography (PET), and radiation hardened by design (RHBD) circuits for space applications fabricated in advanced manufacturing technologies are exposed to the non-negligible probability of soft errors by radiation impact events. The integrated circuit design for radiation measurement equipment not only leads to numerous advantages on size and power consumption, but also raises many challenges regarding the speed and noise to replace conventional design modalities. This thesis presents solutions to front-end receiver designs for radiation sensors as well as an error detection and correction method to microprocessor designs under the condition of soft error occurrence. For the first preamplifier design, a novel technique that enhances the bandwidth and suppresses the input current noise by using two inductors is discussed. With the dual-inductor TIA signal processing configuration, one can reduce the fabrication cost, the area overhead, and the power consumption in a fast readout package. The second front-end receiver is a novel detector capacitance compensation technique by using the Miller effect. The fabricated CSA exhibits minimal variation in the pulse shape as the detector capacitance is increased. Lastly, a modified D flip-flop is discussed that is called Razor-Lite using charge-sharing at internal nodes to provide a compact EDAC design for modern well-balanced processors and RHBD against soft errors by SEE.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111548/1/iykwon_1.pd

    Architecture Independent Timing Speculation Techniques in VLSI Circuits.

    Full text link
    Conventional digital circuits must ensure correct operation throughout a wide range of operating conditions including process, voltage, and temperature variation. These conditions have an effect on circuit delays, and safety margins must be put in place which come at a power and performance cost. The Razor system proposed eliminating these timing margins by running a circuit with occasional timing errors and correcting the errors when they occur. Several existing Razor style designs have been proposed, however prior to this work, Razor could not be applied blindly or automatically to designs, as the various error correction schemes modified the architecture of the target design. Because of the architectural invasiveness and design complexities of these techniques, no published Razor style system had been applied to a complete existing commercial processor. Additionally, in all prior Razor-style systems, there is a fundamental tradeoff between speculation window and short path, or minimum delay, constraints, limiting the technique’s effectiveness. This thesis introduces the concept of Razor using two-phase latch based timing. By identifying and utilizing time borrowing as an error correction mechanism, it allows for Razor to be applied without the need to reload data or replay instructions. This allows for Razor to be blindly and automatically applied to existing designs without detailed knowledge of internal architecture. Additionally, latch based Razor allows for large speculation windows, up to 100% of nominal circuit delay, because it breaks the connection between minimum delay constraints and speculation window. By demonstrating how to transform conventional flip-flop based designs, including those which make use of clock gating, to two-phase latch based timing, Razor can be automatically added to a large set of existing digital designs. Two forms of latch based Razor are proposed. First, Bubble Razor involves rippling stall cycles throughout a circuit in response to timing errors and is applied to the ARM Cortex-M3 processor, the first ever application of a Razor technique to a complete, existing processor design. Additional work applies Bubble Razor to the ARM Cortex-R4 processor. The second latch based Razor technique, Voltage Razor, uses voltage boosting to correct for timing errors.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/102461/1/mfojtik_1.pd
    corecore