84 research outputs found

    Ubiquitous health monitoring system for seniors

    Full text link
    The Ubiquitous Health Monitoring System for Seniors is a prototype for an implantable module that is designed to eliminate critical delays in receiving medical attention upon the development of a heart attack. In particular, the prototype is to detect the onset of heart attacks in real time, and to use a Bluetooth wireless link to signal the patient\u27s mobile phone to dial emergency personnel in the event of an abnormality. The unit also records and logs the temperature of the user. Since the unit holds a GPS in it the current position of the user can be constantly monitored and by this the paramedics can arrive at the patient\u27s current location without any delay. The health monitoring system enables seniors to stay in their homes rather than in a medical institution which, in turn, cuts down the cost of medical care to a great extent

    Kinematics: On Direction Cosine Matrices

    Get PDF
    Motion mechanics (dynamics) comprises kinetics to describe the implications of applied forces and torques; and also kinematics (phoronomics). Developed in the 1700s, kinematics describes mathematical translations from one basis of measurement to another using common kinematic measurement variables like quaternions, Euler angles, and direction cosine matrices. Two ubiquitous rotation sequences are unquestionably adopted for developing modern direction cosine matrices from among the 12 potential options, stemming from applicability to aerospace systems, accuracy, and computation burden. This chapter provides a comprehensive reevaluation of all 12 options yielding a menu of options for accuracy and computational burdens, with the results illustrated compared to the ubiquitous two modernly adopted choices, broken into two rotational groups: symmetric rotations and nonsymmetric rotations. Validation will be provided by critical analysis of integration using step size to illustrate correlated minimal accuracy. No single rotational sequence is universally superior with respect to all figures of merit, enabling trade-space analysis between rotational sequences. One interesting revelation of one of the two ubiquitous sequences (the 3-1-3 symmetric sequence) is illustrated to have relatively less accuracy but lower computational burden than the other (the 3-2-1 nonsymmetric sequence). Meanwhile, a relatively unknown “2-3-1” rotational sequence is shown to have similar computational burden and accuracy

    Air Force Institute of Technology Research Report 2016

    Get PDF
    This Research Report presents the FY16 research statistics and contributions of the Graduate School of Engineering and Management (EN) at AFIT. AFIT research interests and faculty expertise cover a broad spectrum of technical areas related to USAF needs, as reflected by the range of topics addressed in the faculty and student publications listed in this report. In most cases, the research work reported herein is directly sponsored by one or more USAF or DOD agencies. AFIT welcomes the opportunity to conduct research on additional topics of interest to the USAF, DOD, and other federal organizations when adequate manpower and financial resources are available and/or provided by a sponsor. In addition, AFIT provides research collaboration and technology transfer benefits to the public through Cooperative Research and Development Agreements (CRADAs)

    The fixture and methodologies for evaluating vibration characteristics of hand-held pneumatic impact tools

    Full text link
    A test fixture has been designed for the testing of hand held pneumatic impact tools. The test fixture was modeled after a one-degree of freedom mass-spring-damper system. The design of the test fixture allows for a broad range of testing scenarios intended to simulate the methods in which impact tools are used in industry. Sustained use and assembly operations performed by impact tools were simulated on the test fixture. Acceleration measurements at the impact tool\u27s handle and on the test fixture\u27s mass were recorded during the simulations. From the measurements made on the test fixture\u27s mass, the acceleration levels at the tool\u27s working surface were calculated using a force balance model of the impact tool and the test fixture. From the acceleration measurements made at the impact tool\u27s handle, vibration exposure levels were calculated for four and eight hour exposure time periods. Test procedures and methods incorporating the use of the test fixture are discussed. Results obtained during the testing process are provided

    A Novel CO2 Flooding Based EOR for Sandstone Reservoirs

    Get PDF
    In an attempt to contribute to the development of CO2-EOR, this project proposes a novel Chemical-Alternating-Foam (CAF) flooding which couples chemical (surfactant and polymer) flooding with the conventional CO2 foam flooding. A new foaming formulation is first developed, and then through systematic and thorough investigations, it is discovered that CAF flooding that applied the developed foaming formulation could be a viable and promising CO2-EOR method for sandstones reservoirs

    Advances in Spacecraft Attitude Control

    Get PDF
    Spacecraft attitude maneuvers comply with Euler's moment equations, a set of three nonlinear, coupled differential equations. Nonlinearities complicate the mathematical treatment of the seemingly simple action of rotating, and these complications lead to a robust lineage of research. This book is meant for basic scientifically inclined readers, and commences with a chapter on the basics of spaceflight and leverages this remediation to reveal very advanced topics to new spaceflight enthusiasts. The topics learned from reading this text will prepare students and faculties to investigate interesting spaceflight problems in an era where cube satellites have made such investigations attainable by even small universities. It is the fondest hope of the editor and authors that readers enjoy this book

    Assisted history matching using pattern recognition technology

    Get PDF
    Reservoir simulation and modeling is utilized throughout field development in different capacities. Sensitivity analysis, history matching, operations optimization and uncertainty assessment are the conventional analyses in full field model studies. Realistic modeling of the complexities of a reservoir requires a large number of grid blocks. As the complexity of a reservoir increases and consequently the number of grid blocks, so does the time required to accomplish the abovementioned tasks.;This study aims to examine the application of pattern recognition technologies to improve the time and efforts required for completing successful history matching projects. The pattern recognition capabilities of Artificial Intelligence and Data Mining (AI&DM;) techniques are used to develop a Surrogate Reservoir Model (SRM) and use it as the engine to drive the history matching process. SRM is a prototype of the full field reservoir simulation model that runs in fractions of a second. SRM is built using a small number of geological realizations.;To accomplish the objectives of this work, a three step process was envisioned:;• Part one, a proof of concept study: The goal of first step was to prove that SRM is able to substitute the reservoir simulation model in a history matching project. In this part, the history match was accomplished by tuning only one property (permeability) throughout the reservoir.;• Part two, a feasibility study: This step aimed to study the feasibility of SRM as an effective tool to solve a more complicated history matching problem, particularly when the degrees of uncertainty in the reservoir increase. Therefore, the number of uncertain reservoir properties increased to three properties (permeability, porosity, and thickness). The SRM was trained, calibrated, and validated using a few geological realizations of the base reservoir model. In order to complete an automated history matching workflow, the SRM was coupled with a global optimization algorithm called Differential Evolution (DE). DE optimization method is considered as a novel and robust optimization algorithm from the class of evolutionary algorithm methods.;• Part three, a real-life challenge: The final step was to apply the lessons learned in order to achieve the history match of a real-life problem. The goal of this part was to challenge the strength of SRM in a more complicated case study. Thus, a standard test reservoir model, known as PUNQ-S3 reservoir model in the petroleum engineering literature, was selected. The PUNQ-S3 reservoir model represents a small size industrial reservoir engineering model. This model has been formulated to test the ability of various methods in the history matching and uncertainty quantification. The surrogate reservoir model was developed using ten geological realizations of the model. The uncertain properties in this model are distributions of porosity, horizontal, and vertical permeability. Similar to the second part of this study, the DE optimization method was connected to the SRM to form an automated workflow in order to perform the history matching. This automated workflow is able to produce multiple realizations of the reservoir which match the past performance. The successful matches were utilized to quantify the uncertainty in the prediction of cumulative oil production.;The results of this study prove the ability of the surrogate reservoir models, as a fast and accurate tool, to address the practical issues of reservoir simulation models in the history matching workflow. Nevertheless, the achievements of this dissertation are not only aimed at the history matching procedure, but also benefit the other time-consuming operations in the reservoir management workflow (such as sensitivity analysis, production optimization, and uncertainty assessment)

    Advances in Spacecraft Attitude Control

    Get PDF
    Spacecraft attitude maneuvers comply with Euler's moment equations, a set of three nonlinear, coupled differential equations. Nonlinearities complicate the mathematical treatment of the seemingly simple action of rotating, and these complications lead to a robust lineage of research. This book is meant for basic scientifically inclined readers, and commences with a chapter on the basics of spaceflight and leverages this remediation to reveal very advanced topics to new spaceflight enthusiasts. The topics learned from reading this text will prepare students and faculties to investigate interesting spaceflight problems in an era where cube satellites have made such investigations attainable by even small universities. It is the fondest hope of the editor and authors that readers enjoy this book
    • …
    corecore